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1. Introduction 
 

Salt domes are excellent indicators of the presence of important reservoirs such as oil and 
gas. Salt bodies are mushroom-shaped geologic structures that help trapping oil and gas 
around them. Manual picking of salt bodies is a time-consuming task due to the large size of 
seismic data acquired every day. The accuracy of detecting salt domes as well as other 
seismic structures is also linked with the expertise of human interpreters, hence can be bias 
and affected by fatigue. Therefore, for the past few years, a lot of research has been carried 
in developing computer-aided algorithms for detecting salt bodies automatically from 
seismic surveys.  Most of the automated and semi-automated salt dome detection algorithms, 
found in the literature, use either edge-based method, Active Contour Models (ACM)-based 
methods, texture based-methods, hybrid edge and texture based methods, or learning-based 
and patch-based classification approaches. Salt boundaries are generally represented by 
strong amplitudes in seismic data. Therefore, the edge detection-based techniques, discussed 
in [1], [2], [3], [4] and [5], are very useful in detecting the broad profiles of salt domes. These 
techniques, however, work well only when the seismic data exhibits large amplitude 
variations [4]. 

Other approaches include the Normalized Cuts Image Segmentation (NCIS) discussed in 
[6], [7], and [8], which use graph-based models to detect salt bodies. NCIS based salt dome 
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segmentation methods are, however, computationally expensive and therefore not suitable 
for real time seismic interpretation. Salt boundary segmentation methods based on the ACM, 
discussed in [9] and [10], combine the human expert input with computer-aided 
segmentation. The method is iterative in nature and depends largely on the accuracy of the 
initial information provided by the interpreter. 

Texture along the salt boundaries is different as compared to the surrounding regions. 
Therefore, texture based attributes are used to overcome the drawbacks of edge based 
detection methods that are heavily dependent upon the variations in the instantaneous 
amplitude. Salt dome detection methods using texture attributes were discussed in [11], [12], 
[13], [14], and [15]. While the results are excellent, the choice of attributes and the size of 
window play a crucial role on the overall accuracy of texture based methods. 

In [16], a hybrid approach based on edge and texture attributes was presented. Two 
separate classifiers were used; one based on edges and the second based on texture attributes. 
The final segmented boundary was then computed by fusing the output of the two classifiers 
at the decision level. In [17], a dictionary based salt dome detection method using salt 
boundary and non-salt boundary patches was discussed. Although the dictionary-based 
method detects the salt boundary with good accuracy, it is computationally expensive as it 
requires solving a minimization problem to classify each of the patches. In [18], the authors 
introduced a new attribute called the Cumulative Hybrid Seismic Attribute (CHSA) which is 
based on the HOSVD of 3D volumes but used a simple thresholding approach to delineate 
salt domes and achieved very good segmentation results. With the advanced made in deep 
networks, the authors in [19] developed a machine learning approach for identifying salt 
bodies using the image data directly instead of features extracted from the images. The 
reported results were visually very appealing with IOU values of more than 0.9.  For a 
comprehensive review on detecting subsurface events from seismic surveys, the reader is 
encouraged to read the extended paper in [24]. 

In most of the work discussed in the literature, seismic surveys are analyzed on a slice-
by-slice basis (or image-by-image) while we know that seismic data is acquired in the form 
of 3D volumes.  A number of researchers proposed interpretation techniques analyzing 3D 
seismic volumes directly.  In [5], for example, the authors discussed an interactive and semi-
automatic sketch-based modeling approach to help interpreters identify salt bodies from 3D 
volumes by directly deforming the surface of a preexisting mesh with very promising results. 
Earlier works showed that the continuity across the three dimensions need to be considered 
in developing robust detection and tracking algorithms. While the third dimension is also 
space, we borrow concepts from video processing and speech processing and map these to 
the analysis of 3D seismic volumes.  In particular, the time varying nature of speech has 
commonly been modeled using the famous Hidden Markov Model (HMM).  The HMM is 
well adapted to track speech features across adjacent frames. However, despite the substantial 
literature on the HMM, especially for diverse speech related applications, segmentation 
methods based on such a framework have not been used in seismic applications for event 
detection and tracking[20].  

In this work, we introduce a single HMM model with two states, namely salt boundary 
and non-salt region, together with new features based on the HOSVD (Higher Order Singular 
Value Decomposition) to accurately detect and track the salt boundaries. The optimal 
parameters of the HMM are obtained using the backward-forward algorithm (EM algorithm). 
The Viterbi algorithm is then employed to compute the hidden states which are then used to 
delineate the salt boundaries. 

Note that only a single HMM model is needed, hence the classical classification stage is 
avoided making the overall approach computationally very efficient. More importantly, to 
further reduce the complexity of the developed workflow, and to avoid computing the HMM 
parameters for every slice (or image), we propose to use the HMM only every few slices 
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(images) in the same manner compression is carried for video processing.  Between the 
HMM-based processed images, we use the ACM model to fine tune the salt dome boundary 
with minimum additional computational load.  Overall, we propose this hybrid HMM-ACM 
approach to achieve superior salt boundary detection accuracy at a reasonable computational 
load. Our algorithm produces excellent results as compared to existing edge-based and 
texture-based, and other salt dome detection algorithms. 
 
2. The proposed hybrid HMM-ACM salt dome detection workflow 
 

The proposed workflow starts with a set of training images containing salt domes with 
pixels labelled as either salt boundary or non-salt boundary. These images were obtained 
from the North Sea F3 Block in the Netherlands. For each volume around the two types of 
pixels, the HSOVD-based features (discussed below) are estimated. The extracted features 
from the training set are then used with the EM algorithm to estimate the parameters of two-
state HMM model, (state one representing salt boundary while state 2 represents non-
boundary). For a given set of test data, the algorithm first divides the input slices into 
sequences then the HOSVD-based features are estimated for all the pixels. Hidden states (salt 
or non-salt boundaries) are then estimated for all pixels using the Viterbi algorithm. The 
estimated hidden states are used to delineate the salt boundaries.  In order to alleviate the 
computational burden of the HHM, we introduced a video processing like approach in which 
Inlines (or slice images) analyzed using the HMM are followed by a set of Inlines analyzed 
using the ACM approach (with the initial snake taken from the HMM based Inline) in order 
to expedite the convergence of the ACM. In Fig. 1, we display the workflow of our proposed 
detection algorithm. We will now discuss in more details the HMM model, the HOSVD-
based attributes and ACM model. 

 

 
 

Fig. 1: Proposed workflow for detecting salt domes boundaries using the HMM and ACM 
 

 
2.1 The Hidden Markov Model (HMM) and parameter estimation 
 

As mentioned above, we propose to track the changes among pixels (on the boundary or 
not) using an HMM model. HMMs have been used as powerful models for tracking the 
changes in time and space. One of their most important applications has been in speech 
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recognition and speaker identification in which changes in feature components are tracked 
across frames to model the changes in a given utterance across time. Here, we propose to use 
the HMM to track changes across pixels in a given row of a seismic slice (Inline image). We 
will assume that texture information around a certain pixel is represented by a set of 
attributes/features as discussed in Section 2.2. Let � �  denote the texture at the pixel t (in the 
horizontal direction). We will consider that such a pixel is a state taking two possible discrete 
values: � � � � � ���	
 . State “� ” assumes that the pixel falls within a non-salt boundary, or 
in other words, the pixel t is not located on a salt boundary. On the other hand, state “	 ” 
considers that pixel t falls on a salt boundary. Based on the above assumptions, a given row 
within an Inline can be represented by a sequence of states (or values) in the following 
fashion: 1 1 1 1 1 2 2 2 2 2 1 1 1, etc. With this underlying assumption, we define the Markov 
Chain with the following conditioned probability ��� � 
� ��� �  (here we assume a 
homogeneous chain) as: 

 
� �� � � � � � � � 
� ��� � � � ������� � � �� 	�  (1) 

  
For the initial index or state � � � , we also define an initial state distribution, � � � ��� � �

�� . A fundamental concept behind the HMM framework is that states cannot directly be seen 
or observed. As such, we say that the states are hidden. In our application, such a concept 
makes sense as we don’t see the states (whether a pixel is on a boundary or not) but we see 
(or can estimate) the features at that pixel (within a certain volume).  The pixels (centers of 
small volumes) can hence be represented by some characterizing features; such features obey 
certain distributions which are different across the states. Following the HMM framework, 
the features or observations obtained under each of the states follow different patterns and 
hence are represented by different probability densities. Based on this concept, the Markov 
chain is also identified by the probabilities of observations or features given a particular state. 
Here, we define the probability of observation � �  at pixel t under state j  (1 or 2) as: 
  

� � �� � � � ��� � 
� � � ��  (2) 
  

The set of all probabilities under all states is represented by the emission matrix � �
�� � � � � � � . As can be seen from the above formulation, we only need to use one HMM model 
and we use the states themselves as classes (boundary and non-boundary) instead of using 
multiple HMMs as traditionally done in general classification problems. This HMM model 
is identified by the set  � � !� "� # 
  which represents the transition probability matrix A, the 
emission probability matrix B, and the initial state probability distribution #. We will now 
briefly describe the main steps for estimating the HMM parameters  � �!� "� #
  from an 
observation set $ � �� � � % � � &
   using the EM algorithm: 
 

1. Initialization  

We start by assigning an initial set of values for  ' � �!� "� #
 : 
# = {pi} are the initial state probabilities 
A = {aij} are the state transition probabilities 
B = {bik} are the observation state probabilities 

 
2.  Decoding 

Given an observation sequence and a model, we compute the conditional probability 

��$( � : 
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��$( � � ) � * +� * +, +
- � * . * ./+

&��
�0��* +1�* 2 
 � * ./+ , ./+                                               (3) 

 
 3.  Forward procedure 

Let 3� ��� � ��� � � � � � � � � � � � � �
 4 �  denote the joint probability of the first �  

observations � � � � 5 � � � � � ��  , and � � � �  , given parameters   at iteration k. 

Subsequently,  3� � � 6 � �  is calculated recursively as:  

3� � � 6 � � � ) 3� � � � � �� � �, ./+�0��5   (4) 

 
    4.  Backward procedure 

Let 78�9� � :�; <=� � � � � � ;> 
?< � @� 'A�  denote the joint probability of the ending 

partial sequence ; <=� � � � � � ;>  and ?< � @ given parameters   at iteration k. Similarly, 

78�9�  is calculated recursively as:  

B� �C 6 �� � �  (5) 

B� ��� � ) 5
�0� B� �� 6 ��� ��

4 � �, .  (6) 

 
    5.  Updates 

In this stage, we find the state sequence that best explains the observations using the 
Viterbi Algorithm. The main idea of this algorithm is to maximize the probability 
of seeing the observations at time t-1, landing in state j, and seeing the observation 
at time t as the following: 
 
DE� 9� � FG?

H+1�HIJ+
:�? � 1 ? <�� � ; � 1 ; <�� � ?< � K� ; <������������������������������������������������������ ��L��

The recursive computation is written as: 
 
M� � � 6 � � � FG?

�
M� � � � � �� � �, ./+                                                                                                      (8) 

N� � � 6 � � � GOP�FG?
�

M� � � � � �� � �, ./+
                                                                                           (9) 

 
We then compute the most likely state sequence by working backwards as the 
follows: 
 
�QRST � GOP�FG?

�
M� � C�                                                                                                                       (10) 

 
6. Parameter estimation 

For this stage, we find the model that is most likely to produce the sequence above 
for a given a model and observation sequence by updating the model parameters to 
better fit the observations. The probability of traversing an arc is the following: 

 

� � � �� � � �
UV� � � WVXYXZ./+ [ X��=��

) U\ � � � [ \ ���\]+�^
                                                                                                          (11) 

 



��������	
�����
���������������������������
 
 

 
 

281

where the probability of being in state i is determined as: 
 

_� � � � � ) � � ��� ���0��5 �����������������������������������������������������������������������������������������������������������������������������������������	� �
 

Now, we compute the new estimates of the model parameters: 
 

�̀ � _ � ���                                                                                                                                                  (13) 
 

�̀ �� �
) a. �����2

.]+

bV� � �
                                                                                                                                      (14) 

 

�S�4 �
) b. � � �2

�.cZ . ]d


) bV� � �2
.]+

                                                                                                                                 (15) 

 
7. Convergence  

If ' A=�  achieves the desired level of convergence, then the EM algorithm is 
terminated with ' e � ' A=� , else let f � f 6 �  and go back to step Forward 
procedure above. 
 

In summary, using a given training set with labelled data and corresponding features, the 
final result is a well formulated HMM model which can easily be used on test data to find 
the hidden states (boundary or non-boundary). 

 
 

2.2 HOSVD based attributes 
 

Most of the existing techniques dealing with salt dome delineation found in the literature 
either use edge-based features or texture-based features or fusion of both. Such features or 
attributes are either extracted from the space domain or the transform domain. Edge based 
techniques are simple but only work when strong edges exist between different types of 
patterns or structures. This may not be the case as the transition between the background 
structure and salt dome structure may be very weak. Texture based features, on the other 
hand, avoid the strong reliance on the instantons amplitude only to delineate salt dome 
structures. However, the choice of attributes and the size of window play a crucial role on 
the accuracy of texture based techniques. 

Instead of using edge-based and/or texture based features for the detection salt dome 
structures, we propose here to extract features which are based on three main characteristics 
of salt dome structures: 1. Edge information, 2. Texture information, and 3. 3D Continuity. 
So, instead of considering slices (2D images) of seismic data, we consider here 3D seismic 
volumes. Furthermore, instead of extracting the features directly from the 3D volumes, we 
propose to analyze these volumes using a Higher Order Singular Value Decomposition 
(HSOVD), then extract robust features from such decomposition. 

HSOVD based methods have actively been used in diverse image/video processing 
applications including face recognition, gesture identification, crowd estimation…etc. An 
important advantage of HSOVD is the ability to account for all information contained in 
multidimensional data. Here, we propose to analyze 3D seismic volumes using tensors of 3rd 
order, then calculate the HSOVD by unfolding the tensors along three directions (Time, 
Crossline, Inline). Finally, the singular values calculated along the different directions are 
used to calculate a set of features which are used for salt dome delineation. Such a set of 
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features will be shown to achieve excellent performance in terms of accurate salt dome 
boundary detection even when such structures are represented by weak reflections. We will 
briefly discuss the concept of tensors, HSOVD, and how the features mentioned above are 
estimated. 

The term "Tensor" is used in multi-linear algebra. It is a generalization of the concepts of 
vectors and matrices. Intuitively, a vector data structure is called 1st order tensor while a 
matrix data structure is called a 2nd  tensor. Tensors are basically multimode or 
multidimensional arrays. A tensor of order N, g � h i+ji ^ j����ji k , is a multidimensional array 
of N dimensions where lm  is the upper limit in dimension n . In the literature, we also refer 
to the order of a tensor as a mode. So, a vector is a tensor of first order while a matrix is a 
tensor of 2nd order, and a 3D volume is a tensor of 3rd order. 3D seismic data, � � h ijojp , 
can be seen as a tensor of order 3 (see Fig. 2) where I, J and K correspond to the dimensions 
of the Inline, Crossline and Time/depth respectively.  

 

 
Fig. 2: A 3D Seismic volume seen as a 3rd order tensor 

 
To simplify high order tensors, we decompose tensors into sub tensors called fibers (1-

dimensional) or slices (2-dimentional). Fibers are column vectors found by fixing every index 
of higher order tensor except one. In the case of 3rd order tensors, column, row, depth, are 
called mode 1, mode 2, and mode 3 fibers.   

To extract useful information from higher order tensors, such as singular values based 
features, matricizing /unfolding of tensors needs first to be performed. The mode-n 
matricizing of a given tensor, denoted as g �q� , is obtained by aligning mode-n fibers (1-D 

sub-tensors, r *,
�q� ) of the tensor and concatenating these to form a two dimensional matrix. 

For 3D seismic data, the mode-1 represents Crossline, mode-2 represents Inline, and mode-
3 represents time information. The resultant unfolded matrices are used for HOSVD. The 
matricizing of a third order tensor is determined using:  

 
 g ��� � sr ��

� ��r�5
� ��� � ���r��

� ����r5�
� ��� � ���r5�

� ��� � ���r4�
� t  

 g �5� � ur ��
5 ��r�5

5 ��� � ���r��
5 ����r5�

5 ��� � ���r5�
5 ��� � ���r4�

5 v (16) 
 g �w� � sr ��

w ��r�5
w ��� � ���r��

w ����r5�
w ��� � ���r5�

w ��� � ���r��
wt 

 
We display in Fig. 3, an example of a 3D seismic volume enfolded across Time and 

Crossline directions, while in Fig. 4, we provide a schematic representation of the 
decomposition of a 3rd order tensor into fibers. 
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Fig. 3: A 3D seismic volume unfolded across (a) Crossline (b) Inline 

 
 

 
Fig. 4: Fibers modes: (a) Crossline (b) Inline (c) Time 

 
From the mode-n matrices obtained in equation 16, we need to extract some robust 

features. Here, we will use the Singular Value Decomposition (SVD) decomposition. Recall 
that the SVD of matrices has traditionally been used for features extraction in diverse image 
processing applications. A 2D matrix (or image) x � y zj{ � with | } ~�  can be expressed, under 
some regularity conditions, as: x � •€• >  where • � y zjz  and • � y {j{  are the orthogonal 
left and right singular matrices and € � y zj{  is a diagonal matrix of ~ singular values such 
that ‚ � } ‚ 5 }� � � � � } ‚ {. 

The HOSVD can be used to decompose tensors of third or higher orders. The nth order 
tensor is first unfolded using the matricizing operation. The SVD is then obtained for each 
unfolded matrix. For a 3rd order tensor, the SVD is obtained for the three unfolded matrices 
namely g ��� � g�5� � and g �w�  as follows: 

 
 g ��� � ƒ ��� � ��� �„ ��� � & 
 g �5� � ƒ �5� � �5� �„ �5� � & (17) 
 g �w� � ƒ �w� � �w� �„ �w� � & 

  
where � ���  is the diagonal matrix of singular values for mode-i unfolded matrix.  
 

The HSOVD is a very rich decomposition from which a number of features can be 
extracted. Here, and to keep the feature extraction stage simple, we limit our work to three 
main features or attributes (the common term used in geophysics): 
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    • Trace attribute:  The singular values of the matrix � ���  are excellent in 
representation energy distribution. From such values, we obtain the trace attribute (3 
values):  

 
 …OG†‡ˆ

�8� � ) ‰��Š�� ��� � � ) � ‹ �
���  (18) 

  
where ‹ �

��� Œ• are the singular values of the matrix � ��� . Strong reflections from salt domes 
result in large amplitude variations across the boundary while over the salt area, values are 
relatively smooth. Therefore, this attribute is large along the boundary and small over non-
boundary smooth regions.  
 

    • Largest singular value: The largest singular value attribute is computed as:  
 
 ‹ Ž

��� � n���‰��Š�� ��� ��  (19) 
  

where ‹ Ž
���  is the largest singular value in � ��� . Salt boundaries are often represented by strong 

edges in seismic data. Experiments have shown that the largest singular value attribute 
represents well edge information in a given seismic volume. The value of this attribute is 
large for salt boundaries and small for surrounding homogenous areas. 

 
    • Coherence attribute: The coherence attribute is obtained by estimating the ratio of 

the trace attribute and the largest singular value. It is given by: 
 

 • •
��� �

• ‘
�V�

&’W“” •
�V� (20) 

  
This attribute takes large values for smooth areas and small values cross salt boundaries.  

 
As can be seen from above, when all the attributes are considered, we end up with a 

feature vector of dimension 9. We have carried numerous experiments to verify whether all 
these attributes are important for the problem at hands. Our experiments showed that only 
attributes computed from � ���  (across Time) and � �5�  (across Crossline) are important to 
delineate salt domes. The trace and largest singular value attributes from � �w�  were good for 
other types of structures such as chaotic horizons. On other hand, the coherence attributes for 
� ���  and � �5�  gives low values and is high for surrounding areas. So, in summary, we ended 
up with a 6-dimentional feature vector which is evaluated for each small seismic volume of 
dimension 5x5x3 (Time x Crossline x Inline) around each of the pixels in the total seismic 
volume.  
 
2.3 Salt dome tracking using the Active Contour Model aided tracking (ACM) 

 
In this section, we discuss how the Active Contour Model algorithm (ACM) algorithm 

[21] was used for tracking salt dome boundaries across a seismic volumes with the aim of 
reducing the overall computational load of the HMM based detection algorithm. We briefly 
present the ACM model then we discuss how it is used in enhancing the boundary tracking 
workflow. 

The ACM, also called snake model, is a robust approach used in computer vision for 
mainly delineating one or more defined objects from possibly some noisy image data. Such 
a model is widely used in applications like segmentation, object tracking, shape detection, 
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matching…etc. The basic formulation of the snake is centered around minimizing the energy 
of a deformable spline subject to some constraints. Two main types of energy are considered: 
external and internal.  It is important to note that snakes do not solve completely the problem 
of finding contours or boundaries as they require certain initial knowledge about the object(s) 
to be detected, interaction with the user, and some convergence criterion. In our case, we will 
show that such framework fit well with our implementation. 

Let us start with the position of the snake which is defined as a set of coordinates 
charactering control points on the contour. These points are parametrically defined by: 

 
–� • � � �� � • � � � � • � 
                                                                                                                             (21) 

 
where •  is the normalized index (•� � u—��v), while x(s) and y(s) are the x and y coordinates 
on the contour.  

The contour evolution is described by an energy function which composed of two terms: 
a. the internal energy which makes the curve elastic and limits its deflection, and b. the 
external energy which moves the curve closer to the object[22]. The expression of the internal 
energy is given by: 

 

˜ �q� Q–� • � T � ˜ ”ŽW™6 ˜ Y”qš � 3 � • � ›
šœ• � ™�

š™
›
5

6 B�•� ›
š ^ œ• � ™�

š™̂
›
5
                                   (22) 

 
where 3� • �  is an adjustable constant that specifies continuity while B�•�  is an adjustable 
constant that controls contour curving weight. 

The external energy or also called image energy is extracted from the image to be 
segmented. This energy depends on gradient values or points of modifications. These features 
can take the form of time, edges…etc. For example, the edge energy is written as: 
    

˜ ”*� � ž 
Ÿ• �   5l 
5                                                                                                          (23) 
 
where Ÿ•  is a Gaussian operator with standard deviation ‹ , and   5 is the second derivative 
of the given image.  

Based on the above-mentioned expressions, the overall energy cost function which needs 
to be minimized as the snake (or contour) progresses is defined by: 

 
�����������������™̃qW4”� ¡ u˜�q� Q–� • � T 6 ˜ �m¢” Q–� • � T 6 ˜ “£q Q–� • � Tv‰•

�

¤
������������������������������������	¥��

 
where ̃ �q�  represents the internal energy of the contour (or snake) while ̃ �m¢” �controls the 
fitting of the contour onto the image. The external energy is usually a combination of a 
number of forces due to the image itself . Finally, ˜ “£q �accounts for any additional external 
energy constraints. 

In order to make snakes useful for early vision we need energy functionals that attract 
them to salient features in images. In general, we use three common energy functionals which 
attract a snake to lines, edges, and terminations. The total image energy can hence be 
expressed as a weighted combination of the three energy functionals as follows: 

 
˜ �m¢” � ¦ Ž�q” ˜ Ž�q” 6 ¦ ”š¢” ˜ ”š¢” 6 ¦ �”’m ˜ �”’m                                                                         �	§�  

 
By adjusting the weights above, a wide range of snake behaviors can be created. The 

simplest useful image functional is the image intensity itself. If we set ̃Ž�q” � l��� �� ,  then 
depending on the sign of ¦ Ž�q”  , the snake is attracted either to light lines or dark lines. Some 
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smoothing or noise reduction may be used on the image, in this case the line functional 
becomes Eline=Filter{I(x,y)}. 

Subject to other constraints, the snake tries to align itself with the lightest or darkest 
nearby contour. Finding edges in an image can be achieved using simple energy functionals. 
If we set ̃ ”š¢” � ž 
 l��� �� 
5, then the snake is attracted to the contour with large image 
gradient values. To avoid the problems of local minima, the image is first blurred using a 
Gaussian filter, hence we use: ˜ ”š¢” � ž 
¨ • �   5l��� �� 
5. In addition to functionals related 
to lines and edges, termination (end of lines) functionals can also be used. Such termination 
functionals are obtained from a smoothed version of the image itself by taking the derivative 
of the gradient angle with respect to the unit vector perpendicular the gradient direction. 

Finally, in addition to the internal energy of the contour, the image energy, some improved 
implementations of the ACM include additional energy constraints that allow the user to have 
more control over the snake for a given application. Such energy constraints may be used, 
for example, to interactively guide the snake towards or away from certain features like 
corners.  

We should note that the literature is rich with ACM based segmentation techniques with 
many improvements and variants developed to enhance the performance the basic ACM 
technique in terms of accuracy or speed or both. The main setup parameters of the ACM are 
the shape of the snake and the energy scaling factor. If the snake is initialized too far from 
the object boundary, it is possible that the contour may not converge onto the object 
boundary. Also, if the energy scaling factor is too big for a given image then, though the 
active contour may converge onto the image boundary, the final contour keeps wiggling 
along the object boundary. 

In our work, we propose to use the parameters of a given ACM over a particular Inline as 
candidate points for finding the salt dome boundary in the successive Inline(s). Contextual 
information is also incorporated to make the overall algorithm more accurate. Assuming than 
an accurate salt dome boundary is found for Inline (image) K using the HMM, then candidate 
points for Inline K+1 are obtained using a simple kernel (e.g. 5x5) as shown in Fig. 5. Hence, 
the salt boundary is tracked in the next Inline (K+1) using these candidate points as the initial 
ACM. This concept can be generalized not only for a single Inline (K+1) but for N future 
Inlines where N can be between 1 and 10.  

 

 
 

Fig. 5: Candidate points for tracking for the salt dome boundary 
 
 

3.  Experimental results 
  

We tested our seismic interpretation workflow based on the HSOVD attributes, the HMM, 
and the ACM using data from the Netherlands offshore F3 block acquired in the North Sea. 
The block covers an area of 24x16 km2. The acquired data has a resolution of 651x951x463 
(Crossline x Inline x Time).  We divided our experiments in two sets. One set of experiments 
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focused on the delineation aspects of the proposed workflow for Inline images while, in the 
second set of experiments, we tested the performance of the proposed algorithm in tracking 
salt dome delineation across volumes of seismic surveys.   

 
 

3.1 Salt dome detection from individual Inlines across seismic volumes 
 

We first started with an initial experiment using basic gradient features computed from 
the gray level Inline images. The initial parameter set for the HMM  � � !� "� # 
  was 
estimated from the training sequences. During this training stage, the different parameters of 
the HMM model are obtained. Once the model is obatined, we move to the testing phase. For 
a given test Inline, we take the pixels row-wise and estimate the state sequences. States can 
either be 1 (non-boundary) or 2 (boundary). An edge appears where there is a change in states 
(1 to 2, or 2 to 1). Once the horizontal edges are obtained, we take the pixels column-wise 
and repeat the process to calculate the vertical edges. We then combine the horizontal and 
vertical edges to get the final result. Fig.6 (b) and (c) display the horizontal and vertical edge 
maps for Inline 126. Fig.6 (d) displays the combined gradient map. Fig.6 (e) and (f) the salt 
boundary detected for the Inline 126 after some post processing operations using the 
estimated HMM model using the gradient features. Together with the original image, we 
display in Fig 6 (e), the ground truth (green) labelled by expert interpreters and the detection 
boundary in red. 
 

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6: (a) Inline 126, (b-d) Horizontal, Vertical, Combined gradient maps,  
(e-f) Salt boundary detected for Inline 126 using the HMM with the gradient 

features (red: salt boundary, green: ground truth) 
 

The above HMM-based method, using the gradient features, is able to detect the salt 
boundaries with reasonable accuracy especially when the boundary exhibits strong reflectors. 
However, when edges are weak, the proposed method fails to detect the boundary accurately 
as can be seen in some segments of Fig. 6(e). To overcome this drawback, we use the 
proposed HOSVD-based features namely the trace, the largest singular value attribute, and 
the coherence as features. For each point in a training sequence, we start with a volume of 
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size 5 x 5 x 3 (Inline x Crossline x Time). This volume is unfolded along Inline, Crossline, 
and Time directions as discussed earlier. From the unfolded matrices, we estimate the 
HSOVD features. Note that while 9 features can be estimated for the 3 unfoldings, we showed 
that only 6 of these are relevant to the problem of detecting salt domes. As such, we end up 
with six-dimensional features for each 5 x 5 x 3 volume centered around a certain pixel. 
These features are then used to estimate the optimal parameters of the HMM, namely (A, B, 
� ), using the EM algorithm with the training sequences.  

For a given test Inline, the hidden states for all the points are computed using the estimated 
HMM. The estimated states are then used to delineate the salt dome boundaries.  Fig.7 (a) 
and (b) display the detected salt dome boundaries for the Inline 126 using the proposed HMM 
algorithm based on the HOSVD features. We see that the method is able delineate very 
accurately the salt boundary. The detected salt boundary (red) is very close to the ground 
truth (green). In Fig.8, we provide two additional examples of salt boundaries detected for 
Inline 111 and Inline 134. The salt boundaries produced by the proposed method are found 
to be consistent across all Inlines in the F3 Block. 

 

  
(a) (b) 

Fig. 7: Salt boundary detected for Inline 126 using the proposed algorithm (red), and the 
ground truth (green). 

 
 

  
(a) (b) 

Fig. 8: Salt boundary detected using the proposed method (a) Inline 111, (b) Inline 134 
 

We compared the performance of our proposed method using the HSOVD features with 
the edge based method [1], the texture based method [11], and the hybrid edge-texture based 
method [16]. The texture based method [11] uses GLCM attributes, Gabor filter based 
attributes, and eigenstructure based attributes. This method has traditionally been used in 
previous papers for benchmarking purposes. In Figs. 9 and 10, we display the results for salt 
boundary detection using the proposed method, edge detector based method, the texture 
based method, and the hybrid edge-texture based method. The salt boundary estimated by 
the edge based method deviates along the diagonals and at the end where the boundary is not 
represented by strong reflectors. The salt boundary detected by the texture based method also 
misses at many points especially when the texture of salt boundary resembles to a horizon 
event or to the background. The hybrid edge-texture based method produces improved 
results; however it fails to produce accurate results with weak amplitudes and contrast 
variations along the salt boundaries. The proposed HMM-based method, using HOSVD-
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based features, on the other hand, gives enhanced results with excellent accuracy in detecting 
salt dome boundaries. 

 

 

Fig. 9: Overlaid salt boundary detected for Inline 126 using the proposed method (red), the 
edge-based method (blue), the texture-based method (cyan), the hybrid edge-texture 

method (purple), ground truth (green) 
 

 

Fig. 10: Detected salt boundary detected for Inline 126 using the proposed method (red), 
the edge-based method (blue), the texture-based method (cyan), the hybrid edge-texture 

method (purple), ground truth (green) 
  

As a summary of our first set of experiments, we display in Table 1, the average 
classification results for Inline images 126 to 135 for our proposed method together with 
results from previous works using the same dataset. Instead of using the simple accuracy 
metrics, we show here the more comprehensive F-measure which combines both precision 
and recall measures. Such a metric is usually used for benchmarking image segmentation 
techniques. The proposed method gives an average accuracy of 98.70% which is 3% higher 
than the texture-based method, 2% higher than the edge-based method, and 1.6% better than 
the hybrid edge- texture method. Moreover, the proposed method, using a single HMM, is 
computationally very efficient as compared to other classifier-based salt dome detection 
methods. The results we obtained outperform even the most recent works using deep 
networks. In [5], the authors introduced an enhanced deep learning architecture and showed 
a number of results in segmenting salt dome images from the Kaggle database. For 
performance evaluation, they used the simplistic IOU (intersection over union) measure and 
the best results were achieved using the Lovasz loss function with IOU = 0.87 and no mention 
of the F measure.    

 
Table 1: Average classification accuracy 

Salt Dome Detection Method F-MEASURE 

Proposed method   98.71%  
Hybrid edge-texture method [16]   97.12% 
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Edge detection based method [18]   96.88% 
Texture based method [13]   95.72% 
2D Sobel method  [2] 95.17% 
3D Sobel method [2] 95.24% 
GoT method [23] 94.72% 
Dictionary-based method [17] 94.26% 
Codebook-based method [3] 93.44% 

 
3.2 Salt dome tracking across seismic volumes  

In practical scenarios, expert interpreters deal with large amounts of seismic data. More 
particularly, these interpreters carry their analysis on a volume by volume basis rather than a 
slice by slice basis. Obviously, such volumes consist of a continuous set of slices (or 
Inlines/Crosslines). As such, the changes across adjacent slices (or Inlines) are usually very 
small. To benefit from such a continuous seismic structure, we propose a novel workflow for 
detecting and tracking salt domes across adjacent slices (or Inlines/Crosslines) using the 
HMM discussed above combined with an Active Contour Model (or Snake). In what follows, 
we discuss the experimental setup for such a tracking framework with its benefits in more 
details. 

 Our proposed workflow starts by finding the salt dome boundary over a given Inline (or 
slice),  say Inline 104, using the HMM model discussed above.  For the next Inline (Inline 
105), we use the ACM model to accurately delineate the salt dome. Since the ACM works 
well when we have  a good initial contour, the boundary detected from Inline 104 is used to 
obtain a mask for the ACM so that a  more precise salt boundary is obtained with only a small 
number of iterations. This framework is similar, in a way, to video compression techniques 
in which we subdivide the video stream into I-frames (or references frames) and P-frames 
(or predicted frames).  While the I-frames are compressed independently of other images and 
require higher bit budget, the P-frames are coded using motion vectors and transform 
coefficients that describe the prediction correction in the frames compared to the I-frames. 
So, the I-frames, which we will call here H-frames, will be analyzed using the HMM model 
while the P-frames, which we will call here A-frames, are analyzed using the ACM model 
with the initial contour used being the resulting boundary from the previous H-frame. The 
letters H and A stand for HMM and ACS, respectively. Fig. 11 displays the results for 3 
Inlines, namely, 104, 110, and 139.  The results show excellent detection accuracy across the 
different Inlines. Additionally, we present in Table 2 the quantitative results using the F-
measure.  As can be seen, the average F-measure is in the order of 0.97 and an accuracy of 
around 98%.  These averages were very close to those obtained across a larger set of images. 

 
Table 2: Classification accuracy and the F-measure using the proposed HMM based 

technique (H-frames) 

Image Precision Recall F-measure Accuracy 

104 0.9983 0.9097 0.9519 0.9705 
110 0.9830 0.9753 0.9791 0.9877 
139 0.9928 0.9377 0.9645 0.9776 
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Fig. 11: (a)-(e) Original, Ground truth boundary, HMM-based boundary before processing, 
HHM-based final boundary, Detected salt dome region for Inline 104. (f-j) Figures 
corresponding to Inline 110. (k-o) Figures corresponding to Inline 139 

 
However, in the practical implementation of the HMM-ACM model above, we had to 

consider two issues. The first issue is related to the number of frames between every pair of 
H-frames (HMM-based). The second issue was related to the margin that we needed to 
consider in finding the final boundary using the ACM.  With respect to margin, we tried a 
number of cases, and finally we found that considering a margin of 10 pixels from each side 
of the HMM-based boundary provides excellent results with very reasonable speed of 
convergence.  Hence, we confine the search area for the final contour using the ACM over a 
vertical range (or mask) of 21 pixels. We show in Fig 12 the mask used (in white), The final 
boundary detected using the ACM and the resulting salt dome region for 3 Inlines (so-called 
A-frames), namely 105, 111, and 140. 

To quantity the performance of the proposed workflow, we display in Table 3 the F-
measure obtained for Inlines 105, 111, and 140. Considering the fact that the results are 
obtained using the ACM without the HMM model, the results are very satisfactory with an 
average of 0.96 which is very close to the results obtained using the HMM based approach 
discussed above at a much lower computational load. 

 

(a) (b) (c) 

(d) (e) (f) 
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(g) (h) (i) 
Fig. 12: (a) Mask from Inline 104, (b) Boundary detected using ACM and mask 

for Inline 105, (c), Final salt dome region for Inline 105.  (d)-(f) same as (a)-(c) for Inlines 
110 and 111. (g)-(i) same as (a)-(c) for Inlines 139 and 140. 

 
 

Table 3: The classification Accuracy and F-measure using the ACM based technique (A-
frames) 

Image Precision Recall F-measure Accuracy 

105 0.9940 0.9076 0.9488 0.9686 
111 0.9560 0.9772 0.9665 0.9800 
140 0.9810 0.9418 0.9610 0.9752 

 
The second issue that we had to consider in our experimental setup is the maximum 

number of A-frames between each pair of H-frames.  Recall the A-Frames are the frames 
(Inlines) which are analyzed using the ACM based approach for detecting the salt boundary.  
Starting with an HMM based boundary, we successively used the ACM based approach for 
the next frames.  We then computed the average accuracy over these frames.  The results are 
displayed in Table 4 when the first boundary is obtained using the HMM on Inline 104.   As 
expected, we note that the average accuracy at which the correct boundary is detected 
decreases with the number of A-frames analyzed using the ACM-based approach.  Our 
experiments that the maximum number of A-frames for each H-frame should not surpass 
around 10 images as a maximum limit to keep the level of accuracy of at least 95%. Starting 
with the HMM on Inline 104, for example, the maximum range for the Inlines analyzed using 
the ACM should be within [105-114].      

 
Table 4: The Sequence Tracking Accuracy and F-measure using the ACM 

Image Precision Recall F-measure Accuracy  

105 to 111 0.9533 0.9463 0.9498 0.9705 
105 to 125 0.9482 0.8676 0.9061 0.9418 
105 to 140 0.9299 0.8423 0.8839 0.9284 

         
Based on the above, we found that for every H-frame analyzed using the HMM, we can 

predict the salt boundaries for 9 A-frames using the ACM approach. Hence, overall, the 
HMM based technique is used in a ratio of 1 to 10 compared to the ACM based approach 
which is used 90% of the time.  It is important to note that the ACM approach used here 
converges very fast as the initial snake outlining the boundary is already placed in a region 
which is small compared to the total image region. As such, we limited the number of 
iterations of the ACM to only 10 iterations which were enough to achieve convergence of 
the snake. Finally, with the above setup, we estimated the execution time to find the boundary 
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using the HMM to be around 6 sec. on a mid-range laptop while the ACM approach was 
converging to the final boundary in around 2 sec.. We see clearly how the proposed approach 
leads to excellent results in terms of boundary detection and tracking accuracies at a reduced 
computational cost.  
 
4.  Conclusion 

 
 In this work, we introduced a novel approach for salt dome detection and tracking from 

migrated seismic data using a combination of the Hidden Markov Model (HMM) with the 
Active Contour Model (ACM). To drive the HMM, we introduced a new set of seismic 
attributes estimated from the HOSVD projections along the Inlines, Crosslines, and Time 
directions. Instead of considering multiple HMM models covering different classes, we only 
used one HMM model in which the hidden states take two possibilities (salt boundary and 
non-salt boundary). Furthermore, in order to alleviate the computational burden of the HHM, 
we introduced a video processing -like approach in which each Inline image analyzed using 
the HMM is followed by a set of Inlines analyzed using the ACM approach with the initial 
snake taken from the HMM based Inline in order to expedite the convergence of the ACM. 
Our experimental results showed that the proposed workflow provides an excellent accuracy 
of more than 96%, in terms of detecting and tracking salt domes boundaries from seismic 
volumes, outperforming existing approaches based on edge and/texture attributes.  
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