Intelligent Mechanisms for PdM in Automotive Machinery: A Comprehensive Analysis using ML/DL

Main Article Content

Snehal A. Patil, Nilesh P Sable, Parikshit N. Mahalle, Gitanjali Rahul Shinde

Abstract

Predictive maintenance (PdM) technique involves analyzing and utilizing data to identify problems before they happen. It can help prevent costly repairs and downtime. In the past few years, the use of intelligent tools for PdM in automotive machinery has been increasing. These tools can be used to analyze and collect data from various sources, such as cloud computing and sensors. In the prediction of failures, this data can be used in combination with machine learning algorithms. With the help of advanced technologies, such as machine learning and sensors, PdM has become a viable option to maintain machinery while minimizing costs and downtime. The paper presents a comprehensive analysis of the various components of the intelligent tools that are used for PdM. It starts by exploring the different kinds of sensors and their functions in monitoring the condition of the equipment. The paper then explores the synergistic relationship between machine learning and data analytics, demonstrating how these technologies can help identify potential issues, predict the remaining useful life of the equipment, and detect early anomalies. The paper reviews the literature on the use of intelligent tools and sensors for PdM in automotive machinery. It delves into the diverse kinds of mechanisms that have been employed for this type of PdM, the pros and cons of using such tools, as well as the possible directions in this domain. Despite the various challenges that have been presented, the potential of implementing intelligent tools in automotive machinery is still immense. They can help prevent equipment downtime and improve the safety and efficiency of the operations of the machinery. As the technology matures, we can expect the adoption of such mechanisms to increase. The report emphasizes the significant contribution of intelligent tools and sensors to the optimization of the maintenance schedules and the reduction of unplanned downtime in automotive machinery. The findings of this study provide a roadmap for practitioners, researchers, and industrial organizations looking to harness the potential of such mechanisms to guarantee the longevity of their assets.

Article Details

Section
Articles
Author Biography

Snehal A. Patil, Nilesh P Sable, Parikshit N. Mahalle, Gitanjali Rahul Shinde

1Snehal A. Patil

2Nilesh P Sable

3Parikshit N. Mahalle

4Gitanjali Rahul Shinde

1Research Scholar, Bansilal Ramnath Agarwal Charitable Trust's, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India.

Email: engg.snehalpatil@gmail.com

2Bansilal Ramnath Agarwal Charitable Trust's, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India.

Email: drsablenilesh@gmail.com

3Bansilal Ramnath Agarwal Charitable Trust's, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India.

Email: aalborg.pnm@gmail.com

4 Bansilal Ramnath Agarwal Charitable Trust's, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India.

Email: gr83gita@gmail.com

Copyright © JES 2023 on-line : journal.esrgroups.org

References

T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to PdM,” Comput. Ind. Eng., vol. 137, no. September, p. 106024, 2019, doi: 10.1016/j.cie.2019.106024.

T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, and G. P. Li, “PdM in the Industry 4.0: A systematic literature review,” Comput. Ind. Eng., vol. 150, no. October, p. 106889, 2020, doi: 10.1016/j.cie.2020.106889.

S. Badour, “Condition monitoring and PdM.” 2020, [Online]. Available: https://www.itwm.fraunhofer.de/en/departments/sys/machine-monitoring-and-control/predictive-maintenance-machinelearning.html.

Y. Wolf, L. Sielaff, and D. Lucke, “A Standardized Description Model for PdM Use Cases,” Procedia CIRP, vol. 118, pp. 122–127, 2023, doi: 10.1016/j.procir.2023.06.022.

N. Sakib and T. Wuest, “Challenges and Opportunities of Condition-based PdM: A Review,” Procedia CIRP, vol. 78, no. March, pp. 267–272, 2018, doi: 10.1016/j.procir.2018.08.318.

M. Compare, P. Baraldi, and E. Zio, “Challenges to IoT-Enabled PdM for Industry 4.0,” IEEE Internet Things J., vol. 7, no. 5, pp. 4585–4597, 2020, doi: 10.1109/JIOT.2019.2957029.

C. Krupitzer et al., “A Survey on PdM for Industry 4.0,” 2020, [Online]. Available: http://arxiv.org/abs/2002.08224.

D. Zhong, Z. Xia, Y. Zhu, and J. Duan, “Overview of PdM based on digital twin technology,” Heliyon, vol. 9, no. 4, p. e14534, 2023, doi: 10.1016/j.heliyon.2023.e14534.

W. Zhang, D. Yang, and H. Wang, “Data-Driven Methods for PdM of Industrial Equipment: A Survey,” IEEE Syst. J., vol. 13, no. 3, pp. 2213–2227, 2019, doi: 10.1109/JSYST.2019.2905565.

A. G. Mohapatra et al., “An Industry 4.0 implementation of a condition monitoring system and IoT-enabled PdM scheme for diesel generators,” Alexandria Eng. J., vol. 76, pp. 525–541, 2023, doi: 10.1016/j.aej.2023.06.026.

J. Hurtado, D. Salvati, R. Semola, M. Bosio, and V. Lomonaco, “Continual learning for PdM: Overview and challenges,” Intell. Syst. with Appl., vol. 19, no. May, p. 200251, 2023, doi: 10.1016/j.iswa.2023.200251.

J. J. Montero Jimenez, S. Schwartz, R. Vingerhoeds, B. Grabot, and M. Salaün, “Towards multi-model approaches to PdM: A systematic literature survey on diagnostics and prognostics,” J. Manuf. Syst., vol. 56, no. March, pp. 539–557, 2020, doi: 10.1016/j.jmsy.2020.07.008.

J. Dalzochio et al., “Machine learning and reasoning for PdM in Industry 4.0: Current status and challenges,” Comput. Ind., vol. 123, p. 103298, 2020, doi: 10.1016/j.compind.2020.103298.

L. Spendla, M. Kebisek, P. Tanuska, and L. Hrcka, “Concept of PdM of production systems in accordance with industry 4.0,” SAMI 2017 - IEEE 15th Int. Symp. Appl. Mach. Intell. Informatics, Proc., pp. 405–410, 2017, doi: 10.1109/SAMI.2017.7880343.

V. J. Jimenez, N. Bouhmala, and A. H. Gausdal, “Developing a PdM model for vessel machinery,” J. Ocean Eng. Sci., vol. 5, no. 4, pp. 358–386, 2020, doi: 10.1016/j.joes.2020.03.003.

Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A Survey of PdM: Systems, Purposes and Approaches,” vol. XX, no. Xx, pp. 1–36, 2019, [Online]. Available: http://arxiv.org/abs/1912.07383.

P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of Digital Twin for PdM in manufacturing,” Int. J. Comput. Integr. Manuf., vol. 32, no. 11, pp. 1067–1080, 2019, doi: 10.1080/0951192X.2019.1686173.

S. Liu, S. Ren, and H. Jiang, “PdM of wind turbines based on digital twin technology,” Energy Reports, vol. 9, pp. 1344–1352, 2023, doi: 10.1016/j.egyr.2023.05.052.

A. Rihi et al., “PdM in mining industry: grinding mill case study,” Procedia Comput. Sci., vol. 207, no. Kes, pp. 2483–2492, 2022, doi: 10.1016/j.procs.2022.09.306.

D. Coelho, D. Costa, E. M. Rocha, D. Almeida, and J. P. Santos, “PdM on sensorized stamping presses by time series segmentation, anomaly detection, and classification algorithms,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 1184–1193, 2022, doi: 10.1016/j.procs.2022.01.318.

P. Nunes, E. Rocha, J. Santos, and R. Antunes, “PdM on injection molds by generalized fault trees and anomaly detection,” Procedia Comput. Sci., vol. 217, no. 2022, pp. 1038–1047, 2023, doi: 10.1016/j.procs.2022.12.302.

M. Eddarhri, J. Adib, M. Hain, and A. Marzak, “Towards PdM: the case of the aeronautical industry,” Procedia Comput. Sci., vol. 203, pp. 769–774, 2022, doi: 10.1016/j.procs.2022.07.115.

C. Chen et al., “PdM using cox proportional hazard deep learning,” Adv. Eng. Informatics, vol. 44, no. February, p. 101054, 2020, doi: 10.1016/j.aei.2020.101054.

P. K. Rajesh, N. Manikandan, C. S. Ramshankar, T. Vishwanathan, and C. Sathishkumar, “Digital Twin of an Automotive Brake Pad for PdM,” Procedia Comput. Sci., vol. 165, no. 2019, pp. 18–24, 2019, doi: 10.1016/j.procs.2020.01.061.

J. Ramirez-Vergara, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Review of forecasting methods to support photovoltaic PdM,” Clean. Eng. Technol., vol. 8, no. January 2021, p. 100460, 2022, doi: 10.1016/j.clet.2022.100460.

W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles: A review,” Mater. Des., vol. 221, p. 110994, 2022, doi: 10.1016/j.matdes.2022.110994.

S. K. Dash, S. Raj, R. Agarwal, and J. Mishra, “Automobile PdM Using Deep Learning,” Int. J. Artif. Intell. Mach. Learn., vol. 11, no. 2, pp. 1–12, 2021, doi: 10.4018/ijaiml.20210701.oa7.

C. Chen, Y. Liu, X. Sun, C. Di Cairano-Gilfedder, and S. Titmus, “Automobile maintenance prediction using deep learning with GIS data,” Procedia CIRP, vol. 81, no. March, pp. 447–452, 2019, doi: 10.1016/j.procir.2019.03.077.

S. Coban, M. O. Gokalp, E. Gokalp, P. E. Eren, and A. Kocyigit, “PdM in Healthcare Services with Big Data Technologies,” Proc. - IEEE 11th Int. Conf. Serv. Comput. Appl. SOCA 2018, pp. 93–98, 2019, doi: 10.1109/SOCA.2018.00021.

N. A. A. Rani, M. R. Baharum, A. R. N. Akbar, and A. H. Nawawi, “Perception of Maintenance Management Strategy on Healthcare Facilities,” Procedia - Soc. Behav. Sci., vol. 170, pp. 272–281, 2015, doi: 10.1016/j.sbspro.2015.01.037.

P. Guariente, I. Antoniolli, L. P. Ferreira, T. Pereira, and F. J. G. Silva, “Implementing autonomous maintenance in an automotive components manufacturer,” Procedia Manuf., vol. 13, pp. 1128–1134, 2017, doi: 10.1016/j.promfg.2017.09.174.

A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “PdM enabled by machine learning: Use cases and challenges in the automotive industry,” Reliab. Eng. Syst. Saf., vol. 215, p. 107864, 2021, doi: 10.1016/j.ress.2021.107864.

C. A. G. da Silva, J. L. R. de Sá, and R. Menegatti, “Diagnostic of Failure in Transmission System of Agriculture Tractors Using PdM Based Software,” AgriEngineering, vol. 1, no. 1, pp. 132–144, 2019, doi: 10.3390/agriengineering1010010.

H. Lüttenberg, C. Bartelheimer, and D. Beverungen, “Designing PdM for agricultural machines,” 26th Eur. Conf. Inf. Syst. Beyond Digit. - Facet. Socio-Technical Chang. ECIS 2018, 2018.

S. Susarev, S. Orlov, E. Bizyukova, and R. Uchaikin, The Models for PdM of Robotic Agricultural Vehicles, vol. 417. Springer International Publishing, 2022.

H. H. Hosamo, P. R. Svennevig, K. Svidt, D. Han, and H. K. Nielsen, “A Digital Twin PdM framework of air handling units based on automatic fault detection and diagnostics,” Energy Build., vol. 261, p. 111988, 2022, doi: 10.1016/j.enbuild.2022.111988.

I. de Pater, A. Reijns, and M. Mitici, “Alarm-based PdM scheduling for aircraft engines with imperfect Remaining Useful Life prognostics,” Reliab. Eng. Syst. Saf., vol. 221, no. October 2021, p. 108341, 2022, doi: 10.1016/j.ress.2022.108341.

Y. You, C. Chen, F. Hu, Y. Liu, and Z. Ji, “Advances of Digital Twins for PdM,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 1471–1480, 2022, doi: 10.1016/j.procs.2022.01.348.

X. Chen, J. Van Hillegersberg, E. Topan, S. Smith, and M. Roberts, “Application of data-driven models to PdM: Bearing wear prediction at TATA steel,” Expert Syst. Appl., vol. 186, no. July 2021, p. 115699, 2021, doi: 10.1016/j.eswa.2021.115699.

F. C. Gómez de León Hijes, J. Sánchez Robles, F. M. Martínez García, and M. Alarcón García, “Dynamic management of periodicity between measurements in PdM,” Meas. J. Int. Meas. Confed., vol. 213, no. February, 2023, doi: 10.1016/j.measurement.2023.112721.

M. Mitici, I. de Pater, A. Barros, and Z. Zeng, “Dynamic PdM for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines,” Reliab. Eng. Syst. Saf., vol. 234, no. February, p. 109199, 2023, doi: 10.1016/j.ress.2023.109199.

J. Tinoco, M. Parente, A. Gomes Correia, P. Cortez, and D. Toll, “Predictive and prescriptive analytics in transportation geotechnics: Three case studies,” Transp. Eng., vol. 5, no. May, p. 100074, 2021, doi: 10.1016/j.treng.2021.100074.

E. Fumeo, L. Oneto, and D. Anguita, “Condition based maintenance in railway transportation systems based on big data streaming analysis,” Procedia Comput. Sci., vol. 53, no. 1, pp. 437–446, 2015, doi: 10.1016/j.procs.2015.07.321.

T. Valentin, I. Andrei, C. Tarean, and N. Toma, “Maintenance of the romanian national transportation system of crude oil and natural gas,” Procedia Eng., vol. 69, pp. 980–985, 2014, doi: 10.1016/j.proeng.2014.03.079.

J. W. V. Schalkwyk, J. L. Jooste, and D. Lucke, “A Framework for Selecting Data Acquisition Technology in Support of Railway Infrastructure PdM,” Procedia CIRP, vol. 104, no. March, pp. 845–850, 2021, doi: 10.1016/j.procir.2021.11.142.

R. Ahmed, F. Nasiri, and T. Zayed, “Two-Stage PdM Planning for Hospital Buildings: A Multiple-Objective Optimization-Based Clustering Approach,” J. Perform. Constr. Facil., vol. 36, no. 1, pp. 1–11, 2022, doi: 10.1061/(asce)cf.1943-5509.0001691.

O. Manchadi, F. ezzahraa Ben-Bouazza, and B. Jioudi, “PdM in healthcare system: A Survey,” IEEE Access, vol. 11, no. May, pp. 61313–61330, 2023, doi: 10.1109/ACCESS.2023.3287490.

A. Shamayleh, M. Awad, and J. Farhat, “IoT Based PdM Management of Medical Equipment,” J. Med. Syst., vol. 44, no. 4, 2020, doi: 10.1007/s10916-020-1534-8.

G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, “Machine learning for PdM: A multiple classifier approach,” IEEE Trans. Ind. Informatics, vol. 11, no. 3, pp. 812–820, 2015, doi: 10.1109/TII.2014.2349359.

T. Praveenkumar, M. Saimurugan, P. Krishnakumar, and K. I. Ramachandran, “Fault diagnosis of automobile gearbox based on machine learning techniques,” Procedia Eng., vol. 97, pp. 2092–2098, 2014, doi: 10.1016/j.proeng.2014.12.452.

W. Luo, T. Hu, Y. Ye, C. Zhang, and Y. Wei, “A hybrid PdM approach for CNC machine tool driven by Digital Twin,” Robot. Comput. Integr. Manuf., vol. 65, no. September 2019, p. 101974, 2020, doi: 10.1016/j.rcim.2020.101974.

K. Velmurugan, S. Saravanasankar, P. Venkumar, R. Sudhakarapandian, and G. Di Bona, “Hybrid fuzzy AHP-TOPSIS framework on human error factor analysis: Implications to developing optimal maintenance management system in the SMEs,” Sustain. Futur., vol. 4, no. April, p. 100087, 2022, doi: 10.1016/j.sftr.2022.100087.

G. Hajgató, R. Wéber, B. Szilágyi, B. Tóthpál, B. Gyires-Tóth, and C. Hős, “PredMaX: PdM with explainable deep convolutional autoencoders,” Adv. Eng. Informatics, vol. 54, no. May, p. 101778, 2022, doi: 10.1016/j.aei.2022.101778.

K. D. Addo, F. Davis, Y. A. K. Fiagbe, and A. Andrews, “Machine learning for predictive modelling of the performance of automobile engine operating without coolant thermostat,” Sci. African, vol. 21, no. December 2022, p. e01802, 2023, doi: 10.1016/j.sciaf.2023.e01802.

H. Heymann and R. H. Schmitt, “Machine Learning Pipeline for PdM in Polymer 3D Printing,” Procedia CIRP, vol. 117, pp. 341–346, 2023, doi: 10.1016/j.procir.2023.03.058.

D. Pagano, “A PdM model using Long Short-Term Memory Neural Networks and Bayesian inference,” Decis. Anal. J., vol. 6, no. December 2022, p. 100174, 2023, doi: 10.1016/j.dajour.2023.100174.

J. Lee and M. Mitici, “Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics,” Reliab. Eng. Syst. Saf., vol. 230, no. September 2022, p. 108908, 2023, doi: 10.1016/j.ress.2022.108908.

HIMANSHU AGARWAL, “PdM dataset.,” Machine Learning Repository. 2022, [Online]. Available: https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset.

An inexact operator splitting method for general mixed variational inequalities. (2022). Advances in the Theory of Nonlinear Analysis and Its Application, 6(2), 258-269. https://atnaea.org/index.php/journal/article/view/135