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Abstract: - It is an open field of research to design an efficient hybrid system for Solar PV and Wind energy systems. The 

study demonstrates the use of machine learning (ML) techniques to optimize the design of a hybrid solar-wind energy 

system. This approach can lead to more efficient and cost-effective renewable energy solutions.The study designs a hybrid 

solar-wind energy system using MATLAB Simulation. It uses a grid search optimization (GSO) loop to find optimal PV 

panels and wind speed scaling factor, balancing energy contributions and evaluating performance using a scoring function. 

By optimizing the number of solar panels and wind speed characteristics, the study shows how to minimize energy deficits 

and maximize battery state of charge, resulting in a more reliable and efficient energy system. The optimization process 

takes into account local solar irradiance and wind speed profiles, allowing the system design to be tailored to specific 

geographical locations and environmental conditions.The system uses machine learning to optimize PV panels and wind 

speed, achieving a predicted energy deficit of 0.00 Wh and a surplus of 11,831.86 Wh, indicating strong generation 

capacity.. 

Keywords: Solar PV system, Wind Energy, Wind Speed, Optimization and Machine learning, Grid Search Optimization, 

SOC, Battery Management. 

 

 

I. NTRODUCTION 

It’s a significant field of research to optimize hybrid renewable energy systems using machine learning (ML) 
techniques. This study has integrated solar photovoltaic (PV) system and wind energy system for preferences 
improvement. This research has aimed to design and simulate a standalone hybrid solar-wind energy 
system(HSWES), including solar panel power generation, wind turbine power generation, battery storage, and 
load management systems.The proposed system combines solar and wind energy, leveraging the complementary 
nature of these sources. This integration can potentially provide more consistent power generation across varying 
weather conditions. The study illustrates how to effectively manage energy balance between generation, storage, 
and consumption in a standalone hybrid system, which is crucial for off-grid applications. Several studies ([1]–
[4], [6]–[10]) utilize MATLAB/Simulink to model and simulate hybrid PV-wind systems, demonstrating the 
technical feasibility and performance under varying environmental conditions.  

These works highlight the importance of accurate system modelling for optimizing energy output and 
ensuring grid stability. Recent advancements incorporate AI/ML for forecasting, adaptive energy management, 
and system optimization ([12]–[13], [15]–[18], [21]–[22], [25]). These techniques enable predictive maintenance, 
intelligent load balancing, and enhanced energy storage coordination, marking a shift toward autonomous and 
resilient energy systems. 

This paper provides a framework for sizing key components such as inverters, PV arrays, and battery storage, 
which are essential for real-world implementation of such systems.The graphical representations of energy 
generation, consumption, and storage patterns offer a clear understanding of the system's behaviour over time, 
aiding in system analysis and decision-making. The use of a machine learning-inspired optimization loop allows 
for dynamic adjustment of system parameters. This approach can lead to improved system performance by 
finding the optimal number of PV panels and wind speed characteristics. Table 1 presented the abbreviations 
used.  
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Table 1 Abbreviations Used 

Figure 1.  Ab
breviation 

Figure 2.  Details Figure 3.  Ab
breviation 

Figure 4.  Details 

Figure 5.  PV Figure 6.  Photovolt
aic 

Figure 7.  GS
O 

Figure 8.  Grid 
Search Optimization 

Figure 9.  ML Figure 10.  Machine 
Learning 

Figure 11.  AI Figure 12.  Artificia
l Intelligence 

Figure 13.  O&
M 

Figure 14.  Operation 
And Maintenance 

Figure 15.  DC Figure 16.  Direct 
Current 

Figure 17.  HS
WES 

Figure 18.  Hybrid 
Solar-Wind Energy System 

Figure 19.  MP
PT 

Figure 20.  Maximu
m Power Point Tracking 

Figure 21.  EV Figure 22.  Electric 
Vehicle 

Figure 23.  DL Figure 24.  Deep 
Learning 

 

 

Figure 1 Advantages of Solar-Wind Hybrid System 

 

Figure 1 highlights the principal advantages of a solar-wind hybrid power system, emphasizing its potential to 
enhance energy reliability and sustainability. One of the foremost benefits is the improved power stability and 
resilience achieved through the complementary characteristics of solar and wind energy, which collectively 
mitigate the intermittency inherent in each individual source. The system also demonstrates significant flexibility 
and scalability, enabling adaptation to diverse energy requirements and varying geographical conditions. 
Economically, the hybrid configuration contributes to long-term cost savings by decreasing dependence on fossil 
fuels and reducing operational expenditures. Its capacity for off-grid functionality further enhances its suitability 
for remote or underserved regions where grid access is limited or inconsistent. Moreover, the system facilitates 
efficient utilization of renewable resources by concurrently harnessing solar and wind energy, thereby optimizing 
overall energy output. Importantly, the integration of dual energy sources reduces the reliance on extensive 
battery storage, which in turn lowers system complexity and capital investment. 
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Figure 2 Challenges of Solar-Wind hybrid System Designs 

Figure 2 delineates the primary challenges and unresolved issues associated with the design and 
implementation of solar-wind hybrid power systems. A major obstacle is the high initial capital investment, 
encompassing the costs of photovoltaic panels, wind turbines, energy storage units, and auxiliary infrastructure. 
Additionally, the complexity of system design and integration presents significant technical hurdles, requiring 
careful selection and coordination of components to achieve efficient and reliable performance. The operation and 
maintenance (O&M) of such systems also demand sustained attention, including routine inspections, cleaning, 
and upkeep of both solar and wind apparatuses, as well as the energy storage mechanisms. Another critical 
concern is resource assessment and site selection, which necessitates thorough evaluation of solar irradiance, 
wind patterns, and environmental conditions to identify optimal deployment locations. Moreover, the intermittent 
nature of renewable energy sources complicates system control and monitoring, calling for sophisticated 
algorithms and real-time data analytics to maintain operational stability. Finally, the management of energy 
storage systems remains a pivotal challenge, as effective storage solutions are essential to buffer fluctuations in 
energy supply and ensure consistent power delivery.   

         Optimizing renewable energy systems, as demonstrated by this study, plays a crucial role in broader 
initiatives to diminish reliance on non-renewable energy sources. This directly contributes to the global 
imperative of reducing dependence on fossil fuels and, consequently, alleviating the adverse impacts of climate 
change. The methodology and results presented in this study can serve as a basis for further research in renewable 
energy system optimization, integration of other energy sources, and application of more advanced machine 
learning techniques. 

 

1.2.  Contribution of Work  

This study integrates a solar PV system with a wind energy system to achieve enhanced performance and 
reliability in renewable energy solutions. Specifically, this research focuses on the design and simulation of a 
standalone HSWES system, encompassing solar panel power generation, wind turbine power generation, battery 
storage, and comprehensive load management systems.  

Proposed methodology primarily incorporates a ML-inspired optimization loop to predict optimal wind speed 
characteristics (via a scaling factor) and solar PV design (selection of number of panels) for improved system 
performance. By optimizing the number of PV panels and wind speed scaling factor, the system can potentially 
achieve better resource utilization, reducing energy deficits and excess energy production. Simulation implements 
a ML-inspired optimization loop to predict optimal wind speed characteristics and solar PV design. This approach 
aims to enhance the overall performance of the hybrid energy system. the proposed work uses the grid search-
based optimization for the optimal power performance and prediction of Npv numbers for wind speeds. the 
system works energy efficient manner and offers the good battery management also. the MATLAB is used for the 
simulation of random 24-hour data.  
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2BASIC SOLAR-WIND HYBRID SYSTEM DIAGRAM  

Figure 3 illustrates the architecture of a solar-wind hybrid energy system, integrating multiple renewable sources 

with intelligent control and optimization. The system comprises a Solar PV Array and a Wind Turbine System, 

each responsible for converting solar and wind energy respectively into direct current (DC) electricity. To 

ensure optimal energy harvesting, both sources are equipped with Maximum Power Point Tracking (MPPT) 

controllers. The generated DC power is then consolidated at a common DC Bus, which serves as the central 

node for energy distribution. 

 

Figure 3 Basic proposed Block diagram of the Hybrid siar0wind system 

 

A Battery Management System (BMS) is connected to the DC Bus to regulate battery charging and discharging 

processes as in Figure 3, thereby safeguarding battery health and performance. The stored or directly supplied 

DC power is subsequently converted into alternating current (AC) via an inverter, making it suitable for 

consumption by electrical loads or for grid integration. Finally, the system incorporates an optimization module 

based on Grid Search algorithms, which dynamically adjusts operational parameters—such as inverter settings 

and battery thresholds—to enhance overall efficiency and minimize operational costs. 

 

3,  LITERATURE REVEW AND CLASSIFCATION WORKS 

Hybrid solar-wind energy systems are increasingly recognized as a viable and sustainable solution to address 

rising global energy demands. The existing literature illustrates a clear evolution from basic modelling techniques 

to sophisticated control and optimization frameworks. Prajapati and Sukhadiya [1] conducted a simulation-based 

review emphasizing the integration of solar-wind systems with smart grids, highlighting how hybridization 

enhances energy reliability and minimizes grid dependency. Their research underscored the significance of 

system architecture and control mechanisms in achieving efficient energy distribution. Lodin et al. [2] developed 

a dynamic simulation model using MATLAB/Simulink to evaluate the performance of wind-solar hybrid systems 

under varying environmental conditions. Their findings reinforced the necessity of robust simulation platforms 

for accurate system analysis. Kumar and Dewangan [3] extended this approach by modelling PV-wind hybrid 

systems and analysing their energy output and operational efficiency, particularly in the context of rural 

electrification and decentralized energy access. 

Mewara and Sharma [4] focused on grid-connected hybrid systems, using Simulink to assess the effects of grid 

integration on system stability and load management. Their results supported the integration of hybrid systems 

within smart grid infrastructures. Saleh et al. [5] contributed to practical design considerations by simulating 

hybrid renewable systems for on-grid applications, incorporating realistic load profiles and operational 

parameters. Their work provided valuable insights into deployment challenges and scalability in real-world 

energy networks. Devi et al. [6] developed a comprehensive simulation framework for photovoltaic (PV) and 

wind hybrid energy systems, emphasizing detailed component-level modelling and performance assessment. 

Published in a Springer volume, their study offers a systematic methodology suitable for both academic research 

and industrial design applications. Abdelhamid et al. [7] examined hybrid energy systems within the broader 
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context of energy transition, incorporating artificial intelligence-based control strategies to improve system 

responsiveness and adaptability. Their work effectively connects traditional renewable energy modelling with 

emerging intelligent technologies. Mugarura et al. [8] applied maximum power point tracking (MPPT) algorithms 

to hybrid solar-wind systems, demonstrating significant improvements in energy harvesting efficiency. Through 

experimental simulations, they validated the robustness of intelligent tracking techniques under variable weather 

conditions. Mishra et al. [9] contributed to the advancement of hybrid system analysis by introducing real-time 

simulation methods, which facilitate dynamic performance evaluation and control strategy validation. Their 

research serves as a critical link between theoretical modelling and practical implementation, enhancing the 

reliability and applicability of hybrid renewable energy systems.  

      Saha et al. [10] conducted a comparative study of PV-wind hybrid systems, analysing system behaviour under 

different load and irradiance conditions. Their findings reinforced the adaptability of hybrid systems in diverse 

operational scenarios. Acharya et al. [11] proposed ANFIS-based distributed controllers to enhance grid 

integration in hybrid systems. Their intelligent control approach improved load balancing and fault tolerance, 

paving the way for smarter energy networks. Koca [12] applied machine learning to manage energy flow in 

hybrid PV-wind systems, particularly for electric vehicle charging stations. His work demonstrated the potential 

of adaptive algorithms in optimizing energy usage and reducing operational costs. Mamodiya et al. [13] explored 

AI-based hybrid solar systems with smart materials and adaptive photovoltaics, offering a futuristic perspective 

on sustainable power generation. Their study emphasized the synergy between material science and intelligent 

control. Hassan et al. [14] provided a comprehensive review of hybrid renewable systems, discussing technical 

challenges, policy frameworks, and deployment strategies. Their work served as a roadmap for integrating solar-

wind solutions into national energy plans. 

          Benitez and Singh [15] reviewed machine learning applications in forecasting PV and wind power output, 

highlighting the accuracy and efficiency of predictive models. Their analysis supported the integration of AI in 

energy planning and grid management. AlShammari, et al [16] have used the good optimization approach for 

improving the grid connect4ed PV systems design. Tomal et al. [17] and Sofian et al. [18] examined deep 

learning and machine learning strategies for renewable energy, focusing on innovations in energy storage and 

autonomous control. Their contributions advanced the discourse on intelligent energy systems. Raj [19] reviewed 

hybrid green energy technologies for smart cities, emphasizing the role of solar-wind systems in urban 

sustainability. His work advocated for policy-driven adoption and infrastructure development. Kouihi et al. [20] 

employed genetic algorithms to optimize standalone hybrid system design, achieving improved performance and 

cost-effectiveness.Their study demonstrated the value of evolutionary computation in energy system engineering. 

The integration of artificial intelligence and machine learning into renewable energy systems is comprehensively 

explored across recent studies. Entezari et al. (2023) provide a bibliographic analysis that maps the evolution of 

AI/ML methodologies in energy applications, highlighting their growing influence in forecasting, optimization, 

and autonomous control. Afridi et al. (2023) build on this by examining specific machine learning techniques—

both supervised and unsupervised—for enhancing solar and wind energy systems, with a focus on prediction 

accuracy and fault resilience. Complementing these theoretical insights, Sharmila et al. (2022) offer a practical 

implementation through the development of a hybrid solar-wind charger using ML-based control, demonstrating 

the tangible benefits of intelligent energy management in small-scale systems. Together, these works underscore 

the transformative potential of AI in driving innovation and efficiency in renewable energy 

technologies.Keyvandarian and Saif [24] introduced dynamic uncertainty sets for robust sizing of hybrid systems, 

addressing variability in resource availability. Their optimization framework enhanced system resilience and 

planning accuracy. Agrawal et al. [25] developed a next-generation hybrid energy converter using machine 

learning, integrating photovoltaic and grid power with intelligent control. Their innovation marked a significant 

step toward autonomous energy systems. Yazdanpanah [26] provided early insights into modelling and sizing 

optimization of PV/wind systems, establishing foundational principles for hybrid system design. His work 

remains relevant for system planners and researchers. Nascimento et al. [27] optimized hybrid power plant 

configurations by analysing resource complementarity and capacitor factors, enhancing energy production 

efficiency. Their study contributed to strategic planning in large-scale renewable deployments.Summary of 

litterateur is given in Table 2.  

Table 2 Summary of the Literature review and limitations 

Reference Methodology Description ML/AI Use Limitations 

Prajapati et al. 

[1] 

Simulation of solar-wind hybrid 

with smart grid integration 

No Limited real-time validation; lacks 

intelligent control 

Lodin et al. [2] MATLAB/Simulink-based No Focused on static modelling; no 
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modelling and simulation adaptive control 

Kumar et al. 

[3] 

MATLAB/Simulink modelling of 

PV-wind hybrid system 

No No optimization or intelligent 

control strategies 

Mewara et al. 

[4] 

Grid-integrated hybrid system 

simulation using Simulink 

No No dynamic performance analysis; 

lacks scalability 

Saleh et al. [5] Design and simulation for on-grid 

hybrid systems 

No Limited to design phase; lacks 

intelligent energy management 

Devi et al. [6] Component-level modelling and 

performance evaluation 

No No AI integration; theoretical 

focus 

Abdelhamid et 

al. [7] 

AI-based control in hybrid 

PV/wind systems 

Yes Limited experimental validation 

Mugarura et 

al. [8] 

MPPT algorithm implementation 

in hybrid systems 

No Focused on tracking; lacks broader 

system optimization 

Mishra et al. 

[9] 

Real-time simulation for dynamic 

analysis and control validation 

Yes Limited scalability; hardware 

implementation not addressed 

Saha et al. [10] Simulation and modelling of 

hybrid systems 

No No intelligent control or 

optimization 

Acharya et al. 

[11] 

ANFIS-based distributed 

controllers for grid integration 

Yes Complexity in controller design; 

limited generalizability 

Koca et al. 

[12] 

ML-based adaptive energy 

management for EV charging 

stations 

Yes Focused on EV context; limited to 

specific use-case 

Mamodiya et 

al. [13] 

AI-based hybrid solar systems 

with smart materials 

Yes Experimental scope; integration 

challenges 

Hassan et al. 

[14] 

Review of solar-wind hybrid 

systems and policy implications 

No Lacks technical depth; review-

based 

Benitez et al. 

[15] 

Review of ML applications in 

forecasting PV/wind output 

Yes Focused on forecasting; not 

system-level modelling 

AlShammari 

et al. [16] 

Optimization of grid-connected 

hybrid systems 

No No intelligent control; 

optimization limited to sizing 

Tomal et al. 

[17] 

Review of ML/DL strategies for 

renewable energy 

Yes Broad scope; lacks 

implementation details 

Sofian et al. 

[18] 

ML in solar/wind energy and 

storage innovations 

Yes Conceptual focus; limited 

empirical validation 

Raj et al. [19] Review of hybrid technologies for 

smart cities 

No General overview; lacks technical 

modelling 

Kouihi et al. 

[20] 

Genetic algorithm-based 

optimization for standalone 

systems 

Yes Focused on design; lacks real-time 

adaptability 

Entezari et al. 

[21] 

Bibliographic review of AI/ML in 

energy systems 

Yes No modelling or simulation; 

literature-focused 

Afridi et al. 

[22] 

ML applications in renewable 

energy autonomy 

Yes Conceptual; lacks system-level 

implementation 

Sharmila et al. 

[23] 

Hybrid solar-wind charger with 

ML integration 

Yes Limited scalability; hardware 

constraints 

Keyvandarian Robust sizing using dynamic No No intelligent control; focused on 
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et al. [24] uncertainty sets sizing 

Agrawal et al. 

[25] 

ML-powered hybrid energy 

converter for grid integration 

Yes Novelty in concept; limited 

experimental validation 

Yazdanpanah 

et al. [26] 

modelling and sizing optimization 

of hybrid systems 

No No intelligent control; dated 

methodology 

Nascimento et 

al. [27] 

Optimization using 

complementarity and capacitor 

factor 

No Focused on plant configuration; 

lacks intelligent control 

 

Despite diverse methodologies and increasing interest in hybrid renewable energy systems, there are certain 

common limitations of literature consistently highlights. Most studies lack real-time validation, intelligent control 

mechanisms, and adaptive optimization strategies. While some incorporate machine learning or AI, their 

applications are often narrow—focused on forecasting, sizing, or specific use-cases—without broader system-

level integration. Additionally, many works remain confined to simulation or conceptual frameworks, with 

limited scalability, hardware implementation, or empirical validation. limited use of ML is used for investigating 

the power and energy management. It is required to access optimum solar cells required for energy demands. 

These gaps underscore the need for more robust, intelligent, and experimentally grounded hybrid system designs. 

4.  HYBRID SOLAR WIND ENERGY SYSTEM DESIGN 

This paper aimed to design and investigate the ML based solution for the hybrid solar-Wind system. the various 

input simulation parameters are given in the Table 3. 

 

Table 3 Design Parameters for Solar PV and Wind system 

System 
Parameter Value Description  

Solar PV 

System 
Rated Power (Ppv,rated) Rated Power (Ppv,rated

) 

Rated Power (Ppv,rated) 

300 W 300 W 300 W 

The maximum power 

output of a single PV 

panel. 

The maximum power 

output of a single PV 

panel. 

The maximum power output of a 

single PV panel. 

 

 

Parameters 

for Wind 

System 

Design 

Rated Power 

(Pwind,rated) 
2000 W 

The maximum power output of a 

single wind turbine. 

Number of Turbines 

(Nwind) 
2 

The fixed number of wind turbines in 

the system. 

Cut-in Speed (Vcut−in) 3 m/s 

The minimum wind speed required 

for the turbine to start generating 

power. 

Rated Speed (Vrated) 12 m/s 

The wind speed at which the turbine 

reaches its maximum rated power 

output. 

Cut-out Speed 

(Vcut−out) 
25 m/s 

The wind speed at which the turbine 

shuts down to prevent damage. 

Air Density (ρair) 1.225 kg/m3 
The density of the air, a key factor in 

calculating wind power. 

Rotor Radius (Rrotor) 2 m 
The radius of the turbine's rotor, used 

to calculate the swept area. 

Power Coefficient (Cp) 0.4 

A measure of the turbine's efficiency 

in converting wind energy to 

mechanical energy. 

 

Table 3 presents the key design parameters for both the solar PV system and the wind energy system used in the 

hybrid configuration. For the solar PV system, the rated power of each panel is specified as 300 W, representing 
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the maximum electrical output under standard test conditions. This value is repeated to emphasize uniformity 

across all installed panels.The wind system design parameters include a rated turbine power of 2000 W, with two 

turbines integrated into the system. Critical operational thresholds are defined by the cut-in speed (3 m/s), rated 

speed (12 m/s), and cut-out speed (25 m/s), which determine the turbine's power generation behaviour under 

varying wind conditions. Additional parameters such as air density (1.225 kg/m³) and rotor radius (2 m) are 

essential for calculating the available wind power. The power coefficient (Cp = 0.4) reflects the efficiency of the 

turbine in converting kinetic wind energy into mechanical energy. 

4.1 Mathematical Modelling 

The mathematical modelling of PV and Wind systems are presented in this section. 

A. Solar Photovoltaic (PV) Power 

The hourly power output from the solar PV array, denoted as Ppv(t), is modeled as a linear function of the solar 

irradiance, G(t), at a given time t. The model assumes that the PV panels operate at standard test conditions (STC) 

for their rated power and that their output scales directly with the available irradiance. 

The equation for the total power generated by the PV array is: 

Ppv(t) = Npv ⋅ Ppv− rated ⋅
G(t)

Gstd

                                                (1) 

where: 

• Ppv(t)is the total hourly PV power output (W). 

• Npvis the number of PV panels, which is a key optimization variable. 

• Ppv−rated,rated is the rated power of a single PV panel (W). 

• G(t) is the hourly solar irradiance at time t (W/m2). 

• Gstd is the standard irradiance under which Ppv−ratedis measured (1000W/m2). 

 

B.  Wind Power Generation: 

The wind system is defined as per the V cut in and cut out limits. Wind system power is calculated as follows; 

For V_cutin <= Vwind < Vrated: 

Pwind = Nwind ∗ 0.5 ∗ rhoair ∗  Aswept ∗ Cp ∗ Vwind
3                       (2) 

 

For Vrated <=  Vwind <=  Vcutout
: 

Pwind =  Nwind ∗ Pwindrated
                                               (3) 

Where:  

• Pwind: Power output from wind turbines  

• Nwind: Number of wind turbines  

• rhoair: Air density  

• Aswept: Swept area of wind turbine rotor  

• Cp: Power coefficient  

• Vwind: Wind speed  

• Pwindrated
: Rated power of a single wind turbine 

 

C. Battery State of Charge (SOC): 

The third major contribution of the work is to estimate the battery charging and discharging characteristics for 

management. the charging state parameters are defined as; 

For charging:  
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                         SOCnew =  SOCcurrent +
(Echarge ∗  effbatterycharge

)

(Cbattery ∗  Vbus)
                             (4) 

 

For discharging:  

                              SOCnew =  SOCcurrent −

(
Edischarge

effbatterydischarge

)

(Cbattery ∗  Vbus)
                                      (5) 

 

This research has independently measured and investigated the optimal performance parameters to achieve the 

fast charging of battery system.  

5  PROPOSED HSWES SYSTEM DESIGN 

This proposed methodology includes a sophisticated battery management system that considers state of charge 

(SOC), depth of discharge (DOD), and charging/discharging efficiencies. This helps in maintaining battery 

health and ensuring reliable energy storage. 

 

5.1 Proposed Optimization Loop:  

A methodical and well-structured optimization loop methodology ins give in Figure 4 present tailored for the 

design of a hybrid solar-wind energy system (HSWES). The framework is organized into three distinct phases—

Setup, Optimization Loop, and Post Processing—each playing a critical role in refining and identifying the most 

effective system configuration. The Setup phase initiates the process by defining the design space and 

establishing performance evaluation metrics. This includes specifying key parameters such as component 

dimensions, energy thresholds, and operational constraints, alongside formulating quantitative criteria to assess 

system efficiency. The Optimization Loop constitutes the central mechanism of the methodology, wherein 

simulations are systematically conducted across a wide range of parameter combinations. During each iteration, 

the system’s performance is evaluated against the predefined metrics, and both the performance scores and 

corresponding parameter sets are meticulously recorded. This iterative procedure facilitates a thorough 

exploration of the design space, ensuring that all viable configurations are considered. In the Post Processing 

phase, the optimal design is selected based on the accumulated performance data. This configuration is then 

compared with a baseline model to assess improvements in terms of efficiency, reliability, and cost-

effectiveness. The comparative results are documented to substantiate the efficacy of the proposed optimization 

strategy. Collectively, this methodology provides a robust and transparent framework for the systematic design 

of hybrid renewable energy systems, empowering engineers and researchers to make informed, data-driven 

decisions that advance energy sustainability and operational excellence. 

 

  

Figure 4the proposed Design Methodology of hybrid HSWES system 
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The proposed ML based optimization process as illustrated in Figure 4 systematically identifies the ideal 

configuration for the proposed HSWES system using a grid search optimization algorithm. The procedure 

begins by defining a comprehensive search space for two critical design parameters: the number of photovoltaic 

(PV) panels (Npv) and a wind speed scaling factor. The optimization is governed by a multi-objective 

performance metric designed to maximize the final battery state of charge (SOC) and minimize any energy 

deficit while simultaneously penalizing the production of excessive energy. The algorithm exhaustively iterates 

through every possible combination of these parameters within the defined search space. For each unique 

combination, a full system simulation is executed to calculate the resulting energy deficit, excess energy, and 

final battery SOC. A performance score is then computed based on these simulation outputs. The configuration 

that achieves the highest performance score is selected as the optimal system design. Finally, the efficacy of this 

optimized design is validated through a direct comparison with a non-optimized baseline system, demonstrating 

the tangible improvements achieved by the machine learning approach. 

        The mathematical modelling of the optimization process for a hybrid solar-wind energy system with 

battery storage can be described as follows: 

1. The goal is to maximize a performance score, which can be expressed as: 

max(S) = (SOCfinal −  SOCmin) ∗ Ebattery − Edeficit − 0.1 ∗  Eexcess            (6) 

Where: S: Performance score SOCfinal:  

Final state of charge of the battery SOCmin:  

Minimum allowable state of charge Ebattery:  

Battery capacity in kWh Edeficit:  

Total energy deficit in Wh Edeficit,  and Total excess energy in WhEexcess 

2. The optimization problem is formulated as  

           max S(x1, x2) subject to: 5 ≤  x1 ≤  50, x1 ∈  ℤ 0.5 ≤  x2 ≤  2.0 (7) 

where,decision variables are defined as x1 = Npvis the Number of PV panels and x2 = windspeedscale-factor  

3. The optimization is performed using a grid search over the discrete space of x1 and x2. The optimization 

process iteratively evaluates these equations for different combinations of x1 and x2 to find the combination that 

maximizes the performance score S. and is implemented using the folioing Algorithm 1.  

Algorithm 1: GSO Algorithm 

for x1 in {5, 10, 15, ..., 50}:  

for x2 in {0.5, 0.6, 0.7, ..., 2.0}:  

Scurrent =  evaluatesystem(x1,x2)                                    (8) 

if Scurrent > Sbest: 

Sbest=  Scurrent   (9) 

x1best = x1 

x2best = x2   (10) 

End 

end 

end 

End Algorithm 

6. RESULTS AND DISCUSSIONS 

Paper allows for a comparison between the optimized system and a baseline system without ML optimization. 

This comparison can demonstrate the potential benefits of using machine learning in renewable energy system 

design.Paper generates various plots and summaries that allow for detailed analysis of system performance, 
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including hourly power generation, load demand, and battery SOC. This can aid in system understanding and 

further improvements. 

6.1 Input data:  

The input data used in each simulation run for the hybrid solar-wind energy system includes wind speed, solar 

irradiance, and load demand and the source and nature of this data are sequentially described; 

1. Solar Irradiance Data: 

The solar irradiance data utilized in this analysis is represented as a diurnal profile, spanning a 24-hour period to 

model a typical daily pattern. The values within this profile range from 0 to a peak of 1000 W/m. The pattern 

adheres to a predictable cycle: irradiance is zero during the night, gradually increases from the morning, reaches 

its maximum at midday, and then decreases as the evening approaches. It is important to note that this dataset is 

a simplified, synthetic representation of a typical day, rather than empirically measured or historical data. The 

use of such a predefined pattern allows the optimization process to function with a consistent and repeatable 

baseline for energy generation. 

2. Wind Speed Data: 

The wind speed data for the simulation is derived from a synthetic diurnal profile, which represents a 24-hour 

pattern of wind speeds ranging from 4 to 12 m/s. This baseline profile is not a set of historical or real-time 

measurements but a standardized pattern designed for consistent analysis. To account for variations in wind 

resource availability, the profile is dynamically modified by a multiplicative scaling factor. This factor is a key 

parameter within the machine learning optimization framework, allowing the algorithm to explore different 

wind conditions and determine the optimal system design that best leverages this variable resource. 

3. Load Demand Data: 

In the context of renewable energy system design, the load demand profile is a critical parameter, this paper has 

represented a 24-hour pattern of power consumption. data is randomly generated as nearest best possible profile 

of 24-hour environmental conditions. As described, this synthetic profile exhibits typical daily variations, with 

lower demand during the night and a peak in the afternoon or evening, ranging from 400W to 2200W. It is 

essential to recognize that this, along with the solar and wind profiles, constitutes a simplified, idealized 

representation of a real-world scenario. While these synthetic datasets are valuable for initial optimization, their 

limitations necessitate a cautious interpretation of the results, as actual system performance would be influenced 

by a much greater degree of variability and unpredictability. 

        The optimization process employs a linear scoring function to balance competing objectives, namely 

maximizing battery State of Charge (SOC), minimizing energy deficit, and penalizing excess energy. The 

function is structured to heavily penalize energy deficit (with a weight of 1.0), indicating that the primary 

objective of the system is to ensure all energy demands are met. Excess energy is penalized at a significantly 

lower rate (0.1), suggesting that surplus generation is considered a less critical issue than unmet demand. The 

weight of the final SOC is directly proportional to the battery's capacity, providing a reward for efficient energy 

storage. This methodology effectively finds a configuration that prioritizes reliability over efficiency, but it's 

important to note that this is a simplified model. More complex real-world applications would likely require a 

multi-objective optimization approach to better address a wider range of technical and economic constraints. 

6.2 Experiment 1: Results of ML Optimization 

The first experiment is performed to demonstrate the grid search-based ML optimization results and validation. 

The results presented in Table 4 demonstrate the effectiveness of machine learning-based optimization in 

configuring a hybrid solar-wind energy system. The model identified an optimal configuration with 10 

photovoltaic panels and a wind speed scale factor of 0.9, achieving a predicted total energy deficit of 0.00 Wh—

indicating complete fulfilment of energy demand. Additionally, the system produced a surplus of 11,831.86 Wh, 

suggesting strong generation capacity beyond consumption needs. The final battery state of charge (SOC) 

reached 100%, confirming efficient energy storage and utilization. The overall performance score of 18.02 

reflects a well-balanced and highly optimized system, validating the potential of machine learning techniques in 

enhancing hybrid renewable energy system design and operation.  
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Table 4ML Optimization Results 

Parameter Value 

Optimal Number of PV Panels (Npv) 10 

Optimal Wind Speed Scale Factor 0.9 

Predicted Total Energy Deficit 0.00 Wh 

Predicted Total Excess Energy 11831.86 Wh 

Predicted Final Battery SOC 100.00% 

Optimal Performance Score 18.02 

 

 The grid search have simulated the wind scaling factor vs the desired optimal number of solar PV (Npv) 

system. the results as shown in Figure 5.  

 

 

Figure 5ML based optimal production results for Wind scale for different Npv Configurations 

The analysis presented in Figure 5 highlights the effectiveness of ML in optimizing the performance of a 

HSWES system. By evaluating performance scores across varying wind scale factors and different photovoltaic 

panel configurations (Npv), the results demonstrate that higher Npv values, particularly Npv = 50, consistently 

yield superior performance with minimal energy deficits. In contrast, lower Npv configurations exhibit reduced 

efficiency, especially under low wind conditions. Mid-range configurations show moderate improvement but 

lack the stability of higher panel counts. Overall, the study confirms that increasing PV capacity enhances 

system resilience and energy reliability, validating the role of machine learning in guiding optimal design 

choices. 

 

6.3 Experiment 2: Energy Optimization Results 

this section has presented the result of energy optimization across the one fill day stretch. The results presented 

in Table 5 provide a comprehensive overview of the optimal daily energy performance of the solar-wind hybrid 

system. The system generated a total of 72.06 kWh of renewable energy, with 22.29 kWh from photovoltaic 

sources and 49.77 kWh from wind energy. This production significantly exceeded the total AC load demand of 

24.45 kWh, resulting in zero energy deficit and confirming the system’s ability to fully meet consumption 

needs. Additionally, 11.83 kWh of excess energy was produced, indicating surplus generation beyond storage 

capacity. The final battery state of charge reached 100%, demonstrating efficient energy storage and optimal 

system operation under the given configuration. 
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Table 5 Optimal Daily Energy Summary 

Summary Item Value 

Total PV Energy Generated 22.29 kWh 

Total Wind Energy Generated 49.77 kWh 

Total Renewable Energy Generated 72.06 kWh 

Total Load Demand (AC) 24.45 kWh 

Total Energy Deficit (not met by system) 0.00 kWh 

Total Excess Energy (curtailed or not stored) 11.83 kWh 

Final Battery SOC 100.00% 

 

6,4 Experiment 3: Battery Charging State Results 

Figure 6 presents the simulation results of the optimal (HSWES) system, focusing on battery State of Charge 

(SOC) and energy curtailment. Over a 5-hour period, the SOC steadily increases from approximately 60% to 

90%, indicating efficient charging and strong energy availability. The 24-hour energy curtailment plot reveals 

dynamic fluctuations, with excess energy peaking around 3000 Wh at hours 6 and 18, and dropping to zero by 

hour 24. These results underscore the system’s capability to store renewable energy effectively while 

minimizing waste, demonstrating the significance of optimized storage in enhancing energy reliability and 

sustainability. 

 

Figure 6 Results of Optimal HSWES simulation for SOC and energy plots 

The MATLAB is used for the simulation of a HSWES system under varying design configurations. The results 

of Table 6 outline the key design sizing parameters for the optimal configuration of the proposed HSWES 

system. The peak AC load demand is estimated at 2200.00 W, guiding the recommendation for an inverter size 

of 2750.00 W—sized at 1.25 times the peak load to ensure reliable power conversion and system stability.  

Table 6 Optimal Design Sizing Considerations 

Parameter Value 

Peak AC Load Demand 2200.00 W 

Recommended Inverter Size 2750.00 W (1.25x Peak Load) 

Total PV Array Peak Power 3000.00 W 

Total Wind Farm Peak Power 4000.00 W 

Battery Days of Autonomy 0.79 days 
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As clear from Table 6 that the total PV array and wind farm are designed to deliver peak powers of 3000.00 W 

and 4000.00 W respectively, indicating a robust renewable generation capacity. Additionally, the battery system 

offers 0.79 days of autonomy, reflecting its ability to sustain energy supply during periods of low generation. 

These sizing considerations collectively support a resilient and well-balanced energy system tailored to meet 

demand efficiently. 

 

Figure 7Results of energy saving in terms of excess Energy comparison with and without using ML 

Figure 7 presents a comparative analysis of excess energy generation in a hybrid solar-wind system with and 

without the application of machine learning (ML). The bar graph illustrates that the system using ML produced 

11,831.86 kWh of excess energy, whereas the non-ML configuration resulted in 12,791.72 kWh. This reduction 

of approximately 960 kWh in excess energy highlights the efficiency gains achieved through ML-based 

optimization. By minimizing surplus energy that cannot be stored or utilized, the ML-enhanced system 

demonstrates improved resource utilization and operational effectiveness, underscoring the value of intelligent 

control strategies in renewable energy management. 

When there's excess energy, it's used to charge the battery. When there's a deficit, energy is drawn from the 

battery. This helps balance the intermittent nature of both solar and wind generation. If the combined generation 

exceeds both the load demand and the battery's capacity to store, the excess energy is curtailed. If the combined 

generation plus available battery energy is insufficient to meet the load demand, the system records an energy 

deficit.  

 

6.5 Experiment 4: ML Based Power Generation and Load Demand Result  

This section presented the results for a detailed graphical representation of the operational dynamics of a 

proposed HSWES system optimized through ML techniques as illustrated in Figure 9. The four distinct subplots 

are compared in Figure 9, that collectively illustrate the system's behaviour over a 24-hour period. The first 

subplot depicts the hourly solar irradiance, which follows a typical diurnal cycle, is beginning at zero during 

early morning hours, peaking around midday, and gradually declining toward evening. This pattern reflects the 

natural availability of solar energy and serves as a fundamental input for PV power generation. The second 

subplot presents the ML-optimized wind speed, which exhibits a similar trend to solar irradiance, increasing 

during daylight hours and decreasing at night.  

This optimization ensures that wind energy is effectively harnessed when it is most abundant, thereby 

complementing solar power generation. The third subplot, which forms the core of the analysis, compares PV 

power, wind power, total renewable power, and load demand. The ML-based optimization aligns the total 

renewable power output closely with the load demand curve, thereby minimizing energy mismatches and 

reducing dependence on non-renewable backup sources. Such alignment is critical for maintaining grid stability 
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and maximizing the utilization of renewable resources. The final subplot illustrates the battery state of charge 

(SOC) throughout the day, beginning at approximately 50% and gradually rising to stabilize near 100% by the 

end of the cycle. The SOC remains within predefined operational limits, indicating effective energy storage 

management.  

 

Figure 9Representations of results for ML based power generation and load demand 

  The hybrid solar-wind energy system handles the balance between energy generation from solar and wind 

sources. The system calculates the total renewable energy generated by summing the power from both solar 

panels and wind turbines for each hour. For each hour, the system calculates the net energy by subtracting the 

load demand from the total renewable energy generated. This determines whether there's an energy excess or 

deficit  

Collectively, these results highlight the significant role of ML in enhancing the performance of renewable 

energy systems. By accurately forecasting resource availability and optimizing power dispatch, ML facilitates 

efficient energy generation, minimizes excess energy and curtailment, improves battery utilization, and 

strengthens overall system reliability. Ultimately, ML serves as the intelligent control mechanism of the hybrid 

system, enabling it to meet dynamic load demands while promoting energy sustainability and paving the way for 

smarter, more resilient energy infrastructures.  

 

6. Conclusions and Future Scopes 

This study has aimed to design the hybrid solar-Wind energy system(HSWES) using MATLAB Simulation.The 

system uses a ML based grid search optimization loop to find the optimal number of PV panels (N_pv) and a 

wind speed scaling factor. This helps in balancing the contribution from each source based on the given 

conditions. The system's performance is evaluated using a scoring function that considers energy deficit, excess, 

and battery state of charge. This indirectly encourages a balance between solar and wind generation that best 

meets the load demand while minimizing both deficits and excessive surpluses. 

The wind speed data is a synthetic profile, ranging from 4 to 12 m/s, allowing the optimization process to 

function with a consistent baseline for energy generation. The load demand data is a 24-hour pattern of power 
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consumption, exhibiting typical daily variations. The study demonstrates the effectiveness of machine learning-

based optimization in configuring a hybrid solar-wind energy system. The model identified an optimal 

configuration with 10 photovoltaic panels and a wind speed scale factor of 0.9, achieving a predicted total 

energy deficit of 0.00 Wh. The system produced a surplus of 11,831.86 Wh, indicating strong generation 

capacity beyond consumption needs.he system generated 72.06 kWh of renewable energy, with 22.29 kWh from 

photovoltaic sources and 49.77 kWh from wind energy. The final battery state of charge reached 100%, 

confirming efficient energy storage and utilization. The study also presents the results of energy optimization 

across a one fill day stretch, demonstrating the optimal daily energy performance of the solar-wind hybrid 

system. 

 

7. CONCLUSION AND FUTURE SCOPES 

The approach can potentially be adapted to different locations and energy demands, making it a valuable tool for 

renewable energy system planning. In future the large-scale rich dataset of the system for long term can be used 

for the optimal solutions.  
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