Enabling The E-NOSE: Evaluating Network Technologies for Optimized Odor Data Transmission in IoT and Edge Computing Applications

Main Article Content

Husam K. Salih Ayad A. Al-Ani

Abstract

Electronic Noses (e-noses) are advanced sensors that are being increasingly used in the Internet of Things (IoT) field. They have various applications in environmental monitoring and medical diagnostics. Optimal transmission of odor-related data is essential for fully harnessing the capabilities of these electronic noses in various network environments. This research paper examines the issue of transmitting odor data in Internet of Things (IoT) applications by assessing recent progress in communication and network technologies. A thorough analysis of various network alternatives, such as Ethernet, cellular (4G/5G), Wi-Fi, Bluetooth, Zigbee, and LoRa, is provided, accompanied by an elaborate table displaying precise technical specifications. The analysis of LoRa, a Low-Power Wide-Area Network (LPWAN) technology, encompasses an investigation into its architecture, modulation method, device classifications, and protocols such as LoRaWAN. The analysis of Edge Computing and cloud-based approaches for managing odor data in IoT culminates in a tabular presentation that succinctly outlines their advantages and disadvantages. This study provides valuable information to enhance the efficiency of transmitting odor data and effectively utilize electronic nose technology in different emerging applications in the Internet of Things (IoT) field.

Article Details

Section
Articles
Author Biography

Husam K. Salih Ayad A. Al-Ani

[1]Husam K. Salih

2Ayad A. Al-Ani

 

[1] Department of Information & Communication Engineering Al-Nahrain University, Baghdad, Iraq, Department of Computer EngineeringTechniques, Ibn Khaldun University College, Baghdad, Iraq [0000-0002-4267-1465]

husam01salih@gmail.com  

2Department of Information & Communication Engineering Al-Nahrain University, Baghdad, Iraq [0000-0002-2932-8670]

ayad.a@nahrainuniv.edu.iq

 

References

A. Gliszczyńska-Świgło and J. Chmielewski, “Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review,” Food Anal. Methods, vol. 10, no. 6, pp. 1800–1816, 2017, doi: 10.1007/s12161-016-0739-4.

M. J. Oates, J. D. Gonzalez-Teruel, M. C. Ruiz-Abellon, A. Guillamon-Frutos, J. A. Ramos, and R. Torres-Sanchez, “Using a Low-Cost Components e-Nose for Basic Detection of Different Foodstuffs,” IEEE Sens. J., vol. 22, no. 14, pp. 13872–13881, 2022, doi: 10.1109/JSEN.2022.3181513.

J. Tan and J. Xu, “Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review,” Artif. Intell. Agric., vol. 4, pp. 104–115, 2020, doi: 10.1016/j.aiia.2020.06.003.

H. R. Estakhroyeh, E. Rashedi, and M. Mehran, “Design and Construction of Electronic Nose for Multi-purpose Applications by Sensor Array Arrangement Using IBGSA,” J. Intell. Robot. Syst. Theory Appl., vol. 92, no. 2, pp. 205–221, 2018, doi: 10.1007/s10846-017-0759-3.

H. Zaki Dizaji, A. Adibzadeh, and N. Aghili Nategh, “Application of E-nose technique to predict sugarcane syrup quality based on purity and refined sugar percentage,” J. Food Sci. Technol., vol. 58, no. 11, pp. 4149–4156, 2021, doi: 10.1007/s13197-020-04879-4.

A. Tiele, A. Wicaksono, S. K. Ayyala, and J. A. Covington, “Development of a compact, iot-enabled electronic nose for breath analysis,” Electron., vol. 9, no. 1, 2020, doi: 10.3390/electronics9010084.

M. Bembe, A. Abu-Mahfouz, M. Masonta, and T. Ngqondi, “A survey on low-power wide area networks for IoT applications,” Telecommun. Syst., vol. 71, no. 2, pp. 249–274, 2019, doi: 10.1007/s11235-019-00557-9.

C. Bouras, A. Gkamas, V. Kokkinos, and N. Papachristos, “Performance evaluation of monitoring IoT systems using LoRaWan,” Telecommun. Syst., vol. 79, no. 2, pp. 295–308, 2022, doi: 10.1007/s11235-021-00858-y.

J. Petäjäjärvi, K. Mikhaylov, R. Yasmin, M. Hämäläinen, and J. Iinatti, “Evaluation of LoRa LPWAN Technology for Indoor Remote Health and Wellbeing Monitoring,” Int. J. Wirel. Inf. Networks, vol. 24, no. 2, pp. 153–165, 2017, doi: 10.1007/s10776-017-0341-8.

T. T. Nguyen, H. H. Nguyen, R. Barton, and P. Grossetete, “Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks,” IEEE Internet Things J., vol. 6, no. 6, pp. 9503–9515, 2019, doi: 10.1109/JIOT.2019.2929496.

I. Bizon Franco De Almeida, M. Chafii, A. Nimr, and G. Fettweis, “Alternative Chirp Spread Spectrum Techniques for LPWANs,” IEEE Trans. Green Commun. Netw., vol. 5, no. 4, pp. 1846–1855, 2021, doi: 10.1109/TGCN.2021.3085477.

I. B. F. De Almeida, M. Chafii, A. Nimr, and G. Fettweis, “In-phase and Quadrature Chirp Spread Spectrum for IoT Communications,” 2020 IEEE Glob. Commun. Conf. GLOBECOM 2020 - Proc., vol. 2020-January, 2020, doi: 10.1109/GLOBECOM42002.2020.9348094.

J. Dias and A. Grilo, “Multi-hop LoRaWAN uplink extension: specification and prototype implementation,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 945–959, 2020, doi: 10.1007/s12652-019-01207-3.

A. N. Damdam, L. O. Ozay, C. K. Ozcan, A. Alzahrani, R. Helabi, and K. N. Salama, “IoT-Enabled Electronic Nose System for Beef Quality Monitoring and Spoilage Detection,” Foods, vol. 12, no. 11, 2023, doi: 10.3390/foods12112227.

K. Kumar, S. N. Chaudhri, N. S. Rajput, A. V. Shvetsov, R. Sahal, and S. H. Alsamhi, “An IoT-Enabled E-Nose for Remote Detection and Monitoring of Airborne Pollution Hazards Using LoRa Network Protocol,” Sensors, vol. 23, no. 10, pp. 1–18, 2023, doi: 10.3390/s23104885.

Z. Lin and W. Xiang, “Wireless Sensing and Networking for the Internet of Things,” Sensors, vol. 23, no. 3, pp. 1–5, 2023, doi: 10.3390/s23031461.

S. Gupta and I. Snigdh, “Clustering in LoRa Networks, an Energy-Conserving Perspective,” Wirel. Pers. Commun., vol. 122, no. 1, pp. 197–210, 2022, doi: 10.1007/s11277-021-08894-2.

M. R. Ghaderi and N. Amiri, “LoRaWAN sensor: energy analysis and modeling,” Wirel. Networks, vol. 0123456789, no. 1, 2023, doi: 10.1007/s11276-023-03542-y.

W. Kassab and K. A. Darabkh, “A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations,” J. Netw. Comput. Appl., vol. 163, p. 102663, 2020, doi: https://doi.org/10.1016/j.jnca.2020.102663.

S. Bhattacharya and M. Pandey, “Issues and Challenges in Incorporating the Internet of Things with the Healthcare Sector,” 2021, pp. 639–651.

H. Feng, M. Zhang, P. Liu, Y. Liu, and X. Zhang, “Evaluation of IoT-enabled monitoring and electronic nose spoilage detection for salmon freshness during cold storage,” Foods, vol. 9, no. 11, 2020, doi: 10.3390/foods9111579.

P. P. Ray, “A survey on Internet of Things architectures,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no. 3, pp. 291–319, 2018, doi: 10.1016/j.jksuci.2016.10.003.

P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” J. Electr. Comput. Eng., vol. 2017, 2017, doi: 10.1155/2017/9324035.

M. I. Hossain and J. I. Markendahl, “Comparison of LPWAN Technologies: Cost Structure and Scalability,” Wirel. Pers. Commun., vol. 121, no. 1, pp. 887–903, 2021, doi: 10.1007/s11277-021-08664-0.

B. Reynders and S. Pollin, “Chirp spread spectrum as a modulation technique for long range communication,” 2016 IEEE Symp. Commun. Veh. Technol. Benelux, SCVT 2016, no. 2, pp. 1–5, 2016, doi: 10.1109/SCVT.2016.7797659.

Y. Jiang, L. Peng, A. Hu, S. Wang, Y. Huang, and L. Zhang, “Physical layer identification of LoRa devices using constellation trace figure,” Eurasip J. Wirel. Commun. Netw., vol. 2019, no. 1, 2019, doi: 10.1186/s13638-019-1542-x.