Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
Main Article Content
Abstract
Glaucoma, a neurodegenerative eye disorder, stands as a major global health concern, ranking second in causing blindness. The urgency for early detection is paramount to mitigate its irreversible effects on vision. This research presents an innovative model adept at analyzing retinal fundus images, aiming to assist ophthalmologists in early diagnosis. By harnessing the capabilities of Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and k-Nearest Neighbors (KNN), our model demonstrated an impressive 86% accuracy in identifying diabetic retinopathy from retinal images. Focusing on glaucoma detection, we utilized the RIGA dataset, comprising 2,664 images, which are categorized into non-glaucoma (1,488 images) and glaucoma (1,176 images). Our model showcased a commendable testing accuracy of 94%. This endeavor not only amplifies the potential of machine learning in glaucoma prediction but also signifies a step forward in creating a user-centric, efficient diagnostic tool. Such innovations are pivotal in enhancing global eye care and reducing the prevalence of vision impairment due to glaucoma.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
References
Siamak YG, Michael H, Madhusudhanan B, Tzyy-Ping J, Robert WN,FelipeMA,LindaZM,JeffreyLM,ChristopherGA, Christopher B (2013) Glaucoma progression detection using struc tural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng 61(4):1143–1154
Cheng J, Liu J, Xu Y, Yin F, Tan NM, Wong WKD, Lee BH, ChengX,GaoX,ZhangZ,WongTY(2017)Methodsandsystems for automatic location of optic structures in an image of an eye, and for automaticretina cup-to-disc ratio computation. USPatent 9:684, 959
Martins J, Cardoso JS, Soares F (2020) Offline computer-aided diagnosis for glaucoma detection using fundus images targeted at mobile devices. Comput Methods Prog Biomed 192:105341
Kourkoutas D, Karanasiou IS, Tsekouras GJ, Moshos M, Iliakis E, Georgopoulos G (2012) Glaucoma risk assessment using a non linear multivariable regression method. Computer Methods Programs Biomed 108(3):31149–31159
Didit Suprihanto, & Retantyo Wardoyo. (2023). Analysis of classification algorithms for Machine Learning using the SPSS Method. International Journal of Computer Engineering in Research Trends, 10(7), 15–21. https://doi.org/10.22362/ijcert.v10i7.859
Ortíz, D., Cubides, M., Suárez, A., Zequera, M., Quiroga, J., Gómez, J. and Arroyo, N., (2010). Support system for the preven tive diagnosis of hypertensive retinopathy. In: Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 5649-5652). IEEE
SalehMD, EswaranC, MueenA (2011) An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection. J Digit Imaging 24(4):564–572
Roodhooft J (2002) Leading causes of blindness worldwide. Bull Society BelgeOphtalmol 283:19–25
Haleem MS, Han L, Van Hemert J, Li B (2013) Automatic extrac tion of retinal features from colour retinal images for glaucoma diagnosis: a review. ComputMedImagingGraph37(7–8):581–596
Abdel-Hamid L (2020) Glaucoma detection from retinal images using statistical and textural wavelet features. J Digit Imaging 33(1):151–158
TuckMW, CrickRP(1992)Screening for glaucoma : age and sex of referrals and confirmed cases in England and Wales. Ophthalmic Physiol Opt 12(4):400–404
George R, Ve Ramesh S (2010) Glaucoma in India: estimated bur den of disease. J Glaucoma 19(6):391–397
Quigley HA, Broman AT(2006) The number of people with glau coma worldwide in 2010 and 2020. Br .J .Ophthalmol 90(3):262 267
Vajaranant TS, Wu S, Torres M, Varma R (2012) A 40-year forecast of the demographic shift in primary open-angle glaucoma in the United States. Invest Ophthalmol Vis Sci 53(5):2464–2466
Alghamdi, M., & Abdel-Mottaleb, M. (2021). A Comparative Study of Deep Learning Models for Diagnosing Glaucoma From Fundus Images. IEEE Access, 9, 23894-23906. https://doi.org/10.1109/ACCESS.2021.3056641
Rakesh, S., Bharadhwaj, A., Sree Harsha, E. (2021). Sign Language Recognition Using Convolutional Neural Network. In: Raj, J.S., Iliyasu, A.M., Bestak, R., Baig, Z.A. (eds) Innovative Data Communication Technologies and Application. Lecture Notes on Data Engineering and Communications Technologies, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-15-9651-3_58
Ravishyam, D., & Samiappan, D. (2021). Comparative Study of Machine Learning with Novel Feature Extraction and Transfer Learning to Perform Detection of Glaucoma in Fundus Retinal Images. In T.K. Sharma, C.W. Ahn, O.P. Verma, & B.K. Panigrahi (Eds.), Soft Computing: Theories and Applications (Vol. 1381). Springer. https://doi.org/10.1007/978-981-16-1696-9_40
Singh, L.K., Pooja, Garg, H., & et al. (2021). An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Med Biol Eng Comput, 59(3), 333–353. https://doi.org/10.1007/s11517-020-02307-5
Mahum, R., Rehman, S. U., Okon, O. D., Alabrah, A., Meraj, T., & Rauf, H. T. (2021). A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics, 11(1), 26. https://doi.org/10.3390/electronics11010026
de Assis, D. F., & Cortez, P. C. (2023). A Comparative Analysis of Glaucoma Feature Extraction and Classification Techniques in Fundus Images. Journal of Communication and Information Systems, 38(1), 47–60. https://doi.org/10.14209/jcis.2023.6
Thanki, R. (2023). A deep neural network and machine learning approach for retinal fundus image classification. Healthcare Analytics, 3, 100140. https://doi.org/10.1016/j.health.2023.100140
Singh, L. K., Khanna, M., Thawkar, S., & Singh, R. (2022). Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images. Advances in Engineering Software, 173, 103283. https://doi.org/10.1016/j.advengsoft.2022.103283
Das, D., Biswas, S. K., & Bandyopadhyay, S. (2022). A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools and Applications, 81(18), 25613-25655.
Polishetty Pranay, Mandadi Rahul Reddy, & K Venkatesh Sharma. (2023). Advancing Chronic Kidney Disease Diagnosis: A Predictive Model Using Random Forest Classifier. International Journal of Computer Engineering in Research Trends, 10(10), 1–7. https://doi.org/10.22362/ijcert.v10i10.869
G. Kiran Kumar, D. Malathi Rani, M. Venu Gopalachari, S. Rakesh, Syed Ashraf; Melanoma classification using convolutional neural network. AIP Conf. Procr 2023; 2754 (1): 070019. https://doi.org/10.1063/5.0162544
Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Laude A, Ciaccio EJ, TongL,AcharyaUR(2018)Computer-aideddiagnosisofglau coma using fundus images: a review. Comput Methods Prog Biomed 165:1–12 48.
Jorge, B., Barrera, D., Caro, MP, Estupinan, AM, Gonzalez-Neira, EM, Perez, N., Carlos, S., Suarez, DR and Torres, MJ, (2018). Dispatch rules in programming of elective surgical procedures: im pact on occupation and opportunity indicators. Health Sciences Magazine
P, P., & J , K. (2023). Effective Predictor Model for Parkinson’s Disease Using Machine Learning . International Journal of Computer Engineering in Research Trends, 10(4), 204–209. https://doi.org/10.22362/ijcert.v10i4.27
Robbi Rahim, & Abdul wahid. (2023). Advancements in Plant Disease Detection: Integrating Machine Learning, Image Processing, and Precision Agriculture. International Journal of Computer Engineering in Research Trends, 10(8), 19–25. https://doi.org/10.22362/ijcert.v10i8.860