Analyzing Existing Algorithms and Identifying Gaps in Brain Stroke Detection

Main Article Content

Rohini B. Jadhav, Milind Gayakwad, Shital Pawar, S. D. Jadhav, Rahul Joshi, Amruta V. Patil, Hiren Dand, Disha Sushant Wankhede

Abstract

One of the global issues that matters most right now is healthcare. The primary cause of death globally is brain stroke. A valuable contribution to medicine is the early prediction and identification of brain stroke events. Numerous factors, including BMI (body mass index), age, sex, family history, gender, smoking status, hypertension, and so on, are linked to brain stroke deaths. While forecasting heart illness has received a great deal of interest in the medical community, predicting a brain stroke has received less attention. This study's primary goal is to evaluate various previously published research publications and select the most effective machine learning methods for brain stroke prediction for our next projects. It was shown that mortality rate and functional outcomes are the expected outcomes for the majority of the study work done after analyzing the various machine learning techniques used for stroke predictions and after accounting for the previously published studies. The techniques that were used most commonly were LR, DTC, RFC, SVM, KNN.

Article Details

Section
Articles
Author Biography

Rohini B. Jadhav, Milind Gayakwad, Shital Pawar, S. D. Jadhav, Rahul Joshi, Amruta V. Patil, Hiren Dand, Disha Sushant Wankhede

[1]Dr. Rohini B. Jadhav

2Dr. Milind Gayakwad

3Shital Pawar

4Dr. S. D. Jadhav

5Dr. Rahul Joshi

6Amruta V. Patil

7Hiren Dand

8Disha Sushant Wankhede

 

[1]Associate Professor, Department of Information Technology, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India

2Bharati Vidyapeeth Deemed to be University College of Engineering, Pune, India

3Department of Computer Engineering, Bharati Vidyapeeth's College of Engineering for Women Pune, India

4Bharati Vidyapeeth (Deemed to be University), College of Engineering, Pune. India

5Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India

6Research Scholar, CSE, SJJTU, Rajasthan, India

7Research Guide, CSE, SJJTU, Rajasthan, India

8Assistant Professor, Vishwakarma Institute of Information technology Pune, India

Email- rbjadhav@bvucoep.edu.in, mdgayakwad@bvucoep.edu.in, shitalp16@gmail.com,

sdjadhav@bvucoep.edu.in, rahulj@sitpune.edu.in, amrutayadav2010@gmail.com, dandhiren@yahoo.co.in, disha.wankhede@viit.ac.in

Copyright © JES 2024 on-line : journal.esrgroups.org

 

References

Virani, S.S.; Alonso, A.; Aparicio,. Heart Disease and Stroke Statistics—2021 Update: A Report from the American Heart Association.Available online: https://www.heart.org/-/media/PHD-Files-2/Science-News/2/2021-Heart-and-Stroke-Stat-Update/2021Stat_Update_factsheet_Global_Burden_of_Disease.pdf (accessed on 27 January 2021).

GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the GlobalBurden of Disease Study 2016. Lancet 2019, 18, 439–458.

Disha Sushant Wankhede, R. Selvarani, Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction, Neuroscience Informatics, Volume 2, Issue 4, 2022, 100062, ISSN 2772-5286, https://doi.org/10.1016/j.neuri.2022.100062. (https://www.sciencedirect.com/science/article/pii/S2772528622000243)

O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123.

Campbell, B.C.V.; De Silva, D.A.; MacLeod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 70.

Switzer, A.J.; Hess, D.C.; Nichols, F.T.; Adams, R.J. Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol. 2006, 5, 501–512.

Krishnamurthi, R.V.; Feigin, V.L.; Forouzanfar, M.H.; Mensah, A.G.; Connor, M.; Bennett, A.D.; Moran, E.A.; Sacco, R.L.; Anderson,L.M.; Truelsen, T.; et al. Global and regional burden of first–ever ischaemic and haemorrhagic stroke during 1990–2010: Findingsfrom the Global Burden of Disease Study. Lancet Glob. Health 2013, 1, e259–e281.

Sagar, R.; Dandona, R.; Gururaj, G.; Dhaliwal, R.S.; Singh, A.; Ferrari, A.; Dua, T.; Ganguli, A.; Varghese, M.; Chakma, J.K.; et al.The burden of neurological disorders across the states of India: The Global Burden of Disease Study 1990–2019. Lancet Psychiatry2020, 7, 148–161.

D. Wankhede, V. Mishra, M. Karnik, A. Kekane and A. Shukla, "The Impact of the Latest Technology on Healthcare and how can it be leveraged to improve patient outcomes and reduce Healthcare costs," 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India, 2023, pp. 1-6, doi: 10.1109/GCAT59970.2023.10353516.

Donkor, E.S. Stroke in the21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018,3238165.

Saver, J.L. Penumbral salvage and thrombolysis outcome: A drop of brain, a week of life. Brain 2017, 140, 519–522.

Meretoja, A.; Keshtkaran, M.; Tatlisumak, T.; Donnan, G.A.; Churilov, L. Endovascular therapy for ischemic stroke: Save aminute-save a week. Neurology 2017, 88, 2123–2127.

Powers,W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk,B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for HealthcareProfessionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e99.

Lindsay, P.; Furie, K.L.; Davis, S.M.; Donnan, G.; Norrving, B. World Stroke Organization Global Stroke Services Guidelines andAction Plan. Int. J. Stroke 2014, 9, 4–13.

Brazzelli, M.; Sandercock, P.A.; Chappell, F.M.; Celani, M.G.; Righetti, E.; Arestis, N.; Wardlaw, J.M.; Deeks, J.J. Magneticresonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke

symptoms. Cochrane Database Syst. Rev. 2009, 4, CD007424.

Clinical Guidelines for Stroke Management. Available online: https://informme.org.au/en/Guidelines/Clinical-Guidelines-for-Stroke-Management (accessed on 3 October 2021).

Wankhede, D.S., Shelke, C.J. (2023). An Investigative Approach on the Prediction of Isocitrate Dehydrogenase (IDH1) Mutations and Co-deletion of 1p19q in Glioma Brain Tumors. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_19

Rowley, H.; Vagal, A. Stroke and Stroke Mimics: Diagnosis and Treatment. In Diseases of the Brain, Head and Neck, Spine 2020–2023:Diagnostic Imaging; IDKD Springer Series; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–36.

Allen, M.L.; Anton, N.; Hasso, J.; Handwerker, J.; Hamed, F. Sequence-specific MR Imaging Findings that Are Useful in DatingIschemic Stroke. RadioGraphics 2012, 32, 1285–1297.

Pereira, S.; Meier, R.; McKinley, R.;Wiest, R.; Alves, V.; Silva, C.A.; Reyes, M. Enhancing interpretability of automatically extractedmachine learning features: Application to a RBM-Random Forest system on brain lesion segmentation. Med. Image Anal. 2018, 44,228–244.

Lin, C.-H.; Hsu, K.-C.; Johnson, K.R.; Luby, M.; Fann, Y.C. Applying density-based outlier identifications using multiple datasetsfor validation of stroke clinical outcomes. Int. J. Med. Inform. 2019, 132, 103988.

Garg, R.; Oh, E.; Naidech, A.; Kording, K.; Prabhakaran, S. Automating Ischemic Stroke Subtype Classification Using Machine

Learning and Natural Language Processing. J. Stroke Cerebrovasc. Dis. 2019, 28, 2045–2051.

Peixoto, S.A.; Filho, P.P.R. Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on thefrequency domain. Comput. Electr. Eng. 2018, 71, 398–407.

Karthik R, Gupta U, Jha A, Rajalakshmi R, Menaka R. Adeep supervised approach for ischemic lesion segmentationfrom multimodal MRI using fully convolutional network.Applied Soft Computing 2019;84:105685

Lee BJ, Kim KH, Ku B, Jang J-S, Kim JY. Prediction ofbody mass index status from voice signals based onmachine learning for automated medical applications.Artificial intelligence in medicine 2013;58(1):51-61.

Bento M, Souza R, Salluzzi M, Rittner L, Zhang Y, FrayneR. Automatic identification of atherosclerosis subjects ina heterogeneous MR brain imaging data set. Magneticresonance imaging 2019.

Wang, C.-W.; Lee, J.-H. Stroke Lesion Segmentation of 3D Brain MRI Using Multiple Random Forests and 3D Registration. Adv.Data Min. Appl. 2016, 9556, 222–232.

Kuang, H.; Menon, B.K.; Sohn, S.I.; Qiu, W. EIS-Net: Segmenting early infarct andscoring ASPECTS simultaneously onnon-contrast CT of patients with acute ischemic stroke. Med.Image Anal. 2021, 70, 101984.

Barros, S.R.; Tolhuisen, M.L.; Boers, A.M.; Jansen, I.; Ponomareva, E.; Dippel, D.W.J.; Lught, A.V.D.; Oostenbrugge, R.J.V.; Zwam,W.H.V.; Berkhemer, O.A.; et al. Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks. J. NeuroInterv. Surg. 2020, 12, 848–852.

Barman, A.; Inam, M.E.; Lee, S.; Savitz, S.; Sheth, S.; Giancardo, L. Determining Ischemic Stroke from CT-AngiographyImaging Using Symmetry-Sensitive Convolutional Networks. In Proceedings of the 2019 IEEE 16th International Symposium onBiomedical Imaging (ISBI 2019), Taichung, Taiwan, 8–10 November 2019; pp. 1873–1877.

Mrs. Disha Sushant Wankhede, Dr. Selvarani Rangasamy,"REVIEW ON DEEP LEARNING APPROACH FOR BRAIN TUMOR GLIOMA ANALYSIS" Journal of Information Technology in Industry, VOL. 9 NO. 1 (2021) pp. 395 - 408 , DOI: https://doi.org/10.17762/itii.v9i1.144

Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448.

Kamalakannan, S.; Gudlavalleti, A.; Gudlavalleti, V.S.M.; Goenka, S.; Kuper, H. Incidence & prevalence of stroke in India: Asystematic review. Indian J. Med. Res. 2017, 146, 175–185.

Bivard, A.; Churilov, L.; Parsons, M. Artificial intelligence for decision support in acute stroke Current roles and potential. Nat.Rev. Neurol. 2020, 16, 575–585.

Wankhede, D.S., Pandit, S., Metangale, N., Patre, R., Kulkarni, S., Minaj, K.A. (2022). Survey on Analyzing Tongue Images to Predict the Organ Affected. In: Abraham, A., et al. Hybrid Intelligent Systems. HIS 2021. Lecture Notes in Networks and Systems, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-96305-7_56

D. Wankhede, V. Mishra, M. Karnik, A. Kekane and A. Shukla, "The Impact of the Latest Technology on Healthcare and how can it be leveraged to improve patient outcomes and reduce Healthcare costs," 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India, 2023, pp. 1-6, doi: 10.1109/GCAT59970.2023.10353516.

Sutar, S., Jose, K., Gaikwad, V., Mishra, V., Wankhede, D., & Karnik, M. (2023). Enhancing Data Management: An Integrated Solution for Database Backup, Recovery, Conversion, and Encryption Capabilities. International Journal of Intelligent Systems and Applications in Engineering, 12(6s), 720–734. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4011

Sakhare, N. N., Bangare, J. L., Purandare, R. G., Wankhede, D. S., & Dehankar, P. (2024). Phishing Website Detection Using Advanced Machine Learning Techniques. International Journal of Intelligent Systems and Applications in Engineering, 12(12s), 329 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4519

P. M, D. S. Wankhede, R. Kumar, G. Ezhilarasan, S. Khurana and G. S. Sahoo, "Leveraging AI-Driven Systems to Advance Data Science Automation," 2023 International Conference on Emerging Research in Computational Science (ICERCS), Coimbatore, India, 2023, pp. 1-7, doi: 10.1109/ICERCS57948.2023.10434009.

Zhiliang Zhang, Zhongxiang Ding, Fenyang Chen, Rui Hua, Jiaojiao Wu, Zhefan Shen, Feng Shi & Xiufang Xu (2024) Quantitative Analysis of Multimodal MRI Markers and Clinical Risk Factors for Cerebral Small Vessel Disease Based on Deep Learning, International Journal of General Medicine, 17:, 739-750, DOI: 10.2147/IJGM.S446531