An Experimental Study Using Deep Neural Networks to Predict the Recurrence Risk of Brain Tumor Glioblastoma Multiform

Main Article Content

Disha Sushant Wankhede, Chetan J. Shelke

Abstract

Virtual reality (VR) technology within the hotel industry marks a transformative shift in the way guests experience and engage with hospitality services. Virtual reality, with its immersive and interactive capabilities, enables hotels to provide a novel and engaging environment for guests. From virtual tours of hotel rooms and amenities to immersive experiences showcasing local attractions and cultural highlights, VR has the potential to revolutionize the pre-booking and on-site guest experience. This paper focused on the user experiences within hotel rooms enhanced with virtual reality (VR) technology. Leveraging content analysis, sentiment analysis, and advanced classification models, we aim to unravel the intricacies of user sentiments and preferences in this evolving domain. The content analysis reveals a spectrum of user opinions, ranging from enthusiastic endorsements of immersive VR content to nuanced critiques of room ambiance and interactivity. Subsequently, a sentiment analysis model accurately categorizes these sentiments, showcasing its effectiveness in capturing the diverse user expressions. Our classification analysis demonstrates the robustness of the sentiment analysis model, with high accuracy, precision, recall, and F1-score metrics. Comparatively, we introduce a proposed BERT model, harnessing advanced natural language processing techniques, and observe its performance against traditional sentiment analysis and an AutoEncoder Model. The results indicate that the BERT model matches the performance of traditional sentiment analysis, outperforming the AutoEncoder Model. This underscores the effectiveness of leveraging state-of-the-art language models in understanding and classifying user sentiments.

Article Details

Section
Articles
Author Biography

Disha Sushant Wankhede, Chetan J. Shelke

Disha Sushant Wankhede1[1], Chetan J. Shelke2

 

[1] [0000-0001-6245-3097]a

 [0000-0002-2200-1130]b

aResearch Scholar,  Dept. of Computer Science and Engineering,

Alliance college of engineering, University Campus, Anekal, Bengaluru , Karnataka 562107

bAssociate Professor  Dept. of Computer Science and Engineering,

Alliance college of engineering, University Campus, Anekal, Bengaluru , Karnataka 562107

sdishaphd719@ced.alliance.edu.in , chetan.shelke@alliance.edu.in

 

References

Wu, W., Klockow, J.L., Zhang, M., Lafortune, F., Chang, E., Jin, L., Wu, Y., & Daldrup-Link, H.E. (2021). Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 171, p. 105780.

Li, H., He, Y., Huang, L., Luo, H., & Zhu, X. (2020). The nomogram model predicting overall survival and guiding clinical decision in patients with glioblastoma based on the SEER database. Frontiers in Oncology, 10, p. 1051.

Chato, L., & Latifi, S. (2021). Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients. Journal of Personalized Medicine, 11(12), p. 1336.

Shim, K.Y., Chung, S.W., Jeong, J.H., Hwang, I., Park, C.K., Kim, T.M., Park, S.H., Won, J.K., Lee, J.H., Lee, S.T., & Yoo, R.E. (2021). Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Scientific Reports, 11(1), pp. 1-14.

Zuo, S., Zhang, X., & Wang, L. (2019). A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Scientific Reports, 9(1), pp. 1-10.

Carvalho, B., Lopes, R.G., Linhares, P., Costa, A., Caeiro, C., Fernandes, A.C., Tavares, N., Osório, L., & Vaz, R. (2020). Hypertension and proteinuria as clinical biomarkers of response to bevacizumab in glioblastoma patients. Journal of Neuro-Oncology, 147(1), pp. 109-116.

Lee, M.H., Kim, J., Kim, S.T., Shin, H.M., You, H.J., Choi, J.W., Seol, H.J., Nam, D.H., Lee, J.I., & Kong, D.S. (2019). Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data. World Neurosurgery, 125, pp. e688-e696.

Kim, E.L., Sorokin, M., Kantelhardt, S.R., Kalasauskas, D., Sprang, B., Fauss, J., Ringel, F., Garazha, A., Albert, E., Gaifullin, N., & Hartmann, C. (2020). Intratumoral heterogeneity and longitudinal changes in gene expression predict differential drug sensitivity in newly diagnosed and recurrent glioblastoma. Cancers, 12(2), p. 520.

Hsieh, H.P., Wu, D.Y., Hung, K.C., Lim, S.W., Chen, T.Y., Fan-Chiang, Y., & Ko, C.C. (2022). Machine Learning for Prediction of Recurrence in Parasagittal and Parafalcine Meningiomas: Combined Clinical and MRI Texture Features. Journal of Personalized Medicine, 12(4), p. 522.

Lundemann, M., Munck af Rosenschöld, P., Muhic, A., Larsen, V.A., Poulsen, H.S., Engelholm, S.A., Andersen, F.L., Kjær, A., Larsson, H.B., Law, I., & Hansen, A.E. (2019). Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 46(3), pp. 603-613.

Shim, K.Y., Chung, S.W., Jeong, J.H., Hwang, I., Park, C.K., Kim, T.M., Park, S.H., Won, J.K., Lee, J.H., Lee, S.T., & Yoo, R.E. (2020). Prediction of Recurrence Patterns in Glioblastoma Using DSC-MRI Radiomics-Based Deep Learning.

Acquitter, C., Piram, L., Sabatini, U., Gilhodes, J., Moyal Cohen-Jonathan, E., Ken, S., & Lemasson, B. (2022). Radiomics-Based Detection of Radionecrosis Using Harmonized Multiparametric MRI. Cancers, 14(2), p. 286.

Mulford, K., McMahon, M., Gardeck, A.M., Hunt, M.A., Chen, C.C., Odde, D.J., & Wilke, C. (2022). Predicting Glioblastoma Cellular Motility from In Vivo MRI with a Radiomics Based Regression Model. Cancers, 14(3), p. 578.

Eisenhut, F., Engelhorn, T., Arinrad, S., Brandner, S., Coras, R., PutzF., Fietkau, R., Doerfler, A., & Schmidt, M.A. (2021). A Comparison of Single-and Multiparametric MRI Models for Differentiation of Recurrent Glioblastoma from Treatment-Related Change. Diagnostics, 11(12), p. 2281.

Park, Y.W., Choi, D., Park, J.E., Ahn, S.S., Kim, H., Chang, J.H., Kim, S.H., Kim, H.S., & Lee, S.K. (2021). Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Scientific Reports, 11(1), pp. 1-9.

Ammari, S., Sallé de Chou, R., Assi, T., Touat, M., Chouzenoux, E., Quillent, A., Limkin, E., Dercle, L., Hadchiti, J., Elhaik, M., & Moalla, S. (2021). Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab. Diagnostics, 11(7), p. 1263.

Disha Wankhede and Dr. Selvarani Rangasamy. (2022). Dynamic Architecture Based Deep Learning Approach for Glioblastoma Brain Tumor Survival Prediction. *Neuroscience Informatics, 2(4),* 100062. doi: 10.1016/j.neuri.2022.100062.

Wong, B.S., Shah, S.R., Yankaskas, C.L., Bajpai, V.K., Wu, P.H., Chin, D., Ifemembi, B., ReFaey, K., Schiapparelli, P., Zheng, X., & Martin, S.S. (2021). A microfluidic cell-migration assay for the prediction of progression-free survival and recurrence time of patients with glioblastoma. Nature Biomedical Engineering, 5(1), pp. 26-40.

Lee, S., Choi, S.H., Cho, H.R., Koh, J., Park, C.K., & Ichikawa, T. (2021). Multiparametric magnetic resonance imaging features of a canine glioblastoma model. Plos One, 16(7), p. e0254448.

Shim, K.Y., Chung, S.W., Jeong, J.H., Hwang, I., Park, C.K., Kim, T.M., Park, S.H., Won, J.K., Lee, J.H., Lee, S.T., & Yoo, R.E. (2021). Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Scientific Reports, 11(1), pp. 1-14.

Lao, Y., Ruan, D., Vassantachart, A., Fan, Z., Jason, C.Y., Chang, E.L., Chin, R., Kaprealian, T., Zada, G., Shiroishi, M.S., & Sheng, K. (2021). Voxel-wise prediction of recurrent high grade glioma via proximity estimation coupled multi-dimensional SVM. International Journal of Radiation Oncology, Biology, Physics

Detti, B., Scoccianti, S., Teriaca, M.A., Maragna, V., Lorenzetti, V., Lucidi, S., Bellini, C., Greto, D., Desideri, I., & Livi, L. (2021). Bevacizumab in recurrent high-grade glioma: a single institution retrospective analysis on 92 patients. La Radiologia Medica, 126(9), pp. 1249-1254.

Disha Wankhede, Dr. Selvarani Rangasamy. (n.d.). Review on Deep learning approach for brain tumor glioma analysis. International Conference on Convergence of Smart Technologies IC2ST-2021.https://doi.org/10.17762/itii.v9i1.144

Wankhede, D.S., Pandit, S., Metangale, N., Patre, R., Kulkarni, S., Minaj, K.A. (2022). Survey on Analyzing Tongue Images to Predict the Organ Affected. In: , et al. Hybrid Intelligent Systems. HIS 2021. Lecture Notes in Networks and Systems, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-96305-7_56.

Wankhede, D.S., Shelke, C.J. (2023). An Investigative Approach on the Prediction of Isocitrate Dehydrogenase (IDH1) Mutations and Co deletion of 1p19q in Glioma Brain Tumors. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_19.