Analysis of Parenting Stress, Co-parenting Level, Family Intimacy and Adaptability on Children's Social Skills via self-attention Network

Main Article Content

Sisi Zhao


This paper uses the self-attention method to track family intimacy.  We propose the Self-Attention Adversarial Deep Subspace Clustering Algorithm (SAADSC). The self-attention adversarial network is used to impose a prior distribution constraint in the feature learning of the autoencoder, which guides the learned feature representation to be more robust, thereby improving the clustering accuracy. The results show that the proposed algorithm outperforms the state-of-the-art methods in terms of accuracy (ACC) and standard mutual information (NMI). Therefore, we can effectively transfer this self-attention method to the analysis of the effects of adaptation on children's social skills.

Article Details