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Approach 

 

This work proposes a new method for fault diagnosis in electric power transportation 
systems based on neural modules. With this method, the diagnosis is performed by 
assigning a generic neural module for each type of element conforming a transportation 
system, whether it be a transportation line, bar or transformer. A total of three generic 
neural modules are designed, one for each type of element. These neural modules are 
placed in repeating groups in accordance with the element to be diagnosed, taking into 
consideration its circuit breakers and relays, both internal and backup. For the diagnosis of 
a transportation line, this method is further reinforced by taking into consideration the 
corresponding waveforms of fault voltages and currents as well as the frequency spectrums 
of these waveforms, through a neural structure, in order to verify if the line had in fact been 
subjected to a fault, and at the same time to determine which type of fault ( LT, LLT, LL, 
LLL, LLLT ). The most important and innovative aspect of this method is that only three 
neural modules will be used, one for each type of element, and these can be employed for a 
diagnosis as one function, the instant any change of status is detected in the internal and/or 
backup relays relating to the element subjected to diagnosis. 

Keywords: Modular Neural Network, Fault Diagnosis, waveforms of fault voltages and currents, 
frequency spectrums of fault voltages and currents.  

1. Introduction 

At present, Control Center Operators for Generation and Transportation of Electric Power 
are increasingly overwhelmed by the huge amount of information that must be analyzed at 
any given moment in order to maintain the system in optimal operating conditions.  Each 
time an event occurs in the system, based on the SCADA system alarms and the faulty 
elements, the operator must try to carry out a diagnosis as close as possible to the current 
status of the system in order to restore it without delay. A diagnosis in these conditions can 
become very complicated depending on the number of failed elements and protective 
devices in operation. 
The aim of this work is to present a methodology for the implementation of a fault 
diagnostic system through the application of Artificial Neural Networks with a modular 
approach in Electric Power Transportation Systems, which will be used as an auxiliary tool 
in decision-making by operators in the Control Areas where a rapid and accurate diagnosis 
can facilitate a speedier reconnection of a collapsed power system. 
Over the last few decades, a number of investigations have been developed dealing with 
fault diagnosis in electric power systems with different neural structures, such as Bayesian 
networks [1], Radial Base Function networks ( RBF ) [2][3][4], Backpropagation networks 
[10], SOM networks [17], all of which have given good results but with certain limitations. 
One of these limitations is the monolithic-type closed structure of these networks which, 
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when applied to real power systems with greater dimensions, become more complicated to 
implement. 
The diagnostic method proposed here comprises three levels of verification: the first two 
are connected in a series, in such a way that the first diagnostic level verifies if the fault was 
in the element under analysis through the correct operation of the internal and/or backup 
circuit breakers associated with the element. The second diagnostic level verifies if the fault 
was in the element under analysis through the correct operation of the internal and/or 
backup protection systems of the element. With the results of the two diagnostic levels 
previously established, a final validation is carried out, and only if the two diagnostic levels 
of verification prove to be true, will the fault be assigned to the element under analysis, 
otherwise the fault will not correspond to this element. The final validation for failed 
transportation lines by means of the two previous diagnostic levels, is reinforced by a third 
verification level, which processes the fault voltage and current waveforms the 
corresponding line, as well as the frequency spectrums of these waveforms, through a 
neural structure, in order to verify if the line was in fact subjected to a fault and at the same 
time to determine the type of fault ( LT, LLT, LL, LLL, LLLT ).  This process can be 
carried out since every transportation line subjected to a fault will present fault currents and 
voltages before it is isolated from the system by the respective protection systems. A more 
reliable and accurate fault diagnosis system can be obtained therefore, if  the results of the 
final validation obtained from the combination of discreet signals from breakers and 
protection devices is reinforced by processing the continuous signals from fault voltage and 
current waveforms, and the frequency spectrums  of such signals, corresponding to each of 
the transportation lines. One important advantage of the proposed diagnostic system is that 
its implementation can be applied to one element alone, a specific area, or to the whole 
context of the power system. 

2. Description of the Diagnostic Method 

In order to provide a clear explanation of the proposed methodology, an example will be 
given using the Merida sub-station ( MDA-115 Kv ) at breaker and a half, belonging to the 
Merida zone of the Peninsular Area within the Mexican Power System, which interconnects 
with the MTO sub-station through line L, as shown in Fig. 1.1. The method will be applied 
exclusively to the transportation line L.  
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Figure 1.1 Interconnection topology of L 
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The transportation line (L) referred to is the LT MDA -73400- MTO, which connects at 
each end with substations at breaker and a half. The primary components (circuit breakers) 
through which line L is connected to both substations, MDA-115 and MTO-115, in 
accordance with figure 1.1 are: MDA INT-73400, MDA INT-78010, MTO INT-73400, 
MTO INT-78080.  
Each element of a power network is characterized by a group of protections systems which 
guard it against short-circuit faults.  
In the case of transportation line (L) belonging to the substation MDA-115, the primary 
protection system is represented by a distance relay 21 for faults between phases, and a 
distance relay 21N for faults from phase to earth. This type of protection is typical for radial 
or long lines, therefore, in the case of grid  or short lines, the primary protection system 
may be characterized by a differential relay 87L. 
The secondary protection system is implemented by a directional over-current relay 67 for 
faults between phases and a directional over-current relay 67N for faults from phase to 
earth. 
The secondary backup or additional protection system for this case comprises an 
instantaneous over-current relay 50FI, and is directly related to each breaker. 
Based on the premise that each activation of a relay corresponds to an opening of a 
circuit breaker, if a fault should occur in line L, knowledge that must be learned by the 
neural module will be implemented in two levels:  
 

a) Fault detection in line L by the correct opening of circuit breakers 
b) Fault detection in line L by the correct activation of the protection systems. 

 
• By Circuit Beakers 
 
a) If the fault is in fact located in L, the primary breakers at both ends INT’s MDA-

73400, 78010, INT’s MTO-73400, 78080 should open. 
b) If the INT MDA-73400 fails, the secondary backup breakers that should open in 

order to avoid the propagation of the fault are in this case, MDA-71010, 72080, 
73310, 78330, 73290, 72060. 

c) If the INT MDA-78010 fails, the secondary backup breakers that should open in 
order to avoid the propagation of the fault are in this case, INT MDA-73010, INT 
LRA-73010. 

d) If the INT MTO-73400 fails, the secondary backup breakers that should open in 
order to avoid the propagation of the fault are in this case, MTO-73980, 42015. 

e) If the INT MTO-78080 fails, the secondary backup breakers that should open in 
order to avoid the propagation of the fault are in this case, MTO-73980, SUR-
73980. 

 
• By relays  
 
a) If the fault is in fact located in L, at least one relay of both ends of the line should 

activate (in this case there are 3 protection systems at each end). 
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2.1 Breaker and Protection System Readings for the Neural Module of L 

In order to achieve a more adequate management of the information regarding the status of 
breakers and protection relays corresponding to the element under analysis, Table 1.1 
shows the database which will be applied to the data readings from SCADA relating to L.  

Inputs 1 2 3 4 5 6 7 8 9 10 11
Int_PyR INT  MDA-73400 INT  MDA-78010 INT MDA-72060 INT MDA-71010 INT  MDA-73290 INT  MDA-78330 INT  MDA-73310 INT  MDA-72080 INT  MDA-73010 INT LRA-73010 *
States 1 1 1 1 1 1 1 1 1 1 2

Relays 21 21N 67 67N 50FI 21 21N 67 67N 50FI
States 0 0 0 0 0 0 0 0 0 0
Inputs 1 2 3 4 5 6 7 8 9 10 11

Int_PyR INT MTO-78080 INT MTO-73400 INT MTO-73980 INT SUR-73980 * * * * INT MTO-73980 INT MTO-42015 *
States 1 1 1 1 2 2 2 2 1 1 2

Relays 21 21N 67 67N 50FI 21 21N 67 67N 50FI
States 0 0 0 0 0 0 0 0 0 0

LT  MDA -73400- MTO

Lo
ca

l E
nd

INT  MDA-73400 INT  MDA-78010

R
em

ot
e 

En
d

INT MTO-78080 INT MTO-73400

 
 

Table 1.1 Database for the Transportation Line MDA -73400- MTO 

2.2 Implementation of the Knowledge Base with which the Neural Module will be 
trained  

The implementation of the knowledge base for the diagnostic neural module will be 
implemented in two levels: 
 

a) By Circuit breakers: where the correct opening of the primary and secondary 
backup breakers will permit the location of a fault in the line. 

b) By Protection Systems: where the correct activation of the protection systems 
will permit the location of a fault in the line. 

 
a) By Circuit breakers 

 
Using the Database corresponding to line MDA -73400- MTO we can obtain the following 
states for the primary breakers at one end of the element (Local End), Table 1.2. 
 

1 2 3 4 5 6 7 8 9 10 11
INT MDA-73400 INT MDA-78010 INT MDA-72060 INT MDA-71010 INT MDA-73290 INT MDA-78330 INT MDA-73310 INT MDA-72080 INT MDA-73010 INT LRA-73010 * YInt_e

0 0 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1
1 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0

   BREAKERS    ( S.E  Breaker and a Half ) 

 
Table 1.2 Logical states of the Primary breakers at one end of L (Local End) 

 
Based on the previous patterns and the different combinations that contemplate a fault in 
the secondary backup breakers, 250 training patterns are generated with which a Perceptron 
Neural Network will be trained, having the previously mentioned patterns as input and the 
activation indicating that the fault was in fact in the line being diagnosed as the output, 
taking into consideration only the opening of breakers at one end (Local End). The structure 
of this neural network is shown in Figure 1.2. It is important to mention that this diagnosis 
is located only at one end of the line (Local End), therefore, another similar neural network 
with the same patterns and the same output must be located at the other end of the line 
(Remote End), since the line is connected at both ends to substations with breaker and a 
half. 
The combination of results from the neural networks at both ends (Local and Remote Ends) 
will provide the final diagnosis on the element, in this case line L. This combination will be 
based on the logic rules shown in Table 1.3. The neural network is shown in Figure 1.3.  
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Figure1.2 Neural Structure Local 
End of the line 

YInte YIntr F_LT_Int
1 1 1
1 0 1
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Table 1.3  Final Diagnostic Logic for 

the line by Breakers 
 

 
 

 
 

Figure 1.3 Final Diagnostic 
Neural Network for a fault in the 

line by break 

Table 1.3 indicates that a fault will exist in line L, determined by the breaker statuses, only 
if there is activation at one or both ends of the line. The complete modular structure can be 
seen in Figure 1.4. 
 

11

1
°°°

1

2

3 1

2

1

1
°°°

1

2

3

11

Local End

Remote End

Final Diagnosis
( By Breakers )

 
 

Figure 1.4 Modular Network for Fault Diagnosis by breakers in Line L 
 
 

b) By Protection Systems  
 

With the neural module described above, the existence of a fault in line L is determined 
exclusively by opening the primary and secondary backup breakers which are directly 
related to line L. In some cases, the breaker status alone may not provide enough 
information to determine if the fault is in fact in the line, therefore, this diagnosis must be 
reinforced through the validation of the protection systems directly relating to line L. In this 
case there are three protection systems for each primary breaker associated with the line, 
and keeping in mind always that; if the fault is in fact in L, at least one relay at both ends of 
the line should activate. 
The logic for determining the activation of the protection systems for each primary breaker 
is shown in Table 1.4. This logic table will be implemented by a perceptron neural network, 
with the activations of each protection system pertaining to each breaker as input. The 
structure of this network is shown in Fig. 1.5. 
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21 21N 67 67N 50FI Yrel_e
1 1 1 1 1 1
1 1 1 1 0 1
1 1 1 0 1 1
1 1 1 0 0 1
1 1 0 1 1 1
1 1 0 1 0 1
1 1 0 0 1 1
1 1 0 0 0 1
1 0 1 1 1 1
1 0 1 1 0 1
1 0 1 0 1 1
1 0 1 0 0 1
1 0 0 1 1 1
1 0 0 1 0 1
1 0 0 0 1 1
1 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 0 1
0 1 1 0 1 1
0 1 1 0 0 1
0 1 0 1 1 1
0 1 0 1 0 1
0 1 0 0 1 1
0 1 0 0 0 1
0 0 1 1 1 1
0 0 1 1 0 1
0 0 1 0 1 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

Local End

 
 

Table 1.4   Logic states of the Protection Systems for each 
Primary Breaker 
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Figure 1.5  Neural Network for detecting the 

Activation of Relays in the Breaker 
 

 
This neural network will be applied for each primary breaker  at both ends of line L, and in 
this way, the combined results from these neural networks will provide the final diagnosis 
on the element, in this case line L. This combination will be carried out based on the 
following logic rules, shown in Table 1.5. Figure 1.6 presents the neural network in 
question, where the inputs will be the outputs from the neural networks assigned to each 
primary breaker at each end of line L, and the output will be the final diagnosis for line L, 
in relation to the logic state of the protection systems for each breaker.  
 
YRele1 YRele2 YRelr1 YRelr2 F_LT_Rel

1 1 1 1 1
1 1 1 0 1
1 1 0 1 1
1 1 0 0 0
1 0 1 1 1
1 0 1 0 1
1 0 0 1 1
1 0 0 0 0
0 1 1 1 1
0 1 1 0 1
0 1 0 1 1
0 1 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0  

 
Table 1.5  Final Activation Logic of the Element by Relays 
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Figure 1.6  Neural Network for fault  
detection in the line by Relays 

 

 
The entire neural structure for fault diagnosis, taking into consideration only the activation 
states of the protection systems for line L, is shown in Figure 1.7. 
In order to carry out a validation of the fault, taking into account the diagnoses, by breakers 
and by protection systems, the logic rules shown in Table 1.6 will be taken.  
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We can see in Table 1.6 that, before a fault in the line can be validated, there must be 
confirmation of the validation by breakers and by protection systems; otherwise the 
possibility of a fault in line L must be dismissed. The neural network representing the logic 
states in Table 1.6 is shown in Figure 1.8. 
 Figure 1.9 presents the entire neural structure for fault diagnosis in line L, by breakers and 
by protection systems.  
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Figure 1.7   Modular Network for Fault Diagnosis by 
Protection Systems 
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Table 1.6 Logic states for 
total fault diagnosis in the 
Line 
 

 
 
Figure 1.8  Final fault 
diagnosis in the line by 
Breakers and Protection 
Systems 
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Figure 1.9 Total neural structure for Fault Diagnosis in Lines by Breakers and Protection Systems  
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It is important to mention that the same implementation procedure is used for bars and 
transformers. 

2.3 Example of a test with real-time historic information 

Simple fault 
 
On March 4th 2008, a fault occurred in the transportation line NCM -73870- KNP at 
4:01:46 Hrs. Information from SCADA which is grouped in the database corresponding to 
the failed element is shown in Table 1.7. The report generated for this event is shown 
below. The results obtained from the application of the diagnostic system, using in this case 
data taken from the historic database, are presented in Figure 1.10.   
 

Inputs 1 2 3 4 5 6 7 8 9 10 11
Int_PyR INT  KNP-73870 INT  KNP-73560 INT KNP-72020 INT  KNP-77000 * * * * * * *
States 0 1 1 1 2 2 2 2 2 2 2

Relays PR-PRIM1 PR-PRIM2 67 67N 50FI 21 21N 67 67N 50FI
States 1 0 0 0 0 2 2 2 2 2
Inputs 1 2 3 4 5 6 7 8 9 10

Int_PyR INT NCM-73870 INT  NCM-72060 INT  NCM-72090 INT  NCM-73370 INT  NCM-73360 INT  NCM-77000 INT  NCM-71010 INT   NCM-71030 * *
States 0 1 1 1 1 1 1 1 2 2

Relays PR-PRIM1 PR-PRIM2 67 67N 50FI 21 21N 67 67N 50FI
States 1 0 0 0 0 2 2 2 2 2

LT   KNP -73870- NCM II

Lo
ca

l E
nd

INT  KNP-73870 *

R
em

ot
e 

En
d

INT NCMII-73870 *

 
 

Table 1.7 Database corresponding to the LT KNP -73870- NCM II 
 
 
 
04/MAR/2008 04:01:45 08   NCM  IN-73870 KNP              Cambio No Comandado Abiert                                      
04/MAR/2008 04:01:45 08   NCM  PR-PRIM1 73870   KNP      Cambio No Comandado Operad                            
04/MAR/2008 04:01:45 08   NCM  IN/73870 KNP              Cambio No Comandado Abiert                                       
04/MAR/2008 04:01:45 08   NCM  PR/PRIM1 73870   KNP      Cambio No Comandado FALLAD                         
04/MAR/2008 04:01:46 08   CCP  B -01    230          KV  Límite alto 4 violado. Valor=  240.83KV                          
04/MAR/2008 04:01:46 08   CCP  B -01    230          KV  Límite de emergencia alto. Valor=  240.83KV                  
04/MAR/2008 04:01:46 08   KNP  PR-85L   73870   NCM      Cambio No Comandado Operad                                 
04/MAR/2008 04:01:46 08   KNP  IN-73870 NCM              Cambio No Comandado Abiert                                      
04/MAR/2008 04:01:46 08   KNP  PR-85L   73870   NCM      Cambio No Comandado Normal  RTN                      
04/MAR/2008 04:01:46 08   CCP  B -02    230          KV  Límite alto 1 violado. Valor=  240.60KV                          
04/MAR/2008 04:01:46 08   NTE  B -01    230          KV  Límite alto 4 violado. Valor=  238.04KV                          
04/MAR/2008 04:01:46 08   TIC  AL-27    44070   RE 07    Cambio No Comandado Operad                                    
04/MAR/2008 04:01:47 08   TIC  AL-27    44070   RE 07    Cambio No Comandado Normal  RTN                          
04/MAR/2008 04:01:47 08   NCM  PR-PRIM1 73870   KNP      Cambio No Comandado Normal  RTN                   
04/MAR/2008 04:01:47 08   NCM  AL-73870 RX DTD           Cambio No Comandado BLOQ                                 
04/MAR/2008 04:01:48 08   CCP  B -01   230          KV  Límite de emergencia alto. Valor=  238.94KV  RTN        
04/MAR/2008 04:01:48 08   CCP  B -01    230          KV  Límite alto 4 violado. Valor=  238.94KV  RTN                
04/MAR/2008 04:01:48 08   NCM  PR/PRIM1 73870   KNP      Cambio No Comandado NORMAL  RTN              
04/MAR/2008 04:01:48 08   NTE  B -01    230          KV  Límite alto 4 violado. Valor=  236.43KV  RTN                
04/MAR/2008 04:01:48 08   NCM  AL-73870 RX DTD           Cambio No Comandado NORMAL  RTN                
04/MAR/2008 04:01:49 08   MTO  AL-TI    FVCA    CDBC     Cambio No Comandado FALLAD                           
04/MAR/2008 04:01:49 08   CCP  B -02    230          KV  Límite alto 1 violado. Valor=  238.29KV  RTN                
04/MAR/2008 04:01:49 08   MTO  AL-TI    FVCA    CDBC     Cambio No Comandado NORMAL  RTN               
04/MAR/2008 04:01:50 08   NCM  AL-SUBES FVCA    TSP      Cambio No Comandado FUERA                          
04/MAR/2008 04:01:50 08   NCM  AL-SUBES FVCA    TSP      Cambio No Comandado DENTRO  RTN             
04/MAR/2008 04:01:50 08   MDN  B -01    115          KV  Límite bajo 4 violado. Valor=  111.33KV                       
04/MAR/2008 04:01:50 08   MDN  B -01    115          KV  Límite de emergencia bajo.  Valor=  111.33KV             
04/MAR/2008 04:01:51 08   MDN  B /01    115          KV  Límite bajo 4 violado. Valor=  111.33KV                        
04/MAR/2008 04:01:52 08   CNR  B -01    115          KV  Límite de emergencia bajo.  Valor=  113.75KV  
RTN                           
TUE  4 MAR '08  04:01:53                                                                                                            
COLA DE BITACORA DE EVENTOS 1 
 
 
 
 

Fallas Detectadas

Falla en LT   KNP -73870- NCM II
Diagnostico Referente en el lado de Envio

Interruptores Primarios Operados
      INT  KNP-73870      - 04:01:47 a.m.-
Protecciones que abanderan al Interruptor Primario INT  KNP-73870
      RelPRIM1      - 04:01:46 a.m.-

Diagnostico Referente en el lado de Recepcion
Interruptores Primarios Operados
      INT  NCM -73870      - 04:01:46 a.m.-
Protecciones que abanderan al Interruptor Primario INT  NCM -73870
      RelPRIM1      - 04:01:46 a.m.-

SIMULADOR  DE  FALLAS

 
 

Figure 1.10   Diagnosis provided by the Simulator on 
the event occurring in the  LT KNP -73870- NCN II 

 
 

3. Fault detection in Transportation Lines through Fault Current and Voltage 
Waveforms  
 
In order to obtain a more accurate and reliable  fault diagnosis system, the diagnosis 
obtained from the final validation is reinforced with the two previously established 
diagnostic levels, for failed transportation lines, by means of a third verification level which 
processes the fault voltage and current waveforms in the corresponding line, as well as the 
frequency spectrums of these waveforms, through a neural structure, to verify if the line 
was in fact subjected to a fault and at the same time to determine what type  ( LT, LLT, LL, 
LLL, LLLT ).  This process is possible, since each transportation line subjected to a fault 
will present fault currents and voltages before the fault is isolated from the system by its 
respective protection systems.  
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3.1 Transportation line model for obtaining fault types 

The database representing the training patterns for the proposed neural structure pertaining 
to the third diagnostic level will comprise the characterization of each one of the dynamics 
involved in the different fault types that may occur in a transportation line ( LT, LLT, LL, 
LLL, LLLT ).  These dynamics are obtained from simulations carried out in the PowerSys 
Blockset of MatLab with the characteristic parameters of the previously mentioned 
transportation line, corresponding to a 13 Km TL at an operative nominal voltage of 115 
Kv. 
Each of the fault types will be characterized by their transitory response waveforms 
corresponding to each phase. The database will take the voltage and current waveforms as 
training patterns from each fault type occurring at the local end of the line, at the middle 
and at the remote end. In order to explain the procedure, the voltage and current waveforms 
at the local end of the transportation line (at 3 Km) will be simulated for a fault in phase A 
to earth, the objectives being to observe the corresponding graphs and to be able to 
represent them in a database for training the neural structure which will classify the type of 
fault present in the line, and also to determine if the line had in fact experienced a fault.  

3.2 Calculation Methodology 

In order to simulate fault voltage and current waveforms for each fault type in the line 
model represented in the PowerSys MatLab’s Blockset, a frequency of the signal 28.8 KHz 
[21], [22] will be used. This signal frequency guarantees a good simulation for the 
analogical current and voltage signals that take place in the event registers located at the 
ends of the transportation lines. 
Reproduction of the signals for simulation, at a frequency of 28.8 KL and with a simulation 
time of 0.1 seconds, corresponds to an integration time of 34.722 µsec, and to 2880 points 
for each of the simulated signals.  
The simulation time will be 0.1 seconds, since this time corresponds to 6 cycles of the 
current or voltage signal, where the first two cycles correspond to the dynamics of the 
signal previous to the fault, the following three cycles correspond to the dynamics of the 
fault, and the last cycle corresponds to the dynamics once the fault is liberated. The 
classification of the signal by sectors can be seen in Figure 1.11, corresponding to the 
dynamics of the current signal for a fault from phase A to earth.  
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Figure 1.11 Classification of Fault Current Dynamics by Sectors 
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3.3 Filtering and Sampling Process 

It has been demonstrated that with the use of a frequency of 28.8 KHz for the fault current 
and voltage signals, it is possible to reproduce, through simulations, the different fault types 
that can occur in a transportation line.  In order to condition the analogical voltage and 
current signals, a second order low-pass filter is included in the model represented in the 
PowerSys MatLab’s Blockset to eliminate high frequencies, and in this way to avoid the 
problem of aliasing during the sampling process [24]. To obtain sample signals of fault 
voltage and current which represent the original fault voltage and current signals accurately, 
a decimation to the order of 120 is carried out, in other words, one sample point will be 
taken each 120 points of each cycle, giving 4 points (samples) for each cycle of the voltage 
and current signals, thus the dynamics of fault voltage and current signals are characterized 
by 6 cycles, giving a total of 24 samples which will reproduce the original signals 
accurately [24]. 
 

3.4 Training database structure 

The way in which the data used in the elaboration of the training patterns for the neural 
structure are classified, is illustrated below. The input patterns will be obtained from the 
simulations corresponding to the fault type. 
The database is represented as follows: For a fault from phase A to earth, the information 
pertaining to currents and voltages from the different phases is shown in Figures 1.12 and 
1.13, and in this particular case, at 3 kilometers from the local end bar of the previously 
mentioned transportation line.  
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Figure 1.12  Fault Currents in the different Phases and 

Neutral 
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Figure 1.13  Fault Voltages in the different Phases 

and Neutral 
 

 
The values of each voltage and current signal sample are classified as shown in Table 1.8. 
The first eight columns represent the voltage and current values of each phase, where, in 
this case in particular, the values correspond to a fault in phase A to earth, and at 3 
kilometers from the local end node of the transportation line. The last four columns 
represent the type of fault referred to above, in binary form. 
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Vfa Ifa Vfb Ifb Vfc Ifc Vg Ig Ffa Ffb Ffc Ft

Fa_n -0.000641908 -3.89106E-05 -0.001196387 -0.000115793 0.001838295 0.000154704 -2.99652E-17 4.00104E-17 0 0 0 0
0.973500712 -0.076403231 -0.341666582 0.038534072 -0.63183413 0.037869159 -5.32196E-14 -1.98263E-14 0 0 0 0
0.156566311 0.002872043 -0.922627157 0.062640411 0.766060845 -0.065512454 -2.41759E-15 -3.23525E-14 0 0 0 0

-0.977512088 0.075485482 0.364054269 -0.043151615 0.613457819 -0.032333866 5.32906E-14 2.06067E-14 0 0 0 0
-0.130876155 -0.00568791 0.913496633 -0.06454914 -0.782620478 0.07023705 1.00613E-15 3.18474E-14 0 0 0 0
0.980883709 -0.076176568 -0.388121211 0.04180751 -0.592762498 0.034369058 -5.33092E-14 -2.14547E-14 0 0 0 0
0.105208914 0.006837681 -0.903372184 0.060413037 0.798163271 -0.067250718 3.89477E-16 -3.12883E-14 0 0 0 0

-0.983615105 0.075157806 0.411821 -0.046420056 0.571794105 -0.02873775 5.3296E-14 2.22791E-14 0 0 0 0
-0.084428121 -0.009384517 0.8933021 -0.062235359 -0.812343335 0.071862616 -5.63733E-16 0.000560452 1 0 0 1
0.785338106 0.252445204 -0.412101195 0.052060412 -0.527445441 0.037764918 -1.96769E-15 0.446483296 1 0 0 1
0.061426056 0.653656118 -0.881909575 0.0718723 0.826727144 -0.054967353 3.81939E-15 0.874263066 1 0 0 1

-0.786536083 0.376808956 0.434929598 -0.043067483 0.505593599 -0.018576869 4.41506E-15 0.411179379 1 0 0 1
-0.040861463 -0.01785839 0.870712965 -0.059906312 -0.839768851 0.073163383 -1.38021E-15 -0.005481148 1 0 0 1
0.787895309 0.26860398 -0.457829728 0.055467059 -0.483751951 0.034358295 -1.83306E-15 0.467503931 1 0 0 1

0.02042229 0.655089309 -0.858742147 0.069252068 0.852422573 -0.056409937 3.97365E-15 0.87082301 1 0 0 1
-0.788250148 0.357809874 0.480280097 -0.046489329 0.461442524 -0.015245042 4.27146E-15 0.386294464 1 0 0 1
0.000417809 -0.021588699 0.846125226 -0.057278473 -0.864545281 0.074407237 -1.5466E-15 -0.00532429 1 0 0 1
0.788384361 0.284914777 -0.502392656 0.058730449 -0.438803196 0.030875186 -1.69366E-15 0.488462146 1 0 0 1

-0.020807539 0.65560237 -0.83305111 0.066460405 0.875958271 -0.057670046 4.12372E-15 0.866187124 1 0 0 1
-0.787684823 0.338706734 0.524195355 -0.049770838 0.415902088 -0.011849112 4.11727E-15 0.361540869 1 0 0 1
0.041626187 -0.024385659 0.819290543 -0.054480727 -0.886883623 0.075469907 -1.70391E-15 -0.003961415 0 0 0 0

0.99835352 -2.45489E-05 -0.532056568 8.18855E-06 -0.460298573 0.078953834 -6.64625E-16 0.203294914 0 0 0 0
-0.052759969 -3.43371E-07 -0.842990684 -1.9136E-05 0.911537409 0.030209745 3.4266E-15 0.216551411 0 0 0 0
-0.997024536 -1.97775E-05 0.554676551 8.12295E-06 0.436288758 0.008014495 1.34953E-15 0.0483473 0 0 0 0

O U T P U T

 
 

Table 1.8 Training Database Structure 
 
The data structures for faults in phase A to earth are placed in descending order, at the 
middle of the line (6.5 Km), and at the remote end.  A total of 72 training patterns are 
obtained which characterize a fault from line to earth, in this case in phase A, at three 
different positions in the line: at the local end (3Km), at middle of the line (6.5Km), and at 
the remote end (3 Km). The management of three possible positions of the fault on line 
provides the neural structure with an optimal capacity of generalization, since with these 
three possible locations of the fault, the neural structure is able to classify adequately the 
type of fault the line has been subjected to. This entire clustered structure is repeated for 
each fault type, thus, 10 clusters of 72 patterns are obtained with a total of 720 training 
patters. The outputs of each structure, as with the first, represent in binary form, the fault 
type to which the cluster refers to. 

3.5 Neural structure 

The neural structure will comprise an input layer with 8 inputs, a hidden layer with 14 
neurons and the output layer with 4 neurons. This was the structure that presented a greater 
capacity of generalization using the back-propagation algorithm, for the classification of 
patterns for which the neural structure was not trained. The neural structure can be seen in 
Fig. 1.14.  
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Figure 1.14 Classifying Neural Structure  
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3.6 Implementation of the proposed neural structure through the use of the FFT  

In order to design the proposed neural structure, taking into consideration the frequency 
spectrums for each fault type for the third diagnostic level, samples of analogical voltage 
and current fault signals will be taken and the respective frequency spectrums for each one 
will be obtained by applying the FFT (Fast Fourier Transform).These frequency spectrums 
will be taken as input patterns in order to implement the knowledge base with which the 
neural structure will be trained. 

3.7 Training Database Structure 

The input patterns will be obtained from the frequency spectrums corresponding to the fault 
type. The database will be represented as follows: For a fault in phase A to earth, the 
information pertaining to the frequency spectrums corresponding to the fault is shown in 
Figure 1.15. 
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Figure 1.15 Frequency spectrums of fault Currents and Voltages. Phase A to earth 
 
These spectrums represent the fault currents and voltages of phase A to earth, and at a 
distance of three kilometers from the local end bar of the transportation line mentioned 
above. 
The values of each frequency spectrum sample from the fault current and voltage signals 
are classified as shown in Table 1.9. The first eight columns represent the frequency 
spectrum values of the fault voltage and current of each phase, in this case in particular, 
these values correspond to a fault in phase A to earth, and at a distance of three kilometers 
from the local end node in the transportation line. The last four columns represent the fault 
type referred to previously, in binary form. 
 

1 2 3 4 5 6 7 8
Vfa Ifa Vfb Ifb Vfc Ifc Vg Ig Ffa Ffb Ffc Ft Frecuency

Fa_n 0.004605038 1 0.069542277 0.063107352 0.064673373 0.342182128 0.073259826 1 1 0 0 1 0
0.020386201 0.672185004 0.070647701 0.041720784 0.064018901 0.180145743 0.210884802 0.57343144 1 0 0 1 10
0.006834834 0.010788749 0.068941921 0.132129325 0.065735503 0.215406216 0.23030578 0.07606745 1 0 0 1 20
0.027297671 0.290069577 0.062940584 0.188294074 0.06774174 0.214743007 0.012966676 0.191934521 1 0 0 1 30
0.021189475 0.019199074 0.057696463 0.189617753 0.059659392 0.249206812 0.372151259 0.069859712 1 0 0 1 40
0.112615895 0.390391659 0.043370754 0.204928413 0.049608892 0.183051838 0.710055137 0.332893109 1 0 0 1 50

1 0.564840942 1 1 1 1 1 0.510033295 1 0 0 1 60
0.03614176 0.316556091 0.120175688 0.223208735 0.123449473 0.224260855 0.728391712 0.25588512 1 0 0 1 70
0.021404483 0.029407374 0.097651898 0.139173491 0.093331105 0.159480022 0.400070482 0.016269979 1 0 0 1 80
0.035348827 0.058877968 0.094455718 0.083029994 0.083881301 0.099234976 0.019220911 0.041634805 1 0 0 1 90
0.009806449 0.015211322 0.091665774 0.02941833 0.086296543 0.076411632 0.214557387 0.008346485 1 0 0 1 100
0.02035394 0.003453443 0.0923732 0.009093577 0.088649187 0.080884693 0.193210675 0.007231055 1 0 0 1 110
0.005782392 0.004719622 0.094224469 0.01817884 0.088229176 0.084830098 0.00446349 9.09783E-05 1 0 0 1 120

O U T P U T
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Table 1.9 Training Database Structure 
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The frequency spectrums for the faults in phase A to earth are placed in descending order, 
at the middle of the line (6.5Km), and at the remote end (3 Km). A total of 39 training 
patterns are obtained  which characterize a fault from line to earth, in this case in the phase 
A, at three different positions in the line: at the local end (3Km), at the middle of the line 
(6.5 Km), and at the remote  end  (3 Km). The management of three possible positions of 
the fault on line provides the neural structure with an optimal capacity of generalization, 
since with these three possible locations of the fault, the neural structure is able to classify 
adequately the type of fault the line has been subjected to. 
This entire clustered structure is repeated for each fault type, resulting in 10 clusters with 
39 patterns and a total of 390 training patterns. 
The neural structure will comprise an input layer with 8inputs, a hidden layer with 14 
neurons and the output layer with 4 neurons. This structure is also used in the case of 
analogical signals. In contrast with the previous case, this neural structure will be trained 
with the frequency spectrums of the analogical signals from fault voltages and currents as 
inputs. 

4.Conclusion 

The application of this new method facilitates the diagnosis at an element level, since three 
generic modules are available which can be called upon, depending on the function of the 
type of element to be diagnosed, thereby allowing the diagnosis to be carried out on each 
element, each zone, or on the whole power system. The method is further reinforced by 
taking into consideration, for the diagnosis of the corresponding transportation line, the 
fault voltage and current waveforms, as well as the frequency spectrums of these 
waveforms, by means of a neural structure, to verify if the line was in fact subjected to a 
fault and at the same time to determine the type of fault (LT, LLT, LL, LLL, LLLT ). This 
can be done by calling upon each of the generic modules every time an element is found in 
the system (lines, transformers, bars). 
It is also clear that this modular neural structure can be used as a tool by control center 
operators. 
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