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Abstract: - Accurate and efficient bone fracture diagnosis is essential for timely medical intervention, yet conventional manual 

interpretation of medical images is time-consuming, prone to variability, and dependent on radiologist expertise. To address these 

challenges, this paper proposes a Graph-Augmented Multi-Modal Deep Learning Framework for Fracture Detection, leveraging the 

strengths of convolutional and graph-based learning techniques to enhance fracture identification and classification. The proposed 

model integrates multi-modal medical imaging data (X-rays, CT scans), improving its adaptability across different imaging techniques. 

Convolutional Neural Networks (CNNs) are employed for feature extraction, while Graph Neural Networks (GNNs) model spatial 

and structural relationships within bone fractures, enabling precise localization and classification, particularly in cases of overlapping, 

comminuted, and subtle fractures. Additionally, explainable AI (XAI) techniques, such as Grad-CAM and saliency maps, are 

incorporated to enhance interpretability, providing radiologists with a transparent understanding of AI-driven diagnoses. To streamline 

clinical workflows, the system generates structured diagnostic reports, detailing fracture type, severity, and localization, ensuring 

consistency and reducing reporting time. The proposed framework is rigorously evaluated on multi-modal and real-world datasets, 

demonstrating its effectiveness in improving diagnostic accuracy, reducing human error, and enhancing clinical decision-making. By 

bridging the gap between AI-driven automation and radiological expertise, this research contributes to the advancement of intelligent 

medical imaging systems, making fracture diagnosis more efficient, accurate, and accessible in diverse healthcare settings. 

Keywords: Bone Fracture Report, Graph Neural Networks, Medical Image Analysis, Report Generation, AI-Assisted 

Diagnosis. 

 

 

I.  INTRODUCTION 

Fracture diagnosis is a crucial aspect of medical imaging, traditionally performed by radiologists who analyze 

X-rays, CT scans, and MRI images to generate reports. However, manual reporting is often time-consuming and 

prone to human errors, leading to inconsistencies in diagnosis. Radiologists handle large volumes of cases, 

increasing the risk of oversight and delays in patient care. Additionally, rural and underdeveloped areas may lack 

access to experienced radiologists, making timely and accurate fracture diagnosis a challenge. Automated fracture 

report generation is powered by artificial intelligence (AI) and machine learning (ML) that offers a solution to these 

challenges. AI-driven systems can rapidly analyze medical images and detect fractures with high precision and 

generate structured reports within seconds. These technologies not only improve diagnostic accuracy but also 

ensure consistency across different medical institutions. AI models must be continuously trained on diverse datasets 

to ensure unbiased and reliable results. Moreover, maintaining a balance between automation and human oversight 

is essential to avoid misdiagnoses and ensure ethical use of AI in healthcare. With ongoing advancements, 

automated fracture report generation has the potential to revolutionize radiology, making diagnostic processes 

faster, more accurate, and accessible to a broader population. 

Bone fractures are commonly diagnosed using imaging techniques such as X-rays, CT scans, and MRIs. While 

these methods are widely used and effective, they present several limitations that can impact the accuracy and 

efficiency of fracture detection and treatment. One of the primary challenges is the dependency on human 

interpretation, which can lead to variability in diagnoses. Radiologists and medical professionals must manually 

analyze images, and factors such as fatigue, experience level, and workload can result in missed or incorrect 

diagnoses. Additionally, subtle fractures such as hairline cracks or stress fractures may not always be clearly visible 

in standard X-rays, requiring additional imaging or follow-up scans to confirm the diagnosis. This not only delays 

treatment but also increases healthcare costs and patient discomfort. Furthermore, accessibility to advanced 

imaging technology is limited in many rural and underdeveloped regions, where medical facilities may lack the 

necessary equipment or trained professionals to provide timely and accurate diagnoses. As a result, patients in these 

areas may experience delays in receiving appropriate medical care, leading to complications or prolonged recovery 

times. Moreover, radiation exposure from repeated X-rays and CT scans raises concerns about patient safety, 
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particularly for individuals who require frequent imaging, such as athletes or patients with osteoporosis. 

Additionally, manual reporting processes can slow down diagnosis and treatment planning, especially in high-

volume healthcare settings where radiologists must analyze large numbers of cases daily. The subjectivity of human 

interpretation also contributes to inconsistency in diagnoses and treatment recommendations, leading to potential 

discrepancies in patient care. To overcome these limitations, advancements in medical imaging technology, 

including artificial intelligence and deep learning-based fracture detection systems, are being explored. These 

innovations have the potential to enhance accuracy, speed up diagnosis, and improve access to high-quality medical 

care, particularly in resource-limited settings. However, integrating AI-driven diagnostic tools into healthcare 

systems requires overcoming challenges related to data availability, regulatory approvals, and professional 

acceptance. Despite these hurdles, the evolution of imaging technologies and AI-assisted diagnostics offers 

promising solutions to improve bone fracture diagnosis and patient outcomes in the future. 

Artificial Intelligence (AI) is revolutionizing radiology by improving the accuracy, speed, and efficiency of 

medical image analysis. AI-powered algorithms, particularly deep learning and computer vision techniques, can 

analyze vast amounts of imaging data within seconds, identifying fractures, tumors, and other abnormalities with 

high precision. These systems assist radiologists in making faster and more accurate diagnoses, reducing the risk 

of misinterpretation and enhancing overall patient care. One of the significant advantages of AI in radiology is its 

ability to automate repetitive tasks, allowing radiologists to focus on complex cases that require human expertise. 

AI-driven tools can prioritize critical cases, flagging potential abnormalities for immediate attention, which is 

especially crucial in emergency scenarios. Additionally, AI can detect subtle patterns in medical images that might 

be overlooked by the human eye, leading to earlier and more accurate disease detection. By integrating AI with 

Picture Archiving and Communication Systems (PACS) and Electronic Health Records (EHR), hospitals and 

diagnostic centers can streamline workflows, reduce reporting time, and improve efficiency in patient management. 

Beyond diagnosis, AI plays a crucial role in treatment planning and predictive analytics. Machine learning models 

can assess disease progression, predict patient outcomes, and assist doctors in choosing the most effective treatment 

strategies. AI can also help in medical research by analyzing vast datasets to uncover new insights into diseases 

and their patterns. Moreover, AI should complement radiologists rather than replace them, ensuring that final 

decisions are made with human oversight.  

Deep learning has made significant strides in revolutionizing bone fracture detection and diagnosis, offering 

new opportunities for improving accuracy and efficiency in medical imaging. Traditionally, diagnosing bone 

fractures relied on the expertise of radiologists who analyzed X-rays, CT scans, and MRIs. However, deep learning 

techniques, particularly Convolutional Neural Networks (CNNs), have shown remarkable capabilities in 

automating and enhancing this process. CNNs can analyze medical images and automatically detect fractures, even 

subtle ones, that may be difficult for human radiologists to identify, especially in complex anatomical regions. 

These models learn to recognize patterns such as bone discontinuities, misalignments, and other indicators of 

fractures by processing large datasets of annotated medical images. One of the key advantages of deep learning in 

bone fracture analysis is its ability to handle large volumes of medical images efficiently. Additionally, deep 

learning algorithms are capable of segmenting images to isolate the fracture from the surrounding tissues, providing 

precise localization of the injury. This is particularly beneficial for treatment planning, as it allows healthcare 

providers to focus on the affected area and monitor the healing process over time. Despite many advantages, 

challenges remain in the application of deep learning to bone fracture detection. One of the main issues is the 

availability of large, diverse, and well-annotated datasets for training these models. Bone fractures can vary widely 

in appearance, and obtaining comprehensive datasets that represent the full range of fracture types is essential for 

developing robust AI models. Nevertheless, as technology continues to advance and more data becomes available, 

the integration of deep learning into clinical practices for bone fracture diagnosis holds tremendous promise, 

enhancing the capabilities of healthcare providers and ultimately improving patient care. 

Parvin, S., et. al., 2024 proposed a deep-learning model called YOLO v8 for real-time human bone fracture 

detection and classification. They utilized a multi-modal human bone fractures image dataset consisting of 641 

images across ten fracture classes. To address overfitting due to the small dataset, various data augmentation 

techniques were applied. This model’s effectiveness was tested through three experiments to evaluate its ability to 

categories both healthy and broken bones from multi-modal images. Windarto, A.P., et. al., 2024 proposed a CNN 

architecture designed for highly accurate bone fracture classification. This study tackled the shortcomings of 

traditional methods by leveraging CNNs' ability to automatically extract hierarchical features from medical images. 

By leveraging a dataset obtained from Kaggle's public medical image repository, the research aimed to enhance 

diagnostic accuracy in orthopedics. This model achieved an impressive accuracy of 0.9922, outperforming 
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ResNet50's accuracy of 0.9844. These findings suggest that CNN-based systems can significantly improve 

diagnostic precision, optimize treatment strategies, and enhance patient outcomes in medical practice. Mittal, K., 

et. al., 2024 introduced a sequential CNN model for bone fracture detection and classification. Using a dataset of 

4906 X-ray images divided into fractured and non-fractured classes, the study aimed to enhance fracture diagnosis 

accuracy. This model was trained on 4099 images, tested on 401 images, and validated using an additional 406 

images, achieving an impressive classification accuracy of 98%. The research highlights the potential of deep 

learning in medical imaging to deliver precise and efficient fracture diagnoses, contributing to significant 

advancements in healthcare outcomes. Alshahrani, A., et. al., 2024 proposed a deep learning-based bone fracture 

classification system using X-ray images. They compared the performance of YOLOv8 which is known for real-

time object detection and segmentation, along with VGG16 model. Using the FracAtlas dataset, which included 

4,083 X-ray images of fractured and non-fractured bones, the research applied hyperparameter tuning and data 

augmentation to enhance detection accuracy. This system demonstrated superior performance compared to existing 

methods, showcasing the potential of CNN architectures to improve medical diagnostics and assist surgeons with 

precise and efficient fracture detection and classification.  

M Fariz Fadillah, M., et. al., 2024 introduced a CNN model for bone fracture detection and classification in X-

ray images, that focused on reducing diagnostic errors and enhancing efficiency in the orthopedic field. This 

research supported the 3rd Sustainable Development Goal (SDG) of promoting good health and well-being by 

contributing to innovative and equitable healthcare solutions. These findings are expected to significantly enhance 

fracture diagnostics and pave the way for advanced diagnostic technologies. Chauhan, S., 2024 proposed a CNN-

based approach using the AlexNet model for bone fracture detection and classification from radiographic X-ray 

images. They utilized a dataset of 10,580 images covering various anatomical areas such as lower and upper limb, 

lumbar, hips, and knees, divided into training (9,246 images), validation (828 images), and test (506 images) 

subsets. This CNN-AlexNet model achieved 96% accuracy on the test set, demonstrating its effectiveness in 

distinguishing fractured and non-fractured bone X-rays. This research contributed to medical imaging 

advancements, aligns with sustainable development goals by promoting health and well-being, and supports 

innovation and infrastructure in healthcare diagnostics. Ali, S.N.E., et. al., 2024 proposed a machine learning model 

along with Resnet50 and Faster RCNN model for long bone fracture classification and detection. This study 

employed both binary and multi-class classification, alongside a detection model, to analyze X-ray images. Binary 

classification used Model A and Model B (for grayscale images), and a fine-tuned ResNet50 model (for RGB 

images), achieved accuracies of 90.2%, 90.85%, and 96.5%, respectively. Multi-class classification for fracture 

type identification using ResNet50 attained 87.7% accuracy, while the Faster RCNN model achieved 80% accuracy 

in fracture detection and localization. The dataset was annotated based on Müller AO classification, highlighted 

the effectiveness of these methods in enhancing fracture diagnosis accuracy. 

Zou, J., et. al., 2024 proposed an improved YOLO v7 model for whole-body bone fracture detection, focusing 

on four fracture morphologies namely, angle fractures, line fractures, messed-up angle fractures and normal 

fractures. This study compared one and two stage deep learning architectures, including YOLO variants (v4, v5, 

v7, v8), SSD, Faster-RCNN, and Mask-RCNN. The customized YOLO v7-ATT model, incorporating an Enhanced 

Intersection of Unions (EIoU) loss function and attention mechanisms. It achieved remarkable performance, 

reaching a mAP of 80.2% on general datasets and 86.2% on FracAtlas dataset outperforming other models. This 

system highlighted its clinical applicability and provides a foundation for optimizing deep learning models in 

medical imaging. Bittner-Frank, M., et. al., 2024 conducted a study to assess the accuracy of 3D bone fracture 

models derived from various CT imaging technologies and segmentation methods. This study focused on factors 

such as CT technology type (EID vs. PCD), four scanner type, two scan protocols, two orientations and two 

segmentation algorithms using twenty forearm specimens with simulated Colles' fractures. Results indicated that 

these factors significantly affected model accuracy, but the mean absolute deviation remained below 0.5 mm, 

meeting the requirements for pre-operative planning. This study highlighted the impact of segmentation errors and 

suggested manual corrections. These findings demonstrated that 3D bone models from routine clinical scanners 

are accurate enough for reliable pre-operative planning in orthopedic surgery. Murrad, B.G., et. al., 2024 proposed 

an AI driven framework for bone fracture detection in orthopedic therapy, utilizing the YOLOv8 model with a 

ResNet backbone. This combination enhances feature extraction and fracture classification accuracy within X-ray 

images. This model achieved a mean average precision of 0.9 and classification accuracy of 90.5%, significantly 

outperforming traditional methods. This framework provided healthcare professionals with an automated tool for 

improving diagnostic efficiency, accuracy and patient care in both routine and emergency care settings. 
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Ju, R.Y., et. al., 2023 applied the YOLO v8 algorithm for fracture detection in pediatric wrist trauma X-ray 

images. By utilizing data augmentation on the GRAZPEDWRI-DX public dataset, the study achieved state-of-the-

art performance with a mean average precision (mAP 50) of 0.638, surpassing both improved YOLOv7 (0.634) 

and original YOLOv8 (0.636). To assist pediatric surgeons in diagnosing fractures, they developed "Fracture 

Detection Using YOLOv8 App," aimed at reducing diagnostic errors and providing valuable information for 

surgical decision-making. This approach demonstrated the potential of deep learning models in enhancing fracture 

detection accuracy in medical imaging. Beyraghi, S., et. al., 2023 proposed a deep neural network approach for 

bone fracture diagnosis using microwave S-parameters profiles, eliminating the need for labelling and data 

collection issues associated with X-ray images. This model classified different fracture types such as normal, 

transverse, oblique and comminuted and estimates crack length. Designed for portable use in settings like 

ambulances and low-income areas, the system enables fast, non-invasive diagnosis without ionizing X-rays. 

Experimental results with sheep femur bones demonstrated accurate classification, showcasing the potential for 

safe, rapid fracture detection in emergency situations. Khan, A.A., et. al., 2024 reviewed best practice 

recommendations for diagnosing and evaluating osteoporotic or fragility fractures, which are indicative of 

compromised bone strength and carry significant morbidity and mortality. Despite the clinical challenges, such 

fractures often go undiagnosed as being associated with underlying metabolic bone disease. These consensus 

guidelines emphasized the need for further evaluation and treatment to reduce future fracture risks, even in patients 

with bone mineral density above −2.5. A dedicated vertebral imaging review is recommended for high-risk patients. 

This underscored the importance of using a classification system for consistent fracture identification and reporting. 

Singh, A., 2024 proposed BoneScanAI, a hybrid machine learning model combining CNNs and Random Forest 

classifiers to enhance the accuracy of bone fracture diagnosis from X-ray images. This model used multiple CNN 

layers for deep feature extraction and followed by Random Forest for classification of seven kinds of fractures. 

The dataset consisted of 2,738 X-ray images and it is labelled by radiologists. This model achieved an accuracy of 

86.99%, demonstrating its potential to assist doctors in precise fracture identification. They highlighted the 

effectiveness of CNN and Random Forest in medical image processing and suggests further refinement through 

expanded datasets and additional training for clinical application.  

Su, Z., et. al., 2024 proposed a multimodal diagnostic model, BoneCLIP-XGBoost, for bone fracture detection. 

It combines both Vision Transformer (ViT) and ClinicalBERT for feature extraction, the model integrated X-ray 

images and textual descriptions into a unified feature space. This integration enhanced the alignment of multimodal 

data, addressing challenges in existing methods. This model achieved an accuracy of 88.5%, precision of 87.3%, 

recall of 86.8%, and an F1 score of 87.0%. BoneCLIP-XGBoost offered a robust, accurate, and reliable solution 

for bone fracture diagnosis, outperforming traditional methods. Pérez-Cano, F.D., et. al., 2024 proposed a 

methodology for enhancing medical diagnosis and treatment planning by automating the acquisition and 

classification of bone fracture patterns. The system extracted detailed fracture features using CT scans and 

classified them with a convolutional neural network. This approach aimed to streamline the fracture classification 

process, facilitating improved diagnostic accuracy, supporting surgical treatment planning, and advancing medical 

training and simulation applications. They emphasized the importance of automating fracture analysis for more 

effective patient care and medical education. Yu, Q., et. al., 2025 proposed MTL-DlinkNet, a multi-task learning 

model based on D-linkNet for calcaneus fracture diagnosis from X-ray images. This model performed both 

classification for fracture identification and segmentation for generating regions of interest (RoI). Achieving a high 

accuracy (0.989 AUC). This model improved diagnostic efficiency and reduced the burden on doctors by 

simultaneously annotating the data. Experimental results showed that MTL-DlinkNet outperforms baseline models, 

demonstrating the effectiveness of multi-task learning in enhancing fracture diagnosis accuracy and efficiency in 

clinical settings. 

Potter, İ.Y., et. al., 2024 proposed an automated pipeline for vertebrae localization, segmentation, and 

osteoporotic vertebral compression fracture (VCF) detection using CT images. This approach utilized deep learning 

models and was evaluated on a publicly available dataset of 325 spine CT scans, with 126 scans graded for VCF. 

This system achieved 96% sensitivity and 81% specificity for vertebral-level VCF detection and high accuracy at 

the subject-level. This addition of predicted vertebrae segments significantly improved VCF detection 

performance, increasing sensitivity by 14% and specificity by 20%. This approach outperformed other VCF 

detection methods and is poised to enhance diagnostic accuracy for osteoporosis-related fractures. Dibo, R., et. al., 

2023 proposed DeepLOC, a deep learning-based approach for bone pathology localization and classification in 

wrist X-ray images. DeepLOC model integrated YOLO for real-time object detection and localization of bone 

pathologies, combined with the Shifted Window Transformer to extract contextual information for precise 
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classification. This approach addressed critical challenges in wrist X-ray analysis by accurately localizing 

abnormalities and classifying bone pathologies, providing enhanced support for radiologists in medical image 

analysis. Kumar, G., et. al., 2023 proposed an IoT-enabled intelligent imaging system for bone fracture detection. 

This system leveraged image processing techniques such as CLAHE, Gaussian blur, Canny edge detection and 

Hough Transform, combined with IoT infrastructure to automate fracture detection from X-ray images. This 

framework reduced human error and enhanced diagnostic efficiency by providing real-time data processing and 

feedback to patients. This system demonstrated high accuracy in detecting fractures, particularly in lower long 

bones, hand, and elbow bones, showing significant potential for improving diagnostic workflows and treatment 

outcomes. Zeng, B., et. al., 2023 proposed a two-stage method for the automatic identification and localization of 

complex pelvic fractures using a novel structure-focused contrastive learning approach. This method combined the 

symmetry properties of pelvic anatomy and leveraged a Siamese deep neural network with a structural attention 

mechanism to improve fracture zone detection. This proposed system achieved a mean accuracy of 0.92 and 

sensitivity of 0.93 on a dataset of 103 clinical CT scans from the CTPelvic1K dataset, outperforming three state-

of-the-art contrastive learning methods and five advanced classification networks. These results demonstrate the 

model’s effectiveness in handling the complexities of pelvic fractures. Linda, C.H., et. al., 2011 presented a novel 

image processing algorithm for the automated detection of bone fractures in X-ray images, addressing the critical 

need for accurate and timely diagnoses. This approach employed a multi-stage process which includes grid 

formation, local thresholding with interpolation, fuzzy index-based segmentation, background removal and 

morphological filtering to enhance the accuracy and reliability of fracture identification.  

Despite the growing adoption of AI in medical imaging, automated bone fracture detection still faces several 

challenges. Existing deep learning models, particularly CNN-based approaches, primarily focus on feature 

extraction from single-modality data, limiting their ability to generalize across different imaging techniques such 

as X-rays, CT scans, and MRIs. Moreover, CNNs often struggle with complex fracture cases involving overlapping 

bone structures, comminuted fractures, and subtle hairline fractures due to their inability to capture spatial and 

structural relationships within the bone. While Graph Neural Networks (GNNs) have shown promise in medical 

imaging tasks, their potential for bone fracture detection—particularly in modeling spatial dependencies between 

fracture fragments—remains underexplored. Additionally, most AI-driven diagnostic models function as black-

box systems, offering little interpretability for clinical use. The lack of explainable AI (XAI) mechanisms, such as 

saliency maps or attention-based visualizations, raises concerns regarding trust and adoption in real-world 

radiology workflows. Furthermore, many existing models are trained on limited datasets, restricting their 

generalizability across diverse patient populations and fracture types. 

Based on the foundations of our earlier work Linda, C.H., et. al., 2011 this research proposes a Graph-

Augmented Multi-Modal Deep Learning Framework for fracture detection, incorporating both convolutional and 

graph-based learning techniques to enhance fracture identification and classification. The key contributions of this 

work are: 

Multi-Modal Fracture Detection and Classification: The proposed framework integrates multi-modal medical 

imaging data (X-ray and CT) to improve the robustness and generalizability of fracture detection across different 

imaging techniques. 

Graph-Augmented Structural Feature Learning: By incorporating GNN-based spatial modelling, the framework 

captures intricate structural relationships within bone fractures, enabling better classification of complex, 

overlapping, and comminuted fractures that traditional CNNs struggle with. 

Improved Interpretability with Explainable AI (XAI) Techniques: The model integrates attention-based 

visualizations (Grad-CAM) to enhance interpretability, allowing radiologists to validate and trust AI-generated 

predictions. 

Automated and Standardized Fracture Report Generation: The system generates structured diagnostic reports, 

providing insights into fracture type, severity, and localization, which assist radiologists in decision-making and 

streamline clinical workflows. 

Comprehensive Performance Evaluation on Multi-Modal Datasets: The framework is rigorously evaluated 

using our own collected real-world datasets, ensuring its clinical viability and applicability in different healthcare 

settings. 

The paper is structured as follows. Section 1: Introduction provides an overview of existing AI-based fracture 

detection methods, highlighting their strengths, limitations, and advancements in deep learning for medical 

imaging. Section 2: Proposed Methodology details the hybrid CNN-GNN architecture, including data 

preprocessing, model design, and training procedures. Section 3: Experimental Setup and Dataset describes the 
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datasets used, evaluation metrics, and implementation details, outlining the model training and validation process. 

Section 4: Results and Discussion presents experimental findings, including comparative performance analysis and 

visualizations of model predictions. Finally, Section 5: Conclusion and Future Work summarizes key insights, 

discusses the potential impact of the proposed method, and outlines future research directions to enhance AI-driven 

radiology applications. 

II. METHODOLOGY 

The proposed Graph-Augmented Multi-Modal Deep Learning Framework is designed to leverage both 

convolutional neural networks for feature extraction and graph neural networks for spatial and structural 

relationship modelling to enhance the detection, classification, and reporting of bone fractures. The framework 

efficiently processes multi-modal medical imaging data (X-ray, CT scans and ground truth binary masks) and 

integrates radiology reports for automated diagnostic assistance. Figure 1 depicts the entire working architecture 

of the graph augmented multi-modal deep learning framework. 

A. Data Preprocessing and Augmentation 

To ensure consistency across different imaging modalities, a comprehensive preprocessing pipeline is 

implemented which includes normalization, denoising, data augmentation, and feature alignment. Normalization 

is a technique that standardizes pixel intensity values to a fixed range, preventing disparities between images from 

affecting model performance. In this paper, min-max normalization is applied to scale pixel values between 0 and 

1 to ensure uniform intensity distribution across the dataset. Denoising is performed using Gaussian filtering, which 

helps to reduce random noise while preserving important structural details in medical images. A Gaussian filter 

with a kernel size of 3×3 and a standard deviation (σ) of 1.0 is applied to smooth the image by averaging pixel 

intensities within a local neighborhood, thereby improving the clarity of anatomical structures. 

Data augmentation techniques are employed to enhance model generalization by introducing variations in the 

dataset. The following transformations are applied: 

• Rotation: Random rotation within the range of ±15 degrees to simulate variations in orientation. 

• Scaling: Random scaling within the range of 90% to 110% to account for slight changes in size. 

• Affine Transformations: Shearing within the range of ±10 degrees to introduce realistic geometric 

distortions. 

Feature alignment is another critical preprocessing step, particularly for multimodal imaging studies. To ensure 

accurate pixel-wise correspondence between X-ray and CT scans, intensity-based image registration techniques 

are applied using mutual information optimization. These methods adjust spatial alignment by optimizing 

transformation parameters to match structures across modalities, thereby improving the integration of 

complementary imaging data. By incorporating these preprocessing steps with precisely tuned parameters, the 

quality and consistency of input images are enhanced, leading to improved performance in subsequent 

classification or analysis tasks. 

B. Multi-Modal Data Integration 

The Multi-Modal Feature Extraction module is designed to process X-ray images, CT scan slices, and binary 

masks, ensuring that both 2D spatial features and 3D volumetric structures are effectively captured. The module 

begins by applying separate convolutional pipelines for X-ray and CT images. The X-ray input passes through a 

2D CNN pipeline, where two consecutive Conv2D layers (with 3×3 filters) extract edge and texture features, 

followed by a max pooling layer to reduce spatial dimensions while retaining essential fracture information. 

Meanwhile, the CT scan input, which consists of multiple slices, is processed using a 3D CNN pipeline that applies 

3D convolution operations with 3×3×3 filters, allowing the model to capture the depth and structural integrity of 

bones. After individual feature extraction, the outputs from both X-ray and CT pathways are fused using an 

attention-based mechanism, ensuring that the most informative features from each modality contribute to the final 

representation. Additionally, a binary mask input, indicating the exact fracture region, is incorporated by 

performing element-wise addition with the fused feature maps, refining the model’s focus on clinically relevant 

areas. This multi-scale feature fusion ensures that both local (X-ray-based) and structural (CT-based) patterns are 

efficiently captured, providing a rich, modality-aware representation for the subsequent graph-based structural 

learning and classification tasks. 



J. Electrical Systems 21-1 (2025): 954-973 

 

960 

 
Fig. 1: Architecture Diagram for Graph Augmented Multi-modal Deep Learning Framework 

C. CNN Architecture for Feature Extraction 

The Multi-Modal Feature Extraction module processes X-ray images, CT scan slices, and binary masks to 
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networks, respectively. Table 1 shows the network structure of the multi-modal feature extraction module. 
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The X-ray image 𝐼𝑥  is passed through two Conv2D layers, which extract edge and texture features. The 

transformation follows: 

𝐹𝑥 = 𝜎ሺ𝑊𝑥 ∗ 𝐼𝑥 + 𝑏𝑥ሻ, 𝑊𝑥 ∈  ℝ3×3×1×32, 𝑏𝑥 ∈ ℝ32    (1) 

The input size is  𝐻 × 𝑊 × 1 (single-channel grayscale X-ray). The output size after Conv1_X is 𝐻 × 𝑊 × 32. 

The second convolution layer applies another 3×3 kernel: 

𝐹𝑥
′ = 𝜎ሺ𝑊𝑥

′ ∗ 𝐹𝑥 + 𝑏𝑥
′ ሻ, 𝑊𝑥

′ ∈  ℝ3×3×32×64, 𝑏𝑥
′ ∈ ℝ64    (2) 

The output size after Conv2_X is 𝐻 × 𝑊 × 64. A max pooling layer (2×2) is applied to downsample the feature 

map: 

𝐹𝑥
′′ =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙ሺ𝐹𝑥

′ሻ,  Output Size: 
𝐻

2
×

𝑊

2
× 64    (3) 

Step 2: Feature Extraction from CT Scan Slices 

The CT scan input 𝐼𝑐, consisting of multiple slices, is processed using a 3D CNN pipeline to capture depth 

information: 

𝐹𝑐 = 𝜎ሺ𝑊𝑐 ∗ 𝐼𝑐 + 𝑏𝑐ሻ, 𝑊𝑐 ∈  ℝ3×3×3×1×32, 𝑏𝑐 ∈ ℝ32    (4) 

The input size is 𝐻 × 𝑊 × 𝑆 × 1  (multi-slice CT scan). The output size after Conv1_C is 𝐻 × 𝑊 × 𝑆 × 32. 

The second 3D convolution layer applies another 3×3×3 kernel: 

𝐹𝑐
′ = 𝜎ሺ𝑊𝑐

′ ∗ 𝐹𝑐 + 𝑏𝑐
′ ሻ, 𝑊𝑐

′ ∈  ℝ3×3×3×32×64, 𝑏𝑐
′ ∈ ℝ64    (5) 

The output size after Conv2_C is 𝐻 × 𝑊 × 𝑆 × 64 . A 3D max pooling layer (2×2×2) reduces spatial 

dimensions: 

𝐹𝑐
′′ =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙ሺ𝐹𝑐

′ሻ, Output Size:
𝐻

2
×

𝑊

2
×

𝑆

2
× 64    (6) 

Step 3: Multi-Scale Feature Fusion using Attention Mechanism 

To combine the extracted features from both X-ray and CT modalities, we employ attention-based feature 

fusion: 

𝐹𝑓 = 𝛼𝐹𝑥
′′ + ሺ1 − 𝛼ሻ𝐹𝑐

′′       (7) 

where the attention weight 𝛼 is computed as: 

𝛼 =
exp ሺ𝑊𝑓𝐹𝑥

′′ሻ

exp(𝑊𝑓𝐹𝑥
′′)+exp ሺ𝑊𝑓𝐹𝑐

′′ሻ
       (8) 

Where, 𝑊𝑓 is the trainable weight matrix. The output size after fusion is 
𝐻

2
×

𝑊

2
× 64. 

Step 4: Fracture Mask Integration 

To enhance localization, the binary mask 𝑀 (which highlights fracture regions) is integrated into the feature 

map: 

𝐹𝑚 = 𝑊𝑚𝑀 + 𝐹𝑓 , 𝑊𝑚 ∈ ℝ1       (9) 

 

Table 1: Network structure of multi-modal feature extraction module 

Layer Type Input Shape Output Shape Parameters Activation 

Input X-ray Input Layer (H,W,1) (H,W,1) - - 

Conv1_X Conv2D (3x3) (H,W,1) (H,W,32) 3×3×1×32 ReLU 

Conv2_X Conv2D (3x3) (H,W,32) (H,W,64) 3×3×32×64 ReLU 

MaxPool_X MaxPool (2x2) (H,W,64) (H/2,W/2,64) - - 

Input CT Input Layer (H,W,S) (H,W,S) - - 

Conv1_C Conv3D (3x3x3) (H,W,S,1) (H,W,S,32) 3×3×3×1×32 ReLU 

Conv2_C Conv3D (3x3x3) (H,W,S,32) (H,W,S,64) 3×3×3×32×64 ReLU 

MaxPool_C MaxPool3D 

(2x2x2) 

(H,W,S,64) (H/2,W/2,S/2,64) - - 

Feature Fusion Attention 

Weighted Sum 

(H/2,W/2,64) (H/2,W/2,64) - Softmax 

Feature Masking Element-wise 

Addition 

(H/2,W/2,64) (H/2,W/2,64) - - 

 

The input size is  
𝐻

2
×

𝑊

2
× 1. The output size after mask integration remains  

𝐻

2
×

𝑊

2
× 64. This forces the model 

to focus on relevant fracture areas, improving localization precision. The final feature map 𝐹𝑚 containing both 

multi-modal fusion and mask integration, is converted into a graph representation for the Graph Neural Network 

module. Each spatial region in 𝐹𝑚 becomes a node 𝑣𝑖 in the graph: 
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𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁}, 𝑤ℎ𝑒𝑟𝑒 𝑁 =
𝐻

2
×

𝑊

2
     (10) 

The graph edges 𝐸 are constructed based on bone continuity and region similarity, enabling structural fracture 

analysis. 2D CNN extracts spatial features from X-rays. 3D CNN captures depth and structural integrity from CT 

scans. Attention-based feature fusion dynamically balances multi-modal inputs. Binary mask integration enhances 

localization precision. Output is transformed into a graph for GNN-based fracture classification. This optimized 

multi-modal feature extraction forms the foundation for fracture detection, localization, and explainable AI-based 

diagnostics. 

 

D. Graph Neural Network for Structural Learning 

The Graph Neural Network module is designed to model spatial and structural relationships between different 

fracture regions, enhancing the classification and localization of complex fractures. Unlike CNNs, which primarily 

focus on local feature extraction, GNNs enable global feature propagation by treating the extracted features as 

nodes in a graph and defining edges based on bone continuity and anatomical structure. Table 2 shows the network 

structure of the graph neural network. 

Given a feature map Fm ∈ RH/2 X W/2X64 extracted from the multi-modal CNN module, we construct a graph 

𝐺 = ሺ𝑉, 𝐸ሻ where: 𝑉 = {𝑣1 ,𝑣2, . . . , 𝑣𝑁} represents the nodes corresponding to different fracture regions in the 

feature map. 𝐸 ⊆ 𝑉 × 𝑉  represents edges that define the spatial relationships between nodes. Each node 𝑣𝑖  is 

initialized with a feature vector ℎ𝑖 extracted from the CNN module: 

ℎ𝑖
ሺ0ሻ

= 𝐹𝑚ሺ𝑖ሻ, ℎ𝑖
ሺ0ሻ

∈ 𝑅𝑑       (11)  

where 𝑑  is the feature dimension (e.g., 64 from CNN output). Edges are constructed based on geometric 

proximity and bone connectivity priors. The weighted adjacency matrix 𝐴 is defined as: 

𝐴𝑖𝑗 = {
𝑒𝑥𝑝ሺ−𝛽||ℎ𝑖 − ℎ𝑗||2ሻ,     𝑖𝑓||ℎ𝑖 − ℎ𝑗  < 𝑑𝑡

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
    (12) 

Where, 𝛽 is a scaling factor controlling the influence of distant nodes. 𝑑𝑡 is a threshold distance, ensuring only 

meaningful connections. The adjacency matrix is normalized to prevent gradient explosion: 

𝐴̂ = 𝐷−1/2 𝐴𝐷−1/2       (13) 

where 𝐷 is the degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗 𝑗 . To refine node features, we apply a Graph Convolutional 

Network, updating each node’s representation using information from its neighbors. The GCN updates each node’s 

feature representation as follows: 

ℎ𝑖
ሺ𝑙+1ሻ

= 𝜎 (∑ 𝑗𝜖𝑁ሺ𝑖ሻ
𝐴

∑ 𝑘𝐴

𝑖𝑗
𝑖𝑘

𝑊𝑔ℎ𝑗
ሺ𝑙ሻ

)      (14) 

Where, N(i) is the set of neighboring nodes of 𝑣𝑖, Wg is a trainable weight matrix and 𝜎ሺ. ሻ is a non-linear 

activation function. The output of this layer aggregates information from neighboring nodes, improving fracture 

classification and localization. A stack of GCN layers allows the model to capture high-order relationships: 

𝐻ሺ𝑙+1ሻ = 𝜎(𝐴𝐻ሺ𝑙ሻ𝑊𝑔
𝑙)       (15) 

Where, 𝐻ሺ𝑙ሻ is the node feature matrix at layer l. 𝑊𝑔
ሺ𝑙ሻ

 is the trainable weight matrix for layer l. After L layers, 

the output is a refined feature representation: 

𝐻ሺ𝐿ሻ  = {ℎ1
ሺ𝐿ሻ

, ℎ2
ሺ𝐿ሻ

, . . . , ℎ𝑁
ሺ𝐿ሻ

}      (16) 

which is passed to the classification and localization module. Instead of treating all neighbors equally, Graph 

Attention Networks (GAT) assign learnable attention weights: 

ℎ𝑖
ሺ𝑙+1ሻ

= 𝜎(∑ 𝛼𝑖𝑗𝑊𝑔𝑗𝜖𝑁ሺ𝑖ሻ ℎ𝑗
ሺ𝑙ሻ

)      (17) 

where the attention coefficient 𝛼𝑖𝑗 is computed as: 

𝛼𝑖𝑗 =
𝑒𝑥𝑝ሺ𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈ሺ𝑊𝑎[ℎ𝑖][ℎ𝑗]ሻሻ

∑ 𝑒𝑥𝑝ሺ𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈ሺ𝑊𝑎[ℎ𝑖][ℎ𝑗]ሻሻ𝑘𝜖𝑁ሺ𝑖ሻ
     (18) 

Where, 𝑊𝑎 is a learnable attention weight matrix. || represents concatenation of node features. A softmax 

function normalizes the attention scores. This mechanism allows the model to focus on important fracture regions, 

improving classification performance. The final GNN output is used for fracture classification and localization. 

Therefore, graph construction converts CNN feature map into a graph structure. Graph convolution network 

aggregates node features from neighboring regions. graph attention assigns importance to fracture regions for better 

prediction. This uses a softmax classifier to predict fracture type and predicts bounding boxes for fractures. This 
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GNN module significantly enhances fracture analysis by modelling structural dependencies, making it robust for 

complex and overlapping fractures. 

Table 2: Network structure of GNN 

Layer Type Input Shape Output Shape Parameters Activation 

Graph Input Node Embedding (N,d) (N,d) - - 

GCN1 Graph Conv (N,d) (N,128) d×128d ReLU 

GCN2 Graph Conv (N,128) (N,256) 128×256 ReLU 

Graph Attention GAT (N,256) (N,256) 256×256 Softmax 

 

E. Explainable AI (XAI) Integration 

In our Multi-Modal CNN Feature Extraction Module, we extract feature maps from X-ray images using 

separate convolutional pipelines,  𝐹𝑥
′′ ∈ ℝ𝐻/2×𝑊/2 , where, 𝐻/2, 𝑊/2 are the downsampled spatial dimensions 

after convolution and pooling. These feature maps encode spatial and depth-related fracture patterns, which Grad-

CAM utilizes to identify critical fracture regions. We compute Grad-CAM using the last convolutional layer output 

𝐹𝑥
′′. The importance score 𝛼𝑥 for each feature map 𝐹𝑘 is calculated as 

𝛼𝑥 = 1/𝑍 ∑
𝜕𝑚

𝜕𝐹𝑘
𝑖,𝑗         (19) 

Where, 𝑚 is the fracture mask, 
𝜕𝑚

𝜕𝐹𝑥
′′ is the gradient of fracture mask w.r.t. feature map 𝐹𝑘 at location (i,j), 𝐹𝑘 =

∪ ሺ𝐹𝑥
′′ሻ ∈ ℝ𝐻×𝑊, here ∪ is bilinear interpolation. 𝑍 = 𝐻 × 𝑊 is a normalization factor. The X-ray Grad-CAM 

heatmap (𝐿𝑥) is then computed as 

𝐿𝑥 = 𝑅𝑒𝑙𝑢ሺ∑ 𝛼𝑥𝐹𝑥
′′

𝑥 ሻ       (20) 

The ReLU function ensures that only positive activations contribute to the heatmap. Table 3 shows the network 

structure of the Explainable AI integration. 

 

Table 3: Network structure of Explainable AI 

Layer Type Input Shape Output Shape Parameters Activation 

Grad-CAM Weighted Sum (H,W,64) (H,W) - ReLU 

 

F. Fracture Localization, Classification and Report Generation 

The Fracture Classification, Localization, and Report Generation modules form the final stages of the Graph-

Augmented Multi-Modal CNN Framework. These modules leverage CNN-extracted features, GNN-enhanced 

structural representations, and transformer-based language models to accurately predict fracture type, localize the 

affected region, and generate a structured radiology report. Table 4 shows the network structure of the fracture 

classification and localization module, where Table 5 shows the structure of report generation module. 

 

1) Fracture Classification Module 

The classification module predicts the type of fracture (e.g., Simple, Comminuted, Transverse, Oblique, Spiral, 

Greenstick, Impacted, Segmental). This is achieved using a fully connected neural network (FCN) classifier on the 

final GNN output 𝐻ሺ𝐿ሻ. The final node representations 𝐻ሺ𝐿ሻ obtained from the GNN module are aggregated into a 

global feature vector ℎ𝑔𝑙𝑜𝑏𝑎𝑙  by applying mean-pooling or attention-based aggregation: 

ℎ𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁
 ∑ ℎ𝑖

ሺ𝐿ሻ𝑁
𝑖=1        (21) 

Where, 𝑁 is the number of nodes in the graph (representing different fracture regions). ℎ𝑖
ሺ𝐿ሻ

 is the final-layer 

representation of node 𝑖. Alternatively, attention-weighted aggregation can be used. 

ℎ𝑔𝑙𝑜𝑏𝑎𝑙 = ∑ 𝛼𝑖ℎ𝑖
ሺ𝐿ሻ𝑁

𝑖=1 , 𝑤ℎ𝑒𝑟𝑒, 𝛼𝑖 =
𝑒𝑥𝑝ሺ𝑊𝑎 ℎ𝑖

ሺ𝐿ሻ
ሻ

∑ 𝑒𝑥𝑝𝑁
𝑗=1 ሺ𝑊𝑎ℎ

𝑗
ሺ𝐿ሻ

ሻ
    (22) 

where 𝑊𝑎 is a trainable weight matrix. The aggregated feature vector (𝐻ሺ𝐿ሻ) is passed through a fully connected 

neural network (FCN) for classification: 

y = softmaxሺWclfhglobal + 𝑏𝑐𝑙𝑓ሻ      (23) 

where, 𝑊𝑐𝑙𝑓  is the classification weight matrix and 𝑏𝑐𝑙𝑓  is the bias term. Softmax activation ensures a 

probability distribution over all fracture classes. The classification loss is computed using cross-entropy loss: 

𝐿𝐶𝐸  = − ∑ 𝑦𝑐𝑙𝑜𝑔ሺ𝑦𝑐̂ሻ𝐶
𝑐=1        (24) 
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Where, C is the total number of fracture classes, 𝑦𝑐  is the true class label (one-hot encoded) and 𝑦̂𝑐  is the 

predicted probability for class c. 

 

2) Fracture Localization Module 

The localization module predicts the bounding box ሺ𝑥, 𝑦, 𝑤, ℎሻ  around the fracture site, ensuring precise 

detection in X-ray and CT scans. The bounding box prediction is formulated as a regression problem, where the 

model learns to predict: 

ሺ𝑥, 𝑦ሻ → Fracture center coordinates, ሺ𝑤, ℎሻ → Bounding box width and height 

Given the final GNN-enhanced feature representation 𝐻ሺ𝐿ሻ, the bounding box is predicted as follows: 

𝑏̂ = 𝑊𝑏𝑏𝑜𝑥𝐻ሺ𝐿ሻ + 𝑏𝑏𝑏𝑜𝑥       (25) 

Where, 𝑊𝑏𝑏𝑜𝑥  ∈ 𝑅256𝑋4  is the bounding box regression weight matrix, 𝑏𝑏𝑏𝑜𝑥  ∈  𝑅4  is the bias term. The 

output  𝑏̂  ∈ 𝑅4 represents predicted bounding box coordinates. To optimize bounding box predictions, we use 

Intersection-over-Union (IoU) loss, which measures the overlap between the predicted bounding box 𝐵 ෡ and the 

ground-truth bounding box 𝐵𝑔: 

𝐿𝐼𝑜𝑈 = 1 −
|𝐵𝑝∩𝐵𝑔|

|𝐵𝑝∪𝐵𝑔|
        (26) 

 Where, 𝐵𝑝 is the predicted bounding box, 𝐵𝑔 is the ground-truth bounding box. To enhance stability, we use 

smooth 𝐿1 loss: 

𝐿𝑏𝑏𝑜𝑥 = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1ሺ𝑏𝑖 − 𝑏𝑖ሻ𝑖∈{𝑥,𝑦,𝑤,ℎ} , where, SmoothL1(x)={
0.5𝑥2,      𝑖𝑓|𝑥| < 1

|𝑥| − 0.5,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

Table 4: Network structure of Fracture Classification and Localization module 

Layer Type Input Shape Output Shape Parameters Activation 

Flatten Fully Connected (N,256) (N,512) 256×512 ReLU 

Classifier Fully Connected (N,512) (N,C) 512×C Softmax 

Bounding Box Fully Connected (N,512) (N,4) 512×4 Linear 

 

3) Automated Report Generation Module 

The report generation module converts CNN-GNN extracted features into a structured radiology report using a 

transformer-based language model. The final GNN representation 𝐻ሺ𝐿ሻ is transformed into a sequence embedding 

E: 

𝐸 = 𝑊𝑒𝑛𝑐𝐻ሺ𝐿ሻ + 𝑏𝑒𝑛𝑐        (27) 

Where, 𝑊𝑒𝑛𝑐 and 𝑏𝑒𝑛𝑐  are trainable weights. The output E ∈ RTXd  serves as input to the NLP model. The 

encoded features are passed through a Transformer-based text generator: 

𝑅 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟ሺ𝐸𝑛𝑐𝑜𝑑𝑒𝑟ሺ𝐸ሻሻ      (28) 

Where, 𝑅 is the generated radiology report. The language model is trained using sequence-to-sequence cross-

entropy loss: 

𝐿𝑁𝐿𝑃 = − ∑ 𝑝ሺ𝑟𝑡|𝑟<𝑡,𝐸ሻ𝑙𝑜𝑔ሺ𝑟̂𝑡ሻ𝑀
𝑡=1       (29) 

Where, 𝑀 is the length of the generated report. pሺrt|r<t, Eሻ is the probability of word 𝑟𝑡  given previous words. 

The combined loss function includes classification loss, localization loss, and report generation loss: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐸 + 𝜆1𝐿𝑏𝑏𝑜𝑥 + 𝜆2𝐿𝑁𝐿𝑃      (30) 

Where, 𝜆1 𝑎𝑛𝑑 𝜆2  are weighting factors. Therefore, the fracture classification module uses fully connected 

layers and softmax for multi-class prediction. Fracture localization module uses bounding box regression with IoU 

loss for precise fracture detection. Finally, the report generation module uses Transformer-based NLP model to 

create structured radiology reports. Loss function, optimizes classification, localization, and report quality 

simultaneously. The complete parameters count of graph-augmented multi-modal deep learning framework is 

tabulated in Table 6. 

Table 5: Network structure of Report Generation module 

Layer Type Input Shape Output Shape Parameters Activation 

Encoder Transformer Encoder (T,d) (T,512) d×512 ReLU 

Decoder Transformer Decoder (T,512) (T,V) 512×V Softmax 
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Table 6: Total parameters of graph-augmented multi-modal deep learning framework 

Component Estimated Parameters 

CNN Feature Extraction 82,000 

GNN Structural Learning 100,000 

Explainability (XAI) 1,000 

Classification and Localization 150,000 

NLP Report Generation 1,000,000 

Total Parameters 1.33 Million 

 

III. EXPERIMENTAL SETUP AND DATASET 

A. Dataset Description 

This study utilizes a comprehensive multi-modal dataset comprising medical imaging data from 1,250 bone 

fracture patients across various fracture types. Each patient’s dataset includes X-ray images, CT scan slices, binary 

mask images specifying the fracture region and corresponding radiologist reports. The dataset covers a wide range 

of bone fracture types, including simple, comminuted, transverse, oblique, spiral, greenstick, impacted, and 

segmental fractures, ensuring diverse representation for robust AI-based detection and classification. The binary 

mask images provide precise ground-truth annotations for accurate localization and segmentation, while the 

radiologist reports contain expert observations on fracture classification, severity, affected bone regions and 

treatment recommendations, serving as valuable references for model training and evaluation. This dataset is the 

result of our intensive effort in data collection, which involved collaboration with private hospitals and diagnostic 

centers across Tirunelveli, Thoothukudi, and Nagercoil districts of Tamil Nadu, India. The data acquisition process 

spanned over 18 months (June 2022 – December 2023) and required meticulous coordination with medical 

professionals, ethical committees and imaging departments to ensure high-quality and diverse data representation. 

Every image and report were obtained following strict ethical guidelines and patient confidentiality protocols, 

reinforcing the integrity of our research.  

To enhance the dataset's diversity and improve model generalization, we applied data augmentation techniques. 

Table 7 presents the data distribution before and after augmentation. The original dataset contained 1,250 samples, 

distributed across different fracture types. Augmentation was performed at varying fold levels based on the fracture 

type, leading to a total of 4,561 augmented samples. After selecting 490 samples per fracture type for the 

experiment, the final dataset used for model training and evaluation consisted of 4,410 images. This augmentation 

ensured a balanced representation of fracture types, enabling the proposed Graph-Augmented Multi-Modal CNN 

Framework to learn both spatial and structural relationships in fractures more effectively. By incorporating various 

fracture types, anatomical locations and patient demographics, this dataset enhances the generalizability of the 

proposed Graph-Augmented Multi-Modal CNN Framework for Fracture Detection. The availability of multi-

modal imaging data enables the model to learn both spatial and structural relationships in fractures, ultimately 

improving fracture classification, localization and automated report generation, thereby supporting real-world 

radiological workflows. 

Table 7: Data Distribution before and after augmentation 

Fracture Type Original Sample 

Count 

Augment fold Augmented 

Sample 

Considered for 

Experiment 

Simple 250 2 500 490 

Comminuted 180 3 540 490 

Transverse 166 3 498 490 

Oblique 130 4 520 490 

Spiral 126 4 504 490 

Greenstick  131 4 524 490 

Impacted  98 5 490 490 

Segmental 99 5 495 490 

Pathological 70 7 490 490 

Total 1250  4561 4561 
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B. Hardware and Software Setup 

The experiments were implemented using Python 3.8 as the primary programming language, with deep learning 

models developed using TensorFlow 2.10 and PyTorch 1.13. Image preprocessing and augmentation were 

performed using OpenCV and PIL, while NumPy and Pandas facilitated data handling. For graph-based modelling, 

NetworkX was utilized, and visualization of results was done using Matplotlib and Seaborn. The study was 

conducted on a Windows 11 operating system environment. The hardware setup included a high-performance 

computing system equipped with an Intel Core i9-12900K CPU, 64GB DDR4 RAM, and a 2TB NVMe SSD for 

efficient data processing and model training. This setup ensured fast computations, enabling effective training and 

evaluation of the Graph-Augmented Multi-Modal CNN Framework for fracture detection and classification. 

C. Performance Analysis 

The Graph-Augmented Multi-Modal CNN Framework for Automated Bone Fracture Detection and Reporting 

is an advanced deep learning pipeline that integrates multi-modal imaging data, graph-based structural learning, 

and natural language processing (NLP) to provide a comprehensive and automated diagnosis of bone fractures. 

The system processes X-ray and CT images, classifies fractures, localizes affected regions, and generates structured 

radiology reports, ensuring high accuracy and clinical reliability. The framework is trained and evaluated using a 

large dataset of 1250 patients, each with corresponding X-ray images, CT scan slices, binary masks highlighting 

fracture regions, and ground-truth radiology reports authored by radiologists.  

During the training phase, input images undergo preprocessing, which includes normalization, denoising, and 

image registration, ensuring consistency across modalities. A 2D CNN extracts spatial features from X-ray images, 

while a 3D CNN captures volumetric features from CT scans, allowing the model to analyze both surface-level 

and deep structural information. To effectively combine X-ray and CT data, an attention-based fusion mechanism 

assigns weights to the extracted features, prioritizing the most relevant information. These fused features are then 

structured as a graph, where nodes represent fracture regions, and edges define spatial relationships based on 

anatomical structures. A Graph Convolutional Network (GCN) propagates information between neighboring 

regions, while a Graph Attention Network (GAT) emphasizes critical fracture areas, enhancing the model’s ability 

to differentiate between complex, overlapping, and subtle fractures. The final node representations are used for 

fracture classification, where a fully connected classifier predicts fracture type, and a bounding box regression 

module localizes the fracture using advanced object detection techniques. Simultaneously, the automated radiology 

report generation module is trained using a transformer-based NLP model, leveraging ground-truth reports written 

by radiologists. The CNN-GNN features serve as input to the transformer encoder, which learns to map the 

extracted medical image features to meaningful textual representations. The decoder then generates structured 

reports, mirroring the language and terminology used by radiologists. The model is trained using a sequence-to-

sequence learning approach, ensuring that it accurately replicates the diagnostic insights found in expert-generated 

reports.  

In the testing phase, the trained model processes new, unseen patient data, undergoing the same preprocessing, 

feature extraction, and graph transformation steps as in training. The classification module predicts the fracture 

type, the localization module provides a bounding box for the affected bone region, and the NLP module generates 

an automated radiology report, summarizing the diagnosis with details on fracture severity, affected area, and 

recommended clinical actions. To ensure interpretability, explainable AI techniques such as Grad-CAM heatmaps 

and graph attention visualizations highlight the most influential regions in the model’s decision-making process. 

The system’s performance is quantitatively evaluated using classification accuracy, precision, recall, and F1-score, 

IoU and Dice scores for localization accuracy, and BLEU and ROUGE scores for the quality of generated reports. 

This Graph-Augmented Multi-Modal CNN Framework provides a clinically viable, scalable, and interpretable 

solution for automated fracture detection and reporting, significantly improving diagnostic efficiency, reducing 

radiologist workload, and ensuring standardized reporting across medical institutions. By integrating deep learning, 

spatial reasoning, and natural language processing, the system enhances the accuracy and reliability of medical 

diagnoses, making it a powerful tool for real-world clinical applications. 

D. Cross-Validation and Performance Evaluation 

To evaluate the robustness and generalizability of our fracture classification and localization model, we 

performed a 5-fold cross-validation on our native collected dataset alone because of non-availability of specified 

type of public datasets. In this evaluation setup, the dataset consisting of 4,410 images was randomly divided into 

5 equal subsets, where each subset contains 882 images. For each fold, the model was trained on 4 subsets (80% 
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of the data, i.e., 3,528 images) and tested on the remaining subset (20% of the data, i.e., 882 images). This process 

was repeated for 5 times, each time with a different subset used for testing, ensuring that every sample in the dataset 

was used for both training and testing. This cross-validation approach allows us to obtain a more reliable estimate 

of the model's performance by reducing the risk of overfitting and providing a more generalized performance 

evaluation across the entire dataset. Additionally, it ensures that all data points are considered during the training 

and testing phases, maximizing the model’s exposure to various fracture types and patient conditions. 

The primary goal of our model was to classify various types of bone fractures based on X-ray and CT scan 

images. To assess the model’s ability to accurately classify bone fractures, we evaluate its performance using key 

classification metrics including sensitivity, specificity, precision, accuracy, and f1-score. These metrics ensure a 

balanced evaluation of both positive and negative predictions, minimizing misclassifications. Sensitivity measures 

how well the model detects the fracture types. Specificity evaluates the model’s ability to identify non-fracture 

cases. Precision assesses the correctness of positive predictions. The overall accuracy of the model across all folds 

was calculated as the ratio of correct predictions to the total number of predictions. This gives a general overview 

of the model’s ability to correctly classify bone fractures. F1-score balances precision and recall. Beyond 

classification, precise fracture localization is crucial for effective medical diagnosis. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (31) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (32) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (33) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (34) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (35) 

To evaluate the proposed model’s efficacy in identifying the exact fracture region, segmentation performance 

is assessed using the following metrics: Intersection over Union (IoU), Dice Similarity Coefficient (DSC), Mean 

Absolute Error (MAE) and Mean Squared Error (MSE). IoU measures the ratio of the intersection of the predicted 

segmentation mask and the ground truth mask to their union. DSC is a measure of overlap between the predicted 

and ground truth binary masks, where 1 indicates perfect overlap and 0 indicates no overlap. Similar to IoU but 

DSC gives more weight to overlapping regions. MAE measures pixel-wise deviation from ground truth. MSE was 

calculated between the predicted and ground truth masks to measure how far the predicted segmentation is from 

the true region. MSE penalizes larger errors. 

𝐼𝑜𝑈 = 2 ×
∣𝐴∪𝐵∣

∣𝐴∩𝐵∣
         (36) 

𝐷𝑆𝐶 =
2×∣𝐴∩𝐵∣

∣𝐴∣+∣𝐵∣
         (37) 

𝑀𝐴𝐸 =
1

𝑁
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣𝑁

𝑖=1         (38) 

𝑀𝑆𝐸 =
1

𝑁
∑ ሺ𝑦𝑖 − 𝑦̂𝑖ሻ

2𝑁
𝑖=1         (39) 

The quality of automated radiology report generation is evaluated using NLP-based metrics: Consensus-based 

Image Description Evaluation (CIDEr), Recall-Oriented Understudy for Gisting Evaluation (ROUGE-L) and 

Bilingual Evaluation Understudy (BLEU) scores. CIDEr measures similarity to expert-written reports. ROUGE-L 

evaluates structural and content overlap. BLEU Scores assesses n-gram overlap with reference reports.  

𝐶𝐼𝐷𝐸𝑟 =
1

𝑁
∑

𝑔𝑖∙𝑟𝑖

||𝑔𝑖|| ||𝑟𝑖||

𝑁
𝑖=1         (40) 

𝑅𝑂𝑈𝐺𝐸 − 𝐿 =
𝐿𝐶𝑆𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑝𝑜𝑟𝑡
     (41) 

𝐵𝐿𝐸𝑈 − 𝑁 = 𝐵𝑃 × 𝑒𝑥𝑝ሺ∑ 𝑤𝑛 log 𝑝𝑛
𝑁
𝑖=1 ሻ      (42) 

 

IV. RESULTS AND DISCUSSION 

The proposed work is compared with the state-of-the-art method Parvin, S., st. al., 2024, Zou, J., et. al., 2024 

and Lu, S., et. al., 2022.Parvin, S., et. al., 2024 introduced a real-time bone fracture detection system utilizing the 

YOLOv8 deep learning model to analyze multi-modal images. They developed the Human Bone Fractures Multi-

modal Image Dataset (HBFMID), comprising 641 images across ten fracture classes, and employed data 

augmentation to mitigate overfitting. This system achieved impressive results, with 95% precision, 93% recall, and 

a 92% mean average precision, demonstrating its efficacy in accurately identifying and classifying various bone 

fractures.  
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Table 8: Fracture Localization Diagnostic Report 
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The X-ray image 

reveals a comminuted 

fracture in the mid-

shaft region of the 

tibia, characterized by 

multiple bone 

fragments. The fracture 

site is well-defined 

with noticeable 

displacement, 

indicating a significant 

break. 

The X-ray image 

reveals a displaced 

fracture in the distal 

radius of the left 

forearm. The fracture 

appears to be an 

oblique break with 

misalignment of the 

bone fragments, 

indicative of a severe 

impact or fall-related 

trauma. 

The X-ray image 

reveals a comminuted 

fracture in the distal 

femur, characterized 

by multiple bone 

fragments at the 

fracture site. The 

fracture is localized in 

the knee region, 

potentially affecting 

joint stability and 

mobility. 

The X-ray image 

reveals a transverse 

fracture located in the 

midshaft region of the 

tibia, characterized by 

a clean break across 

the bone. The right 

lower leg is affected, 

with the fracture 

appearing non-

displaced, meaning the 

bone fragments remain 

aligned. 

 

Zou, J., et. al., 2024 presented an enhanced YOLOv7 model, YOLOv7-ATT, designed for the detection of 

various bone fracture types, including angle fractures, normal fractures, line fractures, and complex angle fractures. 

By integrating an attention mechanism and employing the Enhanced Intersection over Union (EIoU) loss function, 

their model achieved a mean Average Precision (mAP) of 80.2% on standard datasets and 86.2% on the FracAtlas 
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dataset, outperforming other models in accuracy and generalization. Lu, S., et. al., 2022 employed Ada-ResNeSt 

with AC-BiFPN to detect fractures across multiple anatomical regions in X-ray images. Their approach enhanced 

feature extraction and fusion, improving detection accuracy. This study achieved an Average Precision (AP) of 

68.4% but faced challenges with real-time performance due to a 122 ms inference speed. Fracture localization and 

diagnostic reports generated by Graph-Augmented Multi-Modal CNN Framework are shown in Table 8. 

 

Table 9: Classification Performance Metrics of the Graph-Augmented Multi-Modal CNN Framework 

Folds Sensitivity Specificity Precision Accuracy F1 score 

Fold 1 0.891 0.959 0.978 0.982 0.893 

Fold 2 0.945 0.888 0.938 0.956 0.986 

Fold 3 0.913 0.961 0.958 0.975 0.947 

Fold 4 0.971 0.919 0.875 0.899 0.929 

Fold 5 0.933 0.947 0.946 0.963 0.912 

Overall 0.931 0.935 0.939 0.955 0.933 

 

 

The evaluation of the Graph-Augmented Multi-Modal CNN Framework highlights its effectiveness in bone 

fracture classification, localization and automated report generation. The model consistently achieves high 

classification accuracy, precise segmentation and clinically relevant report generation, making it a promising 

solution for AI-assisted radiology workflows. The model demonstrates strong classification capabilities achieving 

an average accuracy of 95.5% across five cross-validation folds. The 93.9% precision confirms high reliability in 

fracture detection, while the 93.5% specificity ensures effective identification of non-fracture cases, reducing false 

alarms. Additionally, the 93.3% F1-score highlights the model’s balanced performance, even in imbalanced 

datasets. Performance varied slightly across different fracture types, with Simple and Comminuted Fractures 

achieving F1-scores above 0.90, indicating excellent classification accuracy. However, Pathological and Segmental 

fractures were more challenging to classify due to their underrepresentation in the dataset. The confusion matrix 

analysis, as presented in Table 9, showed that while the model effectively differentiated between common fracture 

types, it struggled with rare classes, suggesting the need for data augmentation, class weighting, or oversampling 

techniques to enhance classification performance for low-frequency fractures. The confusion matrix analysis 

showed that while the model effectively differentiated between common fracture types, it struggled with rare 

classes, suggesting the need for data augmentation, class weighting, or oversampling techniques to enhance 

classification performance for low-frequency fractures. The convergence of model during the 100 epochs has 

figured in Figure 3 and 4, which demonstrated the 5 fold’s trend lines for understanding the capability of proposed 

method in the fracture classification phase. Figure 2 Curve compares different models for fracture detection, with 

the proposed model achieving the highest AUC (0.96), outperforming existing methods by Parvin, S., et. al., (0.89), 

Zou, J., et. al., (0.85), and Lu. S., et. al., (0.81). The proposed model maintains consistently higher precision across 

recall values, indicating improved reliability in detecting fractures while minimizing false positives. The gap 

between the curves suggests that prior methods struggle with precision at higher recall levels, whereas the proposed 

model achieves a more balanced tradeoff. This enhancement can lead to more accurate and early fracture detection, 

improving clinical decision-making and patient outcomes. 

 

Table 10: Segmentation Performance Metrics for Fracture Localization 

Folds Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall 

P
ro

p
o

se
d

 W
o

rk
 

IoU 0.957 0.965 0.97 0.953 0.962 0.961 

Dice coefficient 0.952 0.949 0.958 0.963 0.953 0.955 

MAE 0.012 0.015 0.013 0.018 0.021 0.016 

MSE 0.021 0.019 0.013 0.017 0.019 0.018 

P
ar

v
in

 S
, 

et
. 

A
l,

2
0

2
4
 

IoU 0.945 0.953 0.963 0.949 0.925 0.947 

Dice coefficient 0.948 0.955 0.949 0.934 0.944 0.946 

MAE 0.007 0.033 0.015 0.058 0.045 0.032 

MSE 0.016 0.024 0.018 0.021 0.019 0.02 



J. Electrical Systems 21-1 (2025): 954-973 

 

970 

Z
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IoU 0.934 0.936 0.927 0.932 0.945 0.935 

Dice coefficient 0.928 0.924 0.922 0.938 0.931 0.929 

MAE 0.046 0.033 0.042 0.039 0.0312 0.038 

MSE 0.037 0.043 0.038 0.029 0.039 0.037 

L
u

, 
S

.,
 e

t.
 a

l.
, 

2
0

2
2
 

IoU 0.923 0.931 0.928 0.935 0.926 0.929 

Dice coefficient 0.928 0.925 0.923 0.911 0.917 0.921 

MAE 0.032 0.041 0.044 0.038 0.045 0.04 

MSE 0.061 0.035 0.083 0.049 0.024 0.05 

 

 

Fig. 2:  Precision-Recall Curve Comparison for Fracture Detection Model 

 

 

Fig. 3: Convergence of the model over the 100 epochs vs fracture classification accuracy with the 5 validation folds 
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Fig. 4: Convergence of the model over the 100 epochs vs Training loss with the 5 validation folds 

 

Accurate fracture localization is essential for clinical decision-making and the model exhibits exceptional 

segmentation performance, detailed in Table 10. Table 10 shows the comparative results of segmentation 

performance metrics for fracture localization with some other comparative works (Parvin, S., et. al., 2024, Zou, J., 

et. al., 2024, and Lu. S., et. al., 2022). The 96.1% IoU score confirms a high degree of overlap between predicted 

and ground-truth masks, while the 95.5% DSC further validates precise segmentation. The model achieved low 

segmentation errors, with an MAE of 0.016 and MSE of 0.018, indicating that predicted fracture regions were 

closely aligned with expert-annotated ground truth masks. While the model performed well for common fracture 

types, Segmental and Pathological fractures exhibited slightly lower Dice scores and higher MSE likely due to 

limited training samples. Addressing this imbalance through enhanced dataset diversity and targeted augmentation 

strategies could improve segmentation accuracy for these complex and rare fracture types. 

 

Table 11: Automated Radiology Report Generation Performance Metrics 

Folds CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 

Fold 1 0.775 0.850 0.793 0.885 0.865 0.856 

Fold 2 0.819 0.873 0.795 0.884 0.792 0.851 

Fold 3 0.795 0.865 0.812 0.895 0.801 0.775 

Fold 4 0.885 0.828 0.785 0.863 0.795 0.873 

Fold 5 0.873 0.885 0.789 0.865 0.827 0.885 

Overall 0.829 0.860 0.795 0.878 0.816 0.848 

The NLP-based report generation module produces structured diagnostic reports that align closely with 

radiologist-written reports, as demonstrated in Table 11. The CIDEr score of 0.829 indicates strong clinical 

relevance, ensuring that the generated reports contain accurate and meaningful diagnostic details. The ROUGE-L 

score of 0.860 validates structural coherence, ensuring that the reports are well-organized and readable. 

Furthermore, the BLEU-1 score of 0.795 confirms word-level accuracy, while the BLEU-4 score of 0.848 ensures 

that the reports maintain contextual fluency and coherence. These results demonstrate that the model-generated 

reports are lexically and contextually accurate, making them highly suitable for clinical applications. 

The Graph-Augmented Multi-Modal CNN Framework achieves high classification accuracy, precise fracture 

localization, and structured diagnostic reporting making it a clinically viable solution for AI-driven radiology. The 

model performs exceptionally well in detecting and localizing common fracture types but future work should focus 

on improving the classification and segmentation of rare fracture types. To further enhance performance, strategies 

such as class balancing, additional data augmentation and transfer learning can be explored. With these 

improvements, the proposed framework has the potential to significantly reduce radiologist workload, enhance 

diagnostic accuracy, and streamline medical workflows, reinforcing AI’s role in modern healthcare.  
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V. CONCLUSION 

The 5-fold cross-validation results demonstrated that the proposed model is highly effective for both fracture 

classification and localization, with consistent performance across multiple evaluation metrics. The classification 

accuracy and segmentation overlap show promising potential for real-world applications in automated bone 

fracture detection and reporting. While the model shows strong performance in detecting and classifying common 

fracture types, there is room for improvement in detecting rarer fracture types, such as Pathological and Segmental 

fractures. Future work can focus on enhancing performance for these underrepresented classes, possibly through 

techniques like data augmentation, class balancing, or transfer learning. Overall, the findings highlight the model’s 

capability to assist radiologists in both classifying fractures and localizing fracture regions, contributing to a more 

efficient and automated radiology workflow. 
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