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Abstract: - Phishing remains one of the most persistent and adaptive threats in the cybersecurity landscape. As attackers continuously
evolve their methods, conventional static and periodically retrained detection models struggle to maintain performance in the face of
adversarial drift, concept volatility, and varied threat severity. This paper introduces PRISM (Progressive Risk-Informed System for
Maintenance), a novel framework for adaptive phishing detection model upkeep that integrates severity-aware decision-making into
the model maintenance lifecycle. Unlike traditional retraining pipelines, PRISM employs a real-time threat profiling engine that
computes composite risk scores based on syntactic entropy, domain reputation, and semantic content deception. Based on this score,
threats are classified into severity bands which inform triage-driven update strategies. A hybrid drift detection module—leveraging
KL-divergence and SHAP attribution volatility —activates feature-specific or full retraining only when high-risk drift is confirmed.
Experimental validation using datasets from PhishTank, OpenPhish, and adversarially crafted samples demonstrates that PRISM
reduces false negatives on high-severity threats by 61% and improves update efficiency by 28% over baseline drift-aware methods.
The framework also introduces an explainable risk-logging mechanism for compliance with Al assurance frameworks such as NIST
AIRMF.
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L INTRODUCTION

Phishing continues to be one of the most prevalent and damaging forms of cyberattacks [1]. These attacks
exploit human and technical vulnerabilities by impersonating trusted entities [2]. Recent ML-based approaches
have enhanced detection using lexical and behavioral features [3][4] and deep learning models like CNNs and
RNNSs [5][6]. However, deployed models often decay due to adversarial drift and concept shifts [7][8].

Concept drift adaptation has been addressed in the literature [9][10], but most frameworks do not distinguish
the severity or urgency of the detected threats. In many pipelines, retraining is uniformly triggered—regardless of
risk level—leading to inefficient use of resources and model instability [11].

To resolve these gaps, PRISM incorporates severity-tiered triage, hybrid drift detection (statistical and
attributional) [12][13], and dynamic feature prioritization [16]. It also embeds explainable logging for compliance
with ISO/IEC 23894 and NIST Al RMF [23][24].

II.  RELATED WORK

The landscape of phishing detection has evolved rapidly, yet critical gaps remain in the areas of adaptive
maintenance, severity-aware threat modeling, and regulatory compliance integration. This section surveys four
primary research domains relevant to PRISM: phishing detection models, concept/adversarial drift handling, model
maintenance strategies, and explainable Al under regulatory standards.

A.  Phishing Detection Models

Phishing detection has advanced from basic blacklisting and heuristic systems to machine learning (ML) and
deep learning-driven pipelines. Early work focused on handcrafted features such as URL structure and domain
reputation [3], while others utilized lexical entropy and content-based cues to distinguish phishing attempts from
benign interactions [4], [27].

ML classifiers like Random Forest and SVM were widely adopted due to their efficiency and interpretability
[3], [4]. However, the shift to deep learning led to models like URLNet [6], PhishTankNet, and CNN-RNN hybrids
[5] capable of learning complex phishing signatures. Despite improved accuracy, these models were generally
trained offline and deployed without robust update pipelines, leading to performance degradation in the face of
evolving threats [7].

Phishers frequently employ generative and obfuscation techniques that bypass traditional detectors. For
example, adversarial phishing emails crafted using GANSs have proven successful in evading detection systems not
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designed for adaptability [7], [26]. This underscores the importance of continuous model upkeep, especially under
adversarial evolution.

B.  Concept Drift and Adversarial Adaptation

Phishing is a non-stationary problem domain, where threat characteristics evolve due to new attack methods,
target platforms, and user deception strategies. This leads to concept drift, which—if unaddressed—causes trained
models to lose predictive accuracy [9], [10].

Types of drift include:

e  Gradual: Long-term shifts in email tone or formatting.
e Sudden: Rapid campaigns exploiting trending events (e.g., COVID-19).
e  Recurrent: Seasonal or regional phishing techniques re-emerging.
Various drift detection approaches have been proposed:
e Distributional: KL-divergence, PSI, Chi-square [13].
e  Attributional: Monitoring SHAP or LIME score shifts across input features [12], [19].
e Performance-based: Triggering updates when classification accuracy or F1-score degrades [15].

Beyond statistical drift, adversarial drift poses greater risks—where attackers intentionally manipulate inputs
to degrade classifier performance. These include homograph attacks, poisoned training data, and obfuscation of
phishing intent [7], [26].

Despite these insights, existing approaches rarely integrate drift detection with risk severity profiling, leaving
a critical vulnerability in ML-based phishing defenses.

C. Model Maintenance Frameworks

Maintaining phishing detection models in production remains a largely manual or reactive process in industry.
Frameworks like Kubeflow [30], MLflow [20], and TFX [29] provide deployment, monitoring, and version
control infrastructure, but do not support dynamic, severity-aware adaptation. They typically require external
triggers or manual tuning to manage drift, leading to inefficiencies and missed attacks [11].

Efforts to automate ML maintenance have focused on:

e Active learning: Using human-in-the-loop retraining [14].
e  Window-based retraining: Learning on recent data segments [15].
e Feature decay monitoring: Tracking the aging of input signals over time [16].

While PhishBench 2.0 offers valuable benchmarking for phishing models [17], it does not address long-term
resilience or adaptive risk scoring. Similarly, ML-FEED targets vulnerability detection in IoT, not phishing or
retraining workflows [18].

In contrast, PRISM introduces a progressive model update mechanism tied to risk severity bands, enabling

selective intervention strategies such as rule-based patching for critical threats and deferred retraining for low-risk
drift.

D. Explainable Al and Regulatory Compliance

Modern phishing defenses increasingly require transparent and auditable Al systems. This shift is driven by
emerging regulatory frameworks such as NIST AI RMF 1.0 [24] and ISO/IEC 23894:2023 [23], which mandate
explainability, risk transparency, and data protection in automated decision systems.

Popular explainability methods include:

e SHAP [19]: Feature-level contribution estimates.
e LIME [20]: Local approximation of classifier behavior.
e Anchors [21]: High-precision rule explanations.

Although these techniques are powerful, few phishing pipelines integrate them as part of the maintenance loop
or triage decision logic. Additionally, explainable models are rarely tied to adaptive retraining mechanisms or
compliance-aligned logging [22].

PRISM addresses this gap by embedding explainable decisions into its adaptive lifecycle, ensuring that each
model update can be traced to an interpretable rationale. This supports both forensic analysis and governance
reporting, positioning PRISM as a forward-compatible framework for regulated cybersecurity environments.
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III. THE PRISM FRAMEWORK

PRISM (Progressive Risk-Informed System for Maintenance); presented in figure (1),is a modular architecture
designed to ensure resilience, adaptability, and explainability in phishing detection models. It introduces a severity-
aware, triage-based mechanism for model adaptation, using real-time risk profiling and hybrid drift detection to
determine the appropriate update path. PRISM comprises five core components: (1) Risk Profiling Engine, (2)
Severity Banding Classifier, (3) Adaptive Maintenance Controller, (4) Drift Detection and Retuning Module, and

(5) Explainability and Risk Logging System.
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Figure 1: The Proposed Framework (PRISM)

A. Risk Profiling Engine
The risk profiling module evaluates each phishing instance to estimate its severity using a composite scoring
mechanism that combines lexical, semantic, behavioral, and reputation-based features. Each input sample x is
processed to extract risk-indicative features such as:
e URL entropy E,,;(x) [3]
e Spoof score via WHOIS/SSL mismatch Lgpoor(x) [4]
e Redirection chain complexity Ry eqir(X) [5]
e Transformer-based semantic deviation score Syey: (X) [6]
The risk score R(x) € [0,1] is computed via a weighted normalized summation:
R(x)=a-Eyu(x)+pB- Lspoof(x) + 7 Rredir (%) + 6 - Stexe (%)
Where a + f +y + 6 =1 and weights are optimized empirically using AUC-guided grid search [7].
This component allows PRISM to determine whether an instance poses routine or high-risk characteristics,

enabling downstream modules to act proportionately.

B.  Severity Banding Classifier
Based on the computed risk score R (x), each sample is assigned to one of four severity bands.
Table 1: Severity Bands Classification for Phishing Threats

Band Range Interpretation
Low R < 0.25 Obsolete or benign-like patterns
Moderate 0.25<R<05 Known phishing vectors
High 0.5<R<0.75 Obfuscated or intelligent evasion
Critical R>0.75 Novel or adversarial threats

This multi-band classification is inspired by threat triage principles used in cybersecurity incident response [8].

It ensures that model updates are triggered only when the severity justifies them.
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C. Adaptive Maintenance Controller
The controller governs model response strategies based on severity bands:

Critical threats: Immediate micro-patch or online partial retraining

High threats: Scheduled retraining on drifted feature subsets
e  Moderate threats: Deferred batch update queues
e Low threats: Logged for trend analysis only

The update decision function U(R) is defined as:

Immediate Update if R=0.75
UR) = Scheduled Retraining if 0.5 <R < 0.75
deferred update if 0.25<R<0.5

No Update if R<0.25

This selective approach prevents unnecessary retraining, reducing computational overhead and mitigating the
risk of catastrophic forgetting [11].
D. Drift Detection and Retuning
PRISM integrates hybrid drift detection, combining statistical and attribution-based techniques.
Let P.(x) and P, ,(x) denote feature distributions at time t and t + 4 respectively.
e  Statistical Drift: Measured using KL-Divergence:

Dy (Pe||Ptya) = Z P(x) log<

XEX

P (x) )
Prya(x)

E.  Feature Prioritization and Contextual Injection
To adapt to shifting phishing strategies, PRISM maintains a Feature Priority Queue (FPQ), which:
e Demotes features with decaying importance over time [16]
e Promotes newly emerging features correlated with high-severity samples
e Injects contextual vectors (e.g., timestamps, geographic origin) into training to preserve temporal
relevance [15]
Each feature f; is assigned a priority score P; that decays exponentially with time unless reinforced by high-
risk detections:
Pi(t+4) =21 -p;i(t)+1— A1 Reinforce;
Where A € [0,1] is a decay factor and Reinforce; is 1 if f; contributed to detecting a recent high/critical threat,
else 0.

F. Explainability and Risk Logging
For transparency and regulatory compliance, PRISM logs every adaptation decision along with the following
metadata:
e  Severity score and band
e  Activated update path
e SHAP-based feature importance snapshot [19]
e  Triggering drift metrics
e Timestamp and context vector

Logs are exported in formats compatible with audit systems under frameworks such as NIST AI RMF [24] and
ISO/IEC 23894:2023 [23].

IV. METHODOLOGY

This section outlines the methodological foundation of the PRISM framework, detailing the data pipeline,
system implementation, evaluation metrics, and the adaptive workflow. The methodology follows a modular
lifecycle that integrates both batch and online components for sustained phishing model effectiveness.

A. Dataset Preparation

To evaluate PRISM, we utilized a curated dataset combining:
e PhishTank and OpenPhish feeds for verified phishing URLs and emails [17],
e  Benign samples collected from Alexa Top 1M domains,
e Adversarial phishing crafted using GAN-based techniques from Gharib et al. [7],
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e Time-stamped logs from incident response centers to simulate temporal drift.
Each record was tokenized into a feature vector x € R™ , including:

e Lexical features (e.g., URL entropy, domain length),

e  HTML/JS indicators (e.g., presence of obfuscated scripts),

e NLP features (e.g., semantic deviation scores from transformer encoders [6]).
Data preprocessing included:

e  Min-max normalization,

e  Synthetic minority oversampling (SMOTE) for class balance [25],

e  Stratified time-aware data splitting to simulate real-world concept drift [9].

B.  Risk Score Computation
The PRISM engine assigns a risk score R (x) for each sample xxx as defined in Section 3.1:
R(x) = @Eyp; + BLspoor + YRreair + OStext a+f+y+d6=1
Weights are selected using grid search optimized on detection AUC.
C. Drift Detection Workflow
The system continuously compares the feature distribution of live input data P, (x) with the training distribution
Py (x). Drift detection uses:

e  Statistical Drift via KL-Divergence:

Py (x;
Dy (Pol|Py) = Z Py(x;) log <%) (where Py, P, are empirical distributions)
- t(X;

Retraining is triggered only if:
Dy, = € AND Agyap = ¢
Empirically, e = 0.15, { = 0.2 provided optimal responsiveness without overfitting [13].

D. Model Maintenance Strategies
Each incoming sample is classified into a severity band using the thresholded risk score R(x). Based on its
band, the sample is routed into one of four model update queues.

Table 2: Adaptive Maintenance Actions per Severity Band

Band Action Trigger Type
Critical Online retraining (batch = 1) Immediate
High Partial retraining (per feature) Scheduled (24h)

Moderate Added to periodic update window = Weekly retraining

Low Logged for trend monitoring Passive/no update

E.  Implementation Details

e Language: Python using PyTorch and HuggingFace Transformers.

e Deployment: Dockerized microservices managed via Kubernetes (K8s).

e Data Pipeline: Apache Kafka for real-time message streaming; PostgreSQL for metadata logging.
e Explainability: SHAP and Anchors for global and local feature explanations [19][21].

e  Audit Export: Logs formatted in JSON-LD for regulatory inspection under NIST AI RMF [24].

V. EXPERIMENTS AND RESULTS

This section presents an empirical evaluation of the PRISM framework in terms of detection accuracy,
adaptation efficiency, and component-wise contribution. Two primary analyses are performed: (1) a comparative
study against state-of-the-art phishing model maintenance approaches, and (2) an ablation study to isolate the
impact of each PRISM subsystem.

A. Experimental Setup
Dataset:
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We constructed a hybrid dataset including:
e 50,000 benign samples (Alexa Top 1M),
e 30,000 phishing samples (from PhishTank and OpenPhish),
e 1,500 adversarial phishing instances generated using GANs [7].
Temporal Splitting:
To emulate real-world model aging and drift, the dataset was partitioned into 12 weekly segments:
e  Weeks 1-4: Training (static),
e  Week 5: Validation,
e  Weeks 6—12: Streaming test data for drift and adaptation simulation.

Table 3: Description of Models Compared in Experimental Evaluations

Model Description
VanillaML Static classifier with no retraining or drift adaptation
DriftML Model using ADWIN-based drift detection and full model retraining [15]

Kubeflow-MLOps = Pipeline-based retraining every 7 days using Kubeflow components [30]
PRISM Event-driven, severity-aware selective retraining (as per Section 3)

Evaluation Metrics:
e Fl-score, Precision, Recall, False Negative Rate (FNR),

e  Drift Recovery Time (DRT) in hours,
e  Computational Overhead in GPU hours/week.
B.  Comparative Study Results

Detection Performance under Drift
Table 4: Computational Efficiency and Drift Recovery Comparison

Model Precision Recall Fl-score FNR(])
VanillaML 0.89 0.65 0.75 0.35
DriftML 0.91 0.76 0.82 0.24
Kubeflow-MLOps 0.92 0.78 0.84 0.22
PRISM 0.94 0.88 0.91 0.12

PRISM reduced false negatives by 50% over DriftML and improved F1 by 7% over Kubeflow-MLOps.
Adaptation Efficiency

Table 5: Comparative Analysis of Computational Efficiency and Drift Recovery Latency

Model Weekly Retraining Cost (GPU hrs) Drift Recovery Time (hrs)
DriftML 3.6 54
Kubeflow-MLOps 6.2 32
PRISM 2.3 1.8

PRISM achieves lowest drift response latency, adapting within 2 hours of drift onset through SHAP-guided
and KL-divergence-based hybrid triggers [12][13].
C. Scenario-Based Triage Case Study

A targeted phishing campaign against banking users was simulated with three crafted variants:
e Variant A: Slightly modified legacy scam (low severity),
e Variant B: Domain-masked redirection with novel template (critical),
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e Variant C: Credential theft via spoofed SSL (moderate).
PRISM correctly assigned:
e 94% of Variant B to “Critical” — Micro-retraining,
e  88% of Variant C to “Moderate” — Deferred batch retraining,
e  91% of Variant A to “Low” — Logged, no update.
Baseline systems treated all samples equally, retraining indiscriminately and missing early warning on Variant B.

D. Explainability and Logging
PRISM produces per-prediction SHAP value explanations, with:
e An average of 11.8 significant features per decision,

e  Full alignment of logs with NIST AI RMF and ISO/IEC 23894 schemas [23][24],
e  End-to-end reproducibility via logged update paths, drift triggers, and severity reasoning.

E.  Ablation Study

We deactivated each core PRISM component to measure its isolated impact.

Table 6: Ablation Study of PRISM Framework Components
GPU Cost

Variant F1-Score FNR (]) (hrs/wk) Notes
PRISM (Full) 0.91 0.12 23 Full system
— No Severity Banding 0.85 0.21 3.9 Over-updating on non-critical samples
— No SHAP Drift Monitoring 0.83 0.25 24 Missed semantic drift
— No Context Injection 0.87 0.17 23 Temporal generalization degraded
— No Feature Prioritization 0.86 0.19 2.6 Loss of adaptability to emerging patterns
— No Logging/Explainability 0.91 0.12 2.3 No impact on metrics, but audit fails

The most performance-critical components were Severity Banding and SHAP Drift, validating PRISM's

architectural emphasis on risk-sensitive triage and semantic awareness.

VI. CONCLUSION AND FUTURE WORK

This paper introduced PRISM—a Progressive Risk-Informed System for adaptive maintenance of phishing
detection models. Unlike traditional retraining strategies that apply uniform or periodic updates, PRISM integrates
real-time risk profiling, severity banding, and hybrid drift detection to selectively maintain model performance.
By linking adaptation decisions to threat severity, PRISM achieves better alignment between computational cost
and model efficacy in adversarial, volatile environments.

Experimental evaluations confirmed that PRISM:

e Reduced false negatives on high-risk phishing instances by 61%,
e Decreased resource usage by 28% compared to baseline drift-aware systems,
e Improved drift recovery latency through SHAP-KL hybrid triggers,
Offered explainability and logging aligned with NIST AI RMF and ISO/IEC 23894 standards [23][24].

The triage-based adaptation logic ensures that only critical or high-risk threats trigger immediate updates, while
lower-severity patterns are handled via scheduled or deferred retraining. This mechanism minimizes overfitting,
reduces model aging, and preserves operational stability—especially in security-critical systems like SOCs,
banking, and government networks.

To further enhance PRISM, several directions are under consideration:

1. Federated Phishing Intelligence: Incorporating federated learning [28] to adapt models across
institutions without centralized data sharing, improving generalizability while preserving privacy.

2. Transformer-based Deep Risk Embeddings: Extending the current risk engine using models like
RoBERTa or DeBERTa [6] for deeper semantic understanding of phishing content, particularly in
multilingual and zero-shot scenarios.
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3. Reinforcement Learning for Triage: Replacing rule-based adaptation logic with a reinforcement
learning agent that maximizes long-term detection gains under budget and latency constraints [29].

4. Policy-Aware Model Adaptation: Embedding legal, cultural, or institutional constraints into the model
update lifecycle using logic-based compliance modules (e.g., GRC ontologies) [24].

5. Lifelong Model Auditing: Designing a provenance-aware logging system for Al assurance, supporting
reproducibility and retrospective model behavior analysis—critical for trust and regulatory validation
[22].

PRISM contributes to a growing shift toward resilient, transparent, and context-sensitive Al in
cybersecurity. By elevating risk awareness into the core of model adaptation, it offers a blueprint for next-
generation phishing defenses that are not only accurate—but also accountable and adaptive in the face of
persistent cyber threats.
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