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1. Introduction

Salt domes are excellent indicators of the presehiceportant reservoirs such as oil and
gas. Salt bodies are mushroom-shaped geologictstescthat help trapping oil and gas
around them. Manual picking of salt bodies is a&ettonsuming task due to the large size of
seismic data acquired every day. The accuracy td#ctieg salt domes as well as other
seismic structures is also linked with the expertéhuman interpreters, hence can be bias
and affected by fatigue. Therefore, for the past years, a lot of research has been carried
in developing computer-aided algorithms for detegtsalt bodies automatically from
seismic surveys. Most of the automated and setorzated salt dome detection algorithms,
found in the literature, use either edge-based ooktActive Contour Models (ACM)-based
methods, texture based-methods, hybrid edge anaréeliased methods, or learning-based
and patch-based classification approaches. Salhdaoies are generally represented by
strong amplitudes in seismic data. Therefore, tye@etection-based techniques, discussed
in [1], [2], [3], [4] and [5], are very useful inetiecting the broad profiles of salt domes. These
techniques, however, work well only when the setsmata exhibits large amplitude
variations [4].

Other approaches include the Normalized Cuts Inssggnentation (NCIS) discussed in
[6], [7], and [8], which use graph-based modeldatect salt bodies. NCIS based salt dome
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segmentation methods are, however, computatioeaipensive and therefore not suitable
for real time seismic interpretation. Salt boundsggmentation methods based on the ACM,
discussed in [9] and [10], combine the human expeput with computer-aided
segmentation. The method is iterative in nature daqkends largely on the accuracy of the
initial information provided by the interpreter.

Texture along the salt boundaries is different @sgared to the surrounding regions.
Therefore, texture based attributes are used tocone the drawbacks of edge based
detection methods that are heavily dependent upenvariations in the instantaneous
amplitude. Salt dome detection methods using texdtiributes were discussed in [11], [12],
[13], [14], and [15]. While the results are excetlethe choice of attributes and the size of
window play a crucial role on the overall accuratyexture based methods.

In [16], a hybrid approach based on edge and texaétitributes was presented. Two
separate classifiers were used; one based on addeke second based on texture attributes.
The final segmented boundary was then computedsigd the output of the two classifiers
at the decision level. In [17], a dictionary basadt dome detection method using salt
boundary and non-salt boundary patches was distugdthough the dictionary-based
method detects the salt boundary with good accutitcy computationally expensive as it
requires solving a minimization problem to classfich of the patches. In [18], the authors
introduced a new attribute called the Cumulativéiity Seismic Attribute (CHSA) which is
based on the HOSVD of 3D volumes but used a sittippesholding approach to delineate
salt domes and achieved very good segmentatiottge®¥ith the advanced made in deep
networks, the authors in [19] developed a machaaening approach for identifying salt
bodies using the image data directly instead ofufes extracted from the images. The
reported results were visually very appealing Wwi#iJ values of more than 0.9. For a
comprehensive review on detecting subsurface evemts seismic surveys, the reader is
encouraged to read the extended paper in [24].

In most of the work discussed in the literaturésree surveys are analyzed on a slice-
by-slice basis (or image-by-image) while we knowatteeismic data is acquired in the form
of 3D volumes. A number of researchers propoststpretation techniques analyzing 3D
seismic volumes directly. In [5], for example, thehors discussed an interactive and semi-
automatic sketch-based modeling approach to hédppreters identify salt bodies from 3D
volumes by directly deforming the surface of a grgténg mesh with very promising results.
Earlier works showed that the continuity acrossthtee dimensions need to be considered
in developing robust detection and tracking aldwns. While the third dimension is also
space, we borrow concepts from video processingspedch processing and map these to
the analysis of 3D seismic volumes. In particuthg time varying nature of speech has
commonly been modeled using the famous Hidden Malodel (HMM). The HMM is
well adapted to track speech features across adjaaenes. However, despite the substantial
literature on the HMM, especially for diverse spgeeelated applications, segmentation
methods based on such a framework have not beehiuseismic applications for event
detection and tracking[20].

In this work, we introduce a single HMM model withio states, namely salt boundary
and non-salt region, together with new featuresthas the HOSVD (Higher Order Singular
Value Decomposition) to accurately detect and trdek salt boundaries. The optimal
parameters of the HMM are obtained using the baodi@ward algorithm (EM algorithm).
The Viterbi algorithm is then employed to compute hidden states which are then used to
delineate the salt boundaries.

Note that only a single HMM model is needed, haheeclassical classification stage is
avoided making the overall approach computationadlsy efficient. More importantly, to
further reduce the complexity of the developed Wilork, and to avoid computing the HMM
parameters for every slice (or image), we proposese the HMM only every few slices
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(images) in the same manner compression is cafoiegtideo processing. Between the
HMM-based processed images, we use the ACM modaiedune the salt dome boundary
with minimum additional computational load. Ovérale propose this hybrid HMM-ACM
approach to achieve superior salt boundary deteettguracy at a reasonable computational
load. Our algorithm produces excellent results anpgared to existing edge-based and
texture-based, and other salt dome detection #fgosi

2. The proposed hybrid HMM-ACM salt dome detectionworkflow

The proposed workflow starts with a set of trainimgages containing salt domes with
pixels labelled as either salt boundary or nondsalindary. These images were obtained
from the North Sea F3 Block in the Netherlanésr each volume around the two types of
pixels, the HSOVD-based features (discussed betoa/estimated. The extracted features
from the training set are then used with the EMbatgm to estimate the parameters of two-
state HMM model, (state one representing salt bagndavhile state 2 represents non-
boundary). For a given set of test data, the algorifirst divides the input slices into
sequences then the HOSVD-based features are estifioaiall the pixels. Hidden states (salt
or non-salt boundaries) are then estimated fopiakls using the Viterbi algorithm. The
estimated hidden states are used to delineateathbaindaries. In order to alleviate the
computational burden of the HHM, we introduceddea processing like approach in which
Inlines (or slice images) analyzed using the HMM flowed by a set of Inlines analyzed
using the ACM approach (with the initial snake takem the HMM based Inline) in order
to expedite the convergence of the ACM. In Figvé display the workflow of our proposed
detection algorithm. We will now discuss in mordails the HMM model, the HOSVD-
based attributes and ACM model.

Extract sequences of Estimate hidden Determine final boundary
Test L 5[ lengthMforeach [>{statesusing  [lysing postprocessing
Inline pixel Viterbi alg
A l'
Final Segmented [_—>»
boundary
Gray Levels/
Amplitudes
- A 4
Training N i)TSrzll?Er;gusnegaurences Estimate optimal HMM
Data i Non-Salt B y d parameters forward-
1) Non-Salt Boundary Extract HOSVD backward (EM) algorithm
based features

Fig. 1: Proposed workflow for detecting salt dorhesndaries using the HMM and ACM

2.1 The Hidden Markov Model (HMM) and parameter estmation

As mentioned above, we propose to track the chaagesg pixels (on the boundary or
not) using an HMM model. HMMs have been used asepful models for tracking the
changes in time and space. One of their most irapbrpplications has been in speech
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recognition and speaker identification in which mfg@s in feature components are tracked
across frames to model the changes in a giverantteracross time. Here, we propose to use
the HMM to track changes across pixels in a giveem of a seismic slice (Inline image). We
will assume that texture information around a cergaixel is represented by a set of
attributes/features as discussed in Section 212. Léenote the texture at the pitin the
horizontal direction). We will consider that suchirel is a state taking two possible discrete
values: . State “” assumes that the pixel falls within a non-salahdary, or

in other words, the pixdlis not located on a salt boundary. On the othedhatate “”
considers that pixelfalls on a salt boundary. Based on the above gssoms, a given row
within an Inline can be represented by a sequefctates (or values) in the following
fashion: 1111122222111, etc. With tmgerlying assumption, we define the Markov
Chain with the following conditioned probability (here we assume a
homogeneous chain) as:

(1)

For theinitial index or state  , we also define an initial state distribution,

. A fundamental concept behind the HMM frameworthiat states cannot directly be seen
or observed. As such, we say that the states ddemhi In our application, such a concept
makes sense as we don’t see the states (whetlvezl @aspon a boundary or not) but we see
(or can estimate) the features at that pixel (withicertain volume). The pixels (centers of
small volumes) can hence be represented by somaatbazing features; such features obey
certain distributions which are different across tates. Following the HMM framework,
the features or observations obtained under eatheaftates follow different patterns and
hence are represented by different probability tiess Based on this concept, the Markov
chain is also identified by the probabilities osebvations or features given a particular state.
Here, we define the probability of observatiorat pixelt under stat¢ (1 or 2) as:

(2)

The set of all probabilities under all states igresented by the emission matrix

. As can be seen from the above formulation, wg nakd to use one HMM model
and we use the states themselves as classes (Ippamdianon-boundary) instead of using
multiple HMMs as traditionally done in general ddisation problems. This HMM model
is identified by theset ! " # which represents the transition probability makixhe
emission probability matrix B, and the initial ggirobability distributior¥. We will now
briefly describe the main steps for estimating MM parameters ! " # from an
observation sef %  using the EM algorithm:

1. Initialization

We start by assigning an initial set of values for! " #
# = {pi} are the initial state probabilities
A = {a;} are the state transition probabilities
B = {bi} are the observation state probabilities

2. Decoding
Given an observation sequence and a model, we derttpriconditional probability
$(
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$( ) ~k+1~k2 *+ *+’+' 86 *.*./_‘_ *./+ . (3)

3. Forward procedure

Let 3 4 denote the joint probability of the first
observations 5 , and , given parameters at iteration k.
Subsequently3 6 is calculated recursively as:

3 6 )os3 (4)

4. Backward procedure
Let 739 :; .~ ?. @ ' denote the joint probability of the ending
partial sequence.- ;> and?.  @given parameters at iterationk. Similarly,
759 is calculated recursively as:
BC6 (5)
B )% B 6 % (6)

5. Updates

In this stage, we find the state sequence thatdx@$ains the observations using the
Viterbi Algorithm. The main idea of this algorithis to maximize the probability
of seeing the observations at time t-1, landingtate j, and seeing the observation
at time t as the following:

D=9 E?ﬁu 2?17, 5 1,0 % Ko L

The recursive computation is written as:

M 6 FG? M . 8) (
N 6 GOPFGM (9)

v L+

We then compute the most likely state sequence dnking backwards as the
follows:

QRT GOPFG™M C (10)

6. Parameter estimation

For this stage, we find the model that is mostjike produce the sequence above
for a given a model and observation sequence bgtiqgithe model parameters to
better fit the observations. The probability ofeesing an arc is the following:

Uv Wxz, [x =
Yysr W [y

(11)
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where the probability of being in states determined as:

— )05

Now, we compute the new estimates of the modelnpeters:

T (13)
N )2+ a
LA L S (14)
by
)2z 10 b.
4 )% by (15)

7. Convergence

If 'A= achieves the desired level of convergence, thenBR algorithm is
terminated with' ¢ ' A= | else letf 6 and go back to step Forward
procedure above.

In summary, using a given training set with laletliata and corresponding features, the
final result is a well formulated HMM model whiclarc easily be used on test data to find
the hidden states (boundary or non-boundary).

2.2 HOSVD based attributes

Most of the existing techniques dealing with saltn@ delineation found in the literature
either use edge-based features or texture-bastddsar fusion of both. Such features or
attributes are either extracted from the space doorathe transform domain. Edge based
techniques are simple but only work when strongesdgxist between different types of
patterns or structures. This may not be the cagbeasransition between the background
structure and salt dome structure may be very w&akture based features, on the other
hand, avoid the strong reliance on the instantonplitude only to delineate salt dome
structures. However, the choice of attributes dredsize of window play a crucial role on
the accuracy of texture based techniques.

Instead of using edge-based and/or texture basadrés for the detection salt dome
structures, we propose here to extract featureshadme based on three main characteristics
of salt dome structures: 1. Edge information, Xtiiee information, and 3. 3D Continuity.
So, instead of considering slices (2D images) afisie data, we consider here 3D seismic
volumes. Furthermore, instead of extracting théuies directly from the 3D volumes, we
propose to analyze these volumes using a HigheerO8thgular Value Decomposition
(HSOVD), then extract robust features from suchodgmosition.

HSOVD based methods have actively been used inrsdivenage/video processing
applications including face recognition, gestureniification, crowd estimation...etc. An
important advantage of HSOVD is the ability to aoabfor all information contained in
multidimensional data. Here, we propose to anaBzeeismic volumes using tensors 8f 3
order, then calculate the HSOVD by unfolding thestes along three directions (Time,
Crossline, Inline). Finally, the singular valuedccdated along the different directions are
used to calculate a set of features which are tmeslalt dome delineation. Such a set of
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features will be shown to achieve excellent perfomoe in terms of accurate salt dome
boundary detection even when such structures aregented by weak reflections. We will
briefly discuss the concept of tensors, HSOVD, had the features mentioned above are
estimated.

The term "Tensor" is used in multi-linear algebtas a generalization of the concepts of
vectors and matrices. Intuitively, a vector dataittre is called 3L order tensor while a
matrix data structure is called a92 tensor. Tensors are basically multimode or
multidimensional arrays. A tensor of orderdN,h ™ " I k is a multidimensional array
of N dimensions wherk, is the upper limit in dimensiom. In the literature, we also refer
to the order of a tensor as a mode. So, a vecttesnsor of first order while a matrix is a
tensor of 29 order, and a 3D volume is a tensor Bf@der. 3D seismic data, h 1oP
can be seen as a tensor of order 3 (see Fig. 2pwh&and K correspond to the dimensions
of the Inline, Crossline and Time/depth respectivel

Inline
Crossline
-

>

v
Time/Depth

Fig. 2: A 3D Seismic volume seen as'addder tensor

To simplify high order tensors, we decompose tenguo sub tensors called fibers (1-
dimensional) or slices (2-dimentional). Fibers@kimn vectors found by fixing every index
of higher order tensor except one. In the cas€’adrder tensors, column, row, depth, are
called mode 1, mode 2, and mode 3 fibers.

To extract useful information from higher ordergers, such as singular values based
features, matricizing /unfolding of tensors needst fto be performed. The mode-n
matricizing of a given tensor, denotedgs , is obtained by aligning mode-n fibers (1-D

sub-tensors;.? ) of the tensor and concatenating these to formcadimensional matrix.

For 3D seismic data, the mode-1 represents Cresstinde-2 represents Inline, and mode-
3 represents time information. The resultant urddldnatrices are used for HOSVD. The
matricizing of a third order tensor is determinethg:

g Sr rs ror I It
gs u®rz P S (16)
gw sSrV r¥ (R g Mt

We display in Fig. 3, an example of a 3D seismitunee enfolded across Time and
Crossline directions, while in Fig. 4, we provide sehematic representation of the
decomposition of a"8order tensor into fibers.
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(a) (b)

Fig. 3: A 3D seismic volume unfolded across (a)sSlioe (b) Inline
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Fig. 4: Fibers modes: (a) Crossline (b) InlineTohe

From the mode-n matrices obtained in equation 16,meed to extract some robust
features. Here, we will use the Singular Value Deposition (SVD) decomposition. Recall
that the SVD of matrices has traditionally beenduee features extraction in diverse image
processing applications. A 2D matrix (orimagely 2t with|} ~ can be expressed, under
some regularity conditions, as: *€+ ~ wheree y %Z ande y U are the orthogonal
left and right singular matrices a#d y #{ is a diagonal matrix of singular values such
that, }, 5} o

The HOSVD can be used to decompose tensors of ¢hihdgher orders. Themorder
tensor is first unfolded using the matricizing cgien. The SVD is then obtained for each
unfolded matrix. For a Sorder tensor, the SVD is obtained for the threfelded matrices
namelyg g5 andg, as follows:

g f , &
gs f °> °,° & (17)
gw f w W w &

where is the diagonal matrix of singular values for modafolded matrix.
The HSOVD is a very rich decomposition from whicmamber of features can be

extracted. Here, and to keep the feature extrastiage simple, we limit our work to three
main features or attributes (the common term usepgtophysics):
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*Trace attribute: The singular values of the matrix are excellent in
representation energy distribution. From such \&lue obtain the trace attribute (3
values):

..0GHt ) %o S ) < (18)

where< (Eare the singular values of the matrix . Strong reflections from salt domes

result in large amplitude variations across thenlawy while over the salt area, values are
relatively smooth. Therefore, this attribute igglmmalong the boundary and small over non-
boundary smooth regions.

e Largest singular value: The largest singular value attribute is computed a
< N % S (19)

where<s is the largest singular value in . Salt boundaries are often represented by strong
edges in seismic data. Experiments have showntligatargest singular value attribute
represents well edge information in a given seisvolcme. The value of this attribute is
large for salt boundaries and small for surroundiommogenous areas.

*Coherence attribute: The coherence attribute is obtained by estimatiegatio of
the trace attribute and the largest singular vdtus.given by:

\%

A (20)

This attribute takes large values for smooth aasassmall values cross salt boundaries.

As can be seen from above, when all the attribatesconsidered, we end up with a
feature vector of dimension 9. We have carried oo experiments to verify whether all
these attributes are important for the problemaatdis. Our experiments showed that only
attributes computed from  (across Time) and ® (across Crossline) are important to
delineate salt domes. The trace and largest singalae attributes from " were good for
other types of structures such as chaotic horizonther hand, the coherence attributes for

and ° gives low values and is high for surrounding ar&as in summary, we ended
up with a 6-dimentional feature vector which isleased for each small seismic volume of
dimension 5x5x3 (Time x Crossline x Inline) arowmth of the pixels in the total seismic
volume.

2.3 Salt dome tracking using the Active Contour Modl aided tracking (ACM)

In this section, we discuss how the Active Contiladel algorithm (ACM) algorithm
[21] was used for tracking salt dome boundariesssa seismic volumes with the aim of
reducing the overall computational load of the H\3&ked detection algorithm. We briefly
present the ACM model then we discuss how it igluseenhancing the boundary tracking
workflow.

The ACM, also called snake model, is a robust aggraused in computer vision for
mainly delineating one or more defined objects froossibly some noisy image data. Such
a model is widely used in applications like segragah, object tracking, shape detection,
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matching...etc. The basic formulation of the snakeeistered around minimizing the energy
of a deformable spline subject to some constraiv®. main types of energy are considered:
external and internal. It is important to notetthrzakes do not solve completely the problem
of finding contours or boundaries as they requamtaen initial knowledge about the object(s)
to be detected, interaction with the user, and scongergence criterion. In our case, we will
show that such framework fit well with our implentatmon.

Let us start with the position of the snake whishdefined as a set of coordinates
charactering control pointan the contour. These points are parametricallinddfby:

— . . . (21)

wheree is the normalized index ( u— V), while x(s) and y(s) are the x and y coordinates
on the contour.

The contour evolution is described by an energgtion which composed of two terms:
a. the internal energy which makes the curve elastd limits its deflection, and b. the
external energy which moves the curve closer tobject[22]. The expression of the internal
energy is given by:

S ™

5 <
~ q Q—. T - "ZWT16~ Y"qé 3 o > éTM > 6 B *> > écTEM\ > (22)

where3 ¢ is an adjustable constant that specifies conginwhile B » is an adjustable
constant that controls contour curving weight.

The external energy or also called image energgxisacted from the image to be
segmented. This energy depends on gradient vatyesrds of modifications. These features
can take the form of time, edges...etc. For exantpeedge energy is written as:

“w 2 Y. 815 (23)

whereY. is a Gaussian operator with standard deviatioand ° is the second derivative
of the given image.

Based on the above-mentioned expressions, thelbeeeagy cost function which needs
to be minimized as the snake (or contour) progeessdefined by:

magwar  igU g Q= T67 e Q= T67gq Q—e TVoe ¥

where™ ; represents the internal energy of the contousitake) whil€' ,¢- controls the
fitting of the contour onto the image. The exteraakrgy is usually a combination of a
number of forces due to the image itself . Findlly, accounts for any additional external
energy constraints.

In order to make snakes useful for early visionneed energy functionals that attract
them to salient features in images. In generaljsesthree common energy functionals which
attract a snake to lines, edges, and terminatidhs. total image energy can hence be
expressed as a weighted combination of the thresggriunctionals as follows:

i m¢” : Zq“~Zq" 6: "§¢” ~"§¢" 6: ”m i ”m §
By adjusting the weights above, a wide range oksraehaviors can be created. The

simplest useful image functional is the image istnitself. If we sef 7 | , then
depending on the sign pf; ;- , the snake is attracted either to light linedark lines. Some
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smoothing or noise reduction may be used on thgeéman this case the line functional
becomes Eline=Filter{I(x,y)}.

Subject to other constraints, the snake tries iggnatself with the lightest or darkest
nearby contour. Finding edges in an image can biewaed using simple energy functionals.
If we set™ e 2 | S, then the snake is attracted to the contour veithd image
gradient values. To avoid the problems of localima the image is first blurred using a
Gaussian filter, hence we uSeer 2 ~. °l 5. In addition to functionals related
to lines and edges, termination (end of lines) fiomals can also be used. Such termination
functionals are obtained from a smoothed versicdh®image itself by taking the derivative
of the gradient angle with respect to the unit @eperpendicular the gradient direction.

Finally, in addition to the internal energy of #@ntour, the image energy, some improved
implementations of the ACM include additional enecgnstraints that allow the user to have
more control over the snake for a given applicat®ach energy constraints may be used,
for example, to interactively guide the snake talsaor away from certain features like
corners.

We should note that the literature is rich with A@®slsed segmentation techniques with
many improvements and variants developed to enhtre@erformance the basic ACM
technique in terms of accuracy or speed or botbk.nkin setup parameters of the ACM are
the shape of the snake and the energy scalingrfdttbe snake is initialized too far from
the object boundary, it is possible that the contmay not converge onto the object
boundary. Also, if the energy scaling factor is tmg for a given image then, though the
active contour may converge onto the image boundaeyfinal contour keeps wiggling
along the object boundary.

In our work, we propose to use the parametersggofen ACM over a particular Inline as
candidate points for finding the salt dome boundarthe successive Inline(s). Contextual
information is also incorporated to make the ovetglorithm more accurate. Assuming than
an accurate salt dome boundary is found for In(image) K using the HMM, then candidate
points for Inline K+1 are obtained using a simpéeriel (e.g. 5x5) as shown in Fig. 5. Hence,
the salt boundary is tracked in the next Inline {iK#sing these candidate points as the initial
ACM. This concept can be generalized not only fairgle Inline (K+1) but for N future
Inlines where N can be between 1 and 10.

Convolution
Threshold,
T Values >0 =1

Boundary detected in Inline # K Candidate points for
Inline # K+1to K+ N

11111
I 1111
11111
1 1111
11111
Fig. 5: Candidate points for tracking for the skitme boundary

3. Experimental results

We tested our seismic interpretation workflow basethe HSOVD attributes, the HMM,
and the ACM using data from the Netherlands offstfe8 block acquired in the North Sea.
The block covers an area of 24x16%ifhe acquired data has a resolution of 651x951x463
(Crossline x Inline x Time). We divided our expeents in two sets. One set of experiments
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focused on the delineation aspects of the propasekiflow for Inline images while, in the

second set of experiments, we tested the perforenahthe proposed algorithm in tracking
salt dome delineation across volumes of seismieyst

3.1 Salt dome detection from individual Inlines acpss seismic volumes

We first started with an initial experiment usingsiz gradient features computed from
the gray level Inline images. The initial parameset for the HMM I'"# was
estimated from the training sequences. Duringtthising stage, the different parameters of
the HMM model are obtained. Once the model is olealtiwe move to the testing phase. For
a given test Inline, we take the pixels row-wisd astimate the state sequences. States can
either be 1 (non-boundary) or 2 (boundary). An esjggears where there is a change in states
(1 to 2, or 2 to 1). Once the horizontal edgesadntained, we take the pixels column-wise
and repeat the process to calculate the vertigggsedNe then combine the horizontal and
vertical edges to get the final result. Fig.6 (bl &) display the horizontal and vertical edge
maps for Inline 126. Fig.6 (d) displays the combigeadient map. Fig.6 (e) and (f) the salt
boundary detected for the Inline 126 after somet poecessing operations using the
estimated HMM model using the gradient featuregyetioer with the original image, we

display in Fig 6 (e), the ground truth (green) lazkby expert interpreters and the detection
boundary in red.

(e) (f)
Fig. 6: (a) Inline 126, (b-d) Horizontal, Vertic&pmbined gradient maps,
(e-f) Salt boundary detected for Inline 126 usimg HMM with the gradient
features (red: salt boundary, green: ground truth)

The above HMM-based method, using the gradienufest is able to detect the salt
boundaries with reasonable accuracy especially whehoundary exhibits strong reflectors.
However, when edges are weak, the proposed metiiedd detect the boundary accurately
as can be seen in some segments of Fig. 6(e). &xawe this drawback, we use the
proposed HOSVD-based features namely the tracdatyest singular value attribute, and
the coherence as features. For each point in @inigasequence, we start with a volume of
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size 5 x 5 x 3 (Inline x Crossline x Time). Thislwmme is unfolded along Inline, Crossline,
and Time directions as discussed earlier. Fromuthfelded matrices, we estimate the
HSOVD features. Note that while 9 features candtienated for the 3 unfoldings, we showed
that only 6 of these are relevant to the problerdatécting salt domes. As such, we end up
with six-dimensional features for each 5 x 5 x 3umme centered around a certain pixel.
These features are then used to estimate the dgtareemeters of the HMM, namely (A, B,
), using the EM algorithm with the training sequesic

For a given test Inline, the hidden states fothalpoints are computed using the estimated
HMM. The estimated states are then used to deknibat salt dome boundaries. Fig.7 (a)
and (b) display the detected salt dome boundavrab € Inline 126 using the proposed HMM
algorithm based on the HOSVD features. We seettieimethod is able delineate very
accurately the salt boundary. The detected salbdeny (red) is very close to the ground
truth (green). In Fig.8, we provide two additiomalamples of salt boundaries detected for
Inline 111 and Inline 134. The salt boundaries poadl by the proposed method are found
to be consistent across all Inlines in the F3 Block

(b)
Fig. 7: Salt boundary detected for Inline 126 ugimgproposed algorithm (red), and the
ground truth (green).

_ : : 5
Fig. 8: Salt boundary detected using the proposetthoa (a) Inline 111, (b) Inline 134

We compared the performance of our proposed maibimd) the HSOVD features with
the edge based method [1], the texture based mgthpdand the hybrid edge-texture based
method [16]. The texture based method [11] uses &la&itributes, Gabor filter based
attributes, and eigenstructure based attributes Miethod has traditionally been used in
previous papers for benchmarking purposes. In Bigsd 10, we display the results for salt
boundary detection using the proposed method, détector based method, the texture
based method, and the hybrid edge-texture basedbocheThe salt boundary estimated by
the edge based method deviates along the diagaméalat the end where the boundary is not
represented by strong reflectors. The salt boundietgcted by the texture based method also
misses at many points especially when the texttisalb boundary resembles to a horizon
event or to the background. The hybrid edge-texhased method produces improved
results; however it fails to produce accurate tesulith weak amplitudes and contrast
variations along the salt boundaries. The propd$ktiM-based method, using HOSVD-
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based features, on the other hand, gives enhaaseliswith excellent accuracy in detecting
salt dome boundaries.

Fig. 9: Overlaid salt boundary detected for Inlir#6 using the proposed method (red), the
edge-based method (blue), the texture-based métlgad), the hybrid edge-texture
method (purple), ground truth (green)

Fig. 10: Detected salt boundary detected for Inligé using the proposed method (red),
the edge-based method (blue), the texture-basdubohétyan), the hybrid edge-texture
method (purple), ground truth (green)

As a summary of our first set of experiments, wspldiy in Table 1, the average
classification results for Inline images 126 to X85 our proposed method together with
results from previous works using the same datdsstead of using the simple accuracy
metrics, we show here the more comprehensive Funeaghich combines both precision
and recall measures. Such a metric is usually tmeddenchmarking image segmentation
techniques. The proposed method gives an averageaay of 98.70% which is 3% higher
than the texture-based method, 2% higher thandfe-based method, and 1.6% better than
the hybrid edge- texture method. Moreover, the gsed method, using a single HMM, is
computationally very efficient as compared to otbkssifier-based salt dome detection
methods. The results we obtained outperform evenntlest recent works using deep
networks. In [5], the authors introduced an enhdrdeep learning architecture and showed
a number of results in segmenting salt dome imdga® the Kaggle database. For
performance evaluation, they used the simplistid (@tersection over union) measure and
the best results were achieved using the LovasAlogtion with IOU = 0.87 and no mention
of the F measure.

Table 1: Average classification accuracy

Salt Dome Detection Method WEASURE
Proposed method 98.71%
Hybrid edge-texture method [16] 97.12%
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Edge detection based method [18] 96.88%
Texture based method [13] 95.72%
2D Sobel method [2] 95.17%
3D Sobel method [2] 95.24%
GoT method [23] 94.72%
Dictionary-based method [17] 94.26%
Codebook-based method [3] 93.44%

3.2 Salt dome tracking across seismic volumes

In practical scenarios, expert interpreters de# veirge amounts of seismic data. More
particularly, these interpreters carry their analgs a volume by volume basis rather than a
slice by slice basis. Obviously, such volumes inef a continuous set of slices (or
Inlines/Crosslines). As such, the changes acrgssaat slices (or Inlines) are usually very
small. To benefit from such a continuous seismiacstire, we propose a novel workflow for
detecting and tracking salt domes across adjadieesdor Inlines/Crosslines) using the
HMM discussed above combined with an Active Contdadel (or Snake). In what follows,
we discuss the experimental setup for such a tmgckamework with its benefits in more
details.

Our proposed workflow starts by finding the saltret boundary over a given Inline (or
slice), say Inline 104, using the HMM model dissed above. For the next Inline (Inline
105), we use the ACM model to accurately delinéfagesalt dome. Since the ACM works
well when we have a good initial contour, the laany detected from Inline 104 is used to
obtain a mask for the ACM so that a more preadtgb®undary is obtained with only a small
number of iterations. This framework is similar,arway, to video compression technigues
in which we subdivide the video stream into I-franfer references frames) and P-frames
(or predicted frames). While the I-frames are coeaped independently of other images and
require higher bit budget, the P-frames are codadgumotion vectors and transform
coefficients that describe the prediction corretiio the frames compared to the I-frames.
So, the I-frames, which we will call here H-framesl) be analyzed using the HMM model
while the P-frames, which we will call here A-fraspare analyzed using the ACM model
with the initial contour used being the resultimgubdary from the previous H-frame. The
letters H and A stand for HMM and ACS, respectivélig. 11 displays the results for 3
Inlines, namely, 104, 110, and 139. The resultsvséxcellent detection accuracy across the
different Inlines. Additionally, we present in Tab? the quantitative results using the F-
measure. As can be seen, the average F-measnriésorder of 0.97 and an accuracy of
around 98%. These averages were very close te thlmained across a larger set of images.

Table 2: Classification accuracy and the F-meassirgg the proposed HMM based
technique (H-frames)

Image Precision Recall F-measure Accuracy
104 0.9983 0.9097 0.9519 0.9705
110 0.9830 0.9753 0.9791 0.9877
139 0.9928 0.9377 0.9645 0.9776
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Fig. 11: (a)-(e) Original, Ground truth boundaryM-based boundary before processing,
HHM-based final boundary, Detected salt dome refporinline 104. (f-j) Figures
corresponding to Inline 110. (k-0) Figures correspng to Inline 139

However, in the practical implementation of the HMMCM model above, we had to
consider two issues. The first issue is relatethéonumber of frames between every pair of
H-frames (HMM-based). The second issue was reltieithe margin that we needed to
consider in finding the final boundary using the MC With respect to margin, we tried a
number of cases, and finally we found that congigdea margin of 10 pixels from each side
of the HMM-based boundary provides excellent resswith very reasonable speed of
convergence. Hence, we confine the search arg¢bhddmal contour using the ACM over a
vertical range (or mask) of 21 pixels. We show i B2 the mask used (in white), The final
boundary detected using the ACM and the resultatigdome region for 3 Inlines (so-called
A-frames), namely 105, 111, and 140.

To quantity the performance of the proposed workflave display in Table 3 the F-
measure obtained for Inlines 105, 111, and 140.sfdening the fact that the results are
obtained using the ACM without the HMM model, tlesults are very satisfactory with an
average of 0.96 which is very close to the rexalitsined using the HMM based approach
discussed above at a much lower computational load.

(@) (b) ()

(d) (e) (f)
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(9) (h) (i)
Fig. 12: (a) Mask from Inline 104, (b) Boundaryelged using ACM and mask
for Inline 105, (c), Final salt dome region foritrd 105. (d)-(f) same as (a)-(c) for Inlines
110 and 111. (g)-(i) same as (a)-(c) for Inline8 &48d 140.

Table 3: The classification Accuracy and F-measisieg the ACM based technique (A-

frames)

Image Precision Recall F-measure Accuracy
105 0.9940 0.9076 0.9488 0.9686
111 0.9560 0.9772 0.9665 0.9800
140 0.9810 0.9418 0.9610 0.9752

The second issue that we had to consider in ouerarpntal setup is the maximum
number of A-frames between each pair of H-framBgcall the A-Frames are the frames
(Inlines) which are analyzed using the ACM baseaaraach for detecting the salt boundary.
Starting with an HMM based boundary, we succesgivsed the ACM based approach for
the next frames. We then computed the averageamcaover these frames. The results are
displayed in Table 4 when the first boundary isaoi#d using the HMM on Inline 104. As
expected, we note that the average accuracy athwthie correct boundary is detected
decreases with the number of A-frames analyzedgugie ACM-based approach. Our
experiments that the maximum number of A-framesefach H-frame should not surpass
around 10 images as a maximum limit to keep thellefaccuracy of at least 95%. Starting
with the HMM on Inline 104, for example, the maximuange for the Inlines analyzed using
the ACM should be within [105-114].

Table 4: The Sequence Tracking Accuracy and F-mmeasing the ACM

Image Precision Recall F-measure Accuracy
105to 111 0.9533 0.9463 0.9498 0.9705
105 to 125 0.9482 0.8676 0.9061 0.9418
105 to 140 0.9299 0.8423 0.8839 0.9284

Based on the above, we found that for every H-framedyzed using the HMM, we can
predict the salt boundaries for 9 A-frames using #&CM approach. Hence, overall, the
HMM based technique is used in a ratio of 1 to @thpared to the ACM based approach
which is used 90% of the time. It is importantniate that the ACM approach used here
converges very fast as the initial snake outlirtimg boundary is already placed in a region
which is small compared to the total image regids.such, we limited the number of
iterations of the ACM to only 10 iterations whiclere enough to achieve convergence of
the snake. Finally, with the above setup, we esaththe execution time to find the boundary
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using the HMM to be around 6 sec. on a mid-rangéola while the ACM approach was
converging to the final boundary in around 2 séfe.see clearly how the proposed approach
leads to excellent results in terms of boundargcde&in and tracking accuracies at a reduced
computational cost.

4. Conclusion

In this work, we introduced a novel approach falt dome detection and tracking from
migrated seismic data using a combination of theédein Markov Model (HMM) with the
Active Contour Model (ACM). To drive the HMM, we tnoduced a new set of seismic
attributes estimated from the HOSVD projectionsnglohe Inlines, Crosslines, and Time
directions. Instead of considering multiple HMM nedslcovering different classes, we only
used one HMM model in which the hidden states talkepossibilities (salt boundary and
non-salt boundary). Furthermore, in order to alevthe computational burden of the HHM,
we introduced a video processing -like approaciwhich each Inline image analyzed using
the HMM is followed by a set of Inlines analyzedngsthe ACM approach with the initial
snake taken from the HMM based Inline in orderxpeglite the convergence of the ACM.
Our experimental results showed that the proposméflow provides an excellent accuracy
of more than 96%, in terms of detecting and traglgalt domes boundaries from seismic
volumes, outperforming existing approaches baseeddge and/texture attributes.
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