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Abstract: - The integration of digital technologies enhances smart grid connectivity, dependability, and sustainability, but their
growing complexity necessitates advanced, intelligent anomaly detection for secure operation. This study proposes a novel hybrid
framework combining Graph Convolutional Neural Networks (GCNN) with the Harmony Search Algorithm (HSA) for robust
anomaly detection in smart grids. HSA optimizes GCNN hyper parameters, significantly boosting detection accuracy and
responsiveness. A key innovation is the integration of Explainable Artificial Intelligence (XAI) techniques, specifically SHAP and
Grad-CAM, to render the model's decision-making transparent and interpretable. This allows stakeholders, including operators and
analysts, to better understand, validate, and trust the model's predictions. Experimental evaluations on the IEC 60870-5-104 and
public cyberattack datasets confirm the proposed GCNN-HSA framework's superior performance in accuracy, precision, recall, F1-
score, and AUROC compared to conventional methods. The XAI components further enhance system usability and accountability.
This research contributes a novel, high-performance, and inherently explainable anomaly detection framework, addressing both
technical efficacy and operational transparency to foster more secure, reliable, and interpretable smart grid infrastructures.

Keywords: Smart Grid, Intrusion Detection System, Anomaly Detection, Cyber Attacks, Cyber Security, Graph
Convolution Neural Network, Deep Graph Convolution Neural Network, Harmony Search Algorithm.

L INTRODUCTION

The fusion of traditional power grid infrastructure with communication technology has led to the next-
generation smart grid, enabling real-time information exchange between the grid and end-users via smart meters.
These grids aim to modernize the power system by enhancing reliability, resilience, and efficiency. To fully
realize these benefits, advanced energy harvesting and management strategies, including the use of smart meters
and consumer applications, have been implemented [1]. Smart grids enable features such as adaptive power
generation, self-healing capabilities, efficient energy use, and improved power quality. However, the
incorporation of such technologies introduces significant cybersecurity risks that threaten the grid's integrity and
availability [2].

The smart grid comprises four main components: production, distribution, transmission, and consumption, as
visualized in Figure 1. Smart grids consist of four key components: generation, transmission, distribution, and
consumption, interconnected through hierarchical communication networks—WAN, NAN, and HAN [3]. These
networks facilitate real-time data exchange and operational control. The smart grid ecosystem is supported by
sophisticated devices, such as PMUs, smart meters, and automated substation relays, which enable precise grid
monitoring and enhance fault tolerance. Despite their advantages, the increasing integration of smart technologies
creates a large attack surface, making them vulnerable to cyber threats such as data manipulation, spoofing, and
denial-of-service (DoS) attacks [4]. In such a scenario, early and accurate anomaly detection becomes essential to
ensuring system resilience.

Explainable Artificial Intelligence (XAI) has emerged as a crucial component in the deployment of machine
learning models in critical systems like smart grids. While many Al-based Intrusion Detection Systems (IDS)
offer high detection accuracy, they often function as "black boxes" with limited transparency. XAl addresses this
limitation by providing insights into the decision-making process of models, making them interpretable and
trustworthy. In smart grid applications, XAl can help system operators understand why a particular event is
classified as anomalous, thereby improving response strategies, building trust, and facilitating compliance with
safety and regulatory standards.

An IDS is a core cybersecurity mechanism that monitors systems for unusual or unauthorized activities [5].
These systems can be configured based on signatures, anomalies, or specifications, and hybrid models can
combine these strategies for enhanced performance. Al-driven anomaly-based IDS models are increasingly used
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due to their ability to identify unknown threats by learning behavioral patterns [6]. Yet, the success of these
systems heavily depends on optimal feature selection and hyper parameter tuning, which can affect detection
accuracy and computational efficiency. In response to these challenges, our work proposes a hybrid GCNN-HSA
framework for anomaly detection in smart grids. The Graph Convolutional Neural Network (GCNN) excels in
capturing spatial and relational patterns from the grid topology, while the Harmony Search Algorithm (HSA) is
employed for efficient hyperparameter optimization. In addition, XAl techniques are integrated into the
framework to generate transparent and interpretable model decisions, allowing operators to trace back the logic
behind anomaly detection outcomes.
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Figure 1: The Smart Grid's Architectural Design

The primary contributions of this study are summarized as follows.

= Development of a GCNN-HSA-based intrusion detection framework tailored for smart grid
anomaly detection.

= Integration of XAI modules to interpret anomaly predictions, increasing the model's transparency
and operational trust.

= A lightweight IDS architecture that reduces computational overhead through optimized feature
selection.

=  Comparative performance analysis with state-of-the-art models, demonstrating improvements in
accuracy, interpretability, and reliability.

The remaining portions of the text are arranged as follows: Section 2 provides illustrations of the relevant
material. Section 3 deals with the cyber-attack data description utilized in the proposed work. The proposed work
is presented in Section 4. The experiments and their findings are presented in Section 5. Section 6, concludes
with a discussion of a few potential areas for future investigation.

II. RELATED WORKS
Numerous research has been done to try and solve this issue, such methods have been covered in this section.
The system's goal is to recognize suspicious activity and cybersecurity concerns by utilizing recurrent neural
networks (RNNs) [7]. DL and block chain technology are used by Fortitude to enhance security [8]. One
shortcoming is the lack of details about performance metrics and how they compare to other strategies. Machine
learning (ML) [9] strategies to raise the smart grids' efficiency, security, stability, and responsiveness. The study
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concentrated on tackling issues such as the lack of labeled data, changing attack patterns, and the creation of
high-resolution synthetic data. Researchers [10] presented hardware hacking outcomes and hardening approaches
to fend off assaults and lessen susceptibility. A deep reinforcement learning (RL) recovery technique leads to the
optimal power system line following cyberattacks [11]. The suggested approach exhibits efficacy in reducing the
effects of cyberattacks in a range of circumstances and can adjust to unpredictable attack scenarios.

A DL approach for identifying delay network assaults utilizing hybrid Convolutional Neural Network-Long-
Short Term Memory (CNN-LSTM) models [12]. A performance rate higher than 99% was observed in the
experimental data which also uses DL to detect delay network attacks. The Multicast LSTM [13] to forecast the
stability of smart grids, also combined physical systems and information technology infrastructure, comparing
the outcomes with existing DL techniques. National Institute of Standards and Technology (NIST) typical
conceptual model analysis of smart grid domains for three key block chain characteristics: decentralization,
incentive, and trust [14]. A comprehensive overview of security alternatives for smart grid systems with fog-
based edge-enabled intrusion detection [15], [16]. Cyberattacks in energy systems were successfully
distinguished from frequent events by the ML-based technique [17]. The body of research on Al approaches for
power systems and smart grid security issues, fault detection, load forecasting, and grid stability assessment [18].
The study emphasized how Al could enhance the robustness and dependability of smart grid methods for grid
stability, fault detection, and load forecasting [19].

Conventional methods use PMU to estimate the power system's state and compare the estimated readings
with a threshold for detecting cyberattacks [20],[21]. The cosine similarity matching and chi-square detection
methods for spotting cyberattacks on smart grids [22]. ML has been a popular tool for cyberattack detection in
recent years [23], [24]. Several supervised learning methods were investigated to distinguish between
cyberattacks and power system disruptions. To detect FDI assaults, [25] employed feature-level fusion and
ensemble learning in conjunction with several well-known supervised algorithms. An Ad boost-based
classification model [26] for power system disruptions and cyberattacks identification, utilizing individual PMU
data. They used weight voting in conjunction with classification models and feature construction to generate new
features from PMU for final detection.

The IEEE-designed European Low Voltage System has been the target of some models and simulations of
assaults. Simulation studies indicate that these kinds of attacks could result in blackouts across the European
Union. Power system equipment security is just as vital as smart meter security. A method for identifying
cyberattacks based on network traffic self-similarity is developed in [27]. The IEC 61850 standard's GOOSE
messages are used for power-system protection, and smart grids depend heavily on their dependable
transmission. To address this, [28] develops an anomaly detection technique to identify Denial of Service (DoS)
attacks against GOOSE network communication.

Attacks such as False Data Injection (FDI) are acknowledged as posing a serious risk to smart-grid
functionality. A comprehensive analysis of FDI assaults, their effects on the various tiers of smart grid operation,
and available mitigation strategies is given in [29]. A two-tier smart-grid architecture [30] to safeguard smart
grids measurements after realizing how important it is to mitigate FDI assaults. For security, elliptic curve
cryptography is used. Cybersecurity research necessitates projects involving hardware demonstrations and lab
implementation in addition to theoretical study [31]. Investigations are conducted on how cyberattacks affect
grid-connected storage devices and how they affect the electricity system.

It's critical to identify anomalies or attacks in smart grids. [32] Uses an LSTM architecture in conjunction
with a CNN to identify electricity theft. A novel anonymous and secure metering technique was created by
researchers in [33]. This is necessary to address privacy concerns related to high-resolution data that smart meters
acquire. Identity-based signatures and direct anonymous attestation form the foundation of the new method. The
detection methods are categorized as: anomaly-based, stateful-based protocol analysis, and signature-based. Bad
patterns are identified by signature based on past data. Anomaly techniques identify irregularities by detecting
deviations from network traffic. An alternative to anomaly-based detection is stateful-based protocol analysis.
Smart grid infrastructure, IDS is thought to be one of the primary methods for spotting cyberattacks [34], [35].
Effective detection of unknown or zero-day threats is one of these systems' key advantages [36], [37]. IDS has
been suggested in many research to identify cyberattacks. Furthermore, some efforts focused mainly on
enhancing signature-based IDS. A deadly detection IDS system [38]. The suggested system combines IDS
features with the Cumulative Sum (CUSUM) method.

In conclusion, the literature study addresses a variety of approaches, including the use of Al techniques to
address various issues in smart grid security, as well as DL and block chain-based security solutions. According
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to the assessments above, these techniques have many shortcomings, such as the inability to stop a slow attacker
near the attack's origin. This research presents a GCNN-based technique to solve these shortcomings. Anomaly
detection is a tool IDS and other cybersecurity technologies use to help detect abnormal or suspect user behavior
or network traffic patterns. These patterns may point to possible security concerns or assaults, such as malware
infections or unauthorized access.

III. CYBER ATTACK DATA DESCRIPTION IN POWER SYSTEM FRAMEWORK
This study utilized two different datasets from a framework for a power system made up of network
monitoring devices, supervisory control systems, and smart devices for power system monitoring, control, and
other related communications to automate electric power systems as shown in Figure 2.
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Figure 2: Power System Framework

Table 1 Power Systems operational situations and events-Test System-1

Scenario No  Event Description Type

1-6 Short-circuit fault Natural

13, 14 Line maintenance Natural

7-12 Data injection Attack

1520 Remote tripping command injection ~ Attack
21-30,35-40 Relay setting change Attack

41 Normal Measurements. Normal Condition

Table 2: Power Systems operational situations and events- Test System-2

Scenario No  Event Description Type

1 Denial of Service Attack
2 Switching Attack Attack
3 Injection Command  Attack
4 Connection Lost Attack
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Scenario No  Event Description Type
5 Rogue Device Attack

The public data available at [39] was used for the experiments, the data was accessed on June 3, 2024.
Subsequently, the public was able to access the [EC 60870-5-104 (IEC104) control communication protocol [40]
and the datasets for the study are available [41]. Four smart electronic gadgets and two power generators (G1 and
G2) (IEDs), designated R1 through R4, make up the initial test system. Four breakers (BR1 to BR4) are
controlled by these IEDs, and two transmission lines (L1 and L2) link the breakers. Because of its distance
protection system, the IEDs can automatically flip breakers in the event of a malfunction. Nevertheless, since the
IEDs lack internal validation, these breakers can be changed regardless of whether the malfunction is the result of
an attack or a natural abnormality. For maintenance reasons, operators can also manually swap the IEDs. By
modeling various operating scenarios, the power system framework may also produce data about three different
kinds of events: attack events, natural events, and no events.

In SCADA networks, the second dataset is frequently used for managing vital infrastructure, including power
plants. In smart grid settings, the IEC 104 protocol is widely used to transfer data monitoring and control across
several systems and devices. This protocol makes it possible for communication between SCADA systems,
sensors, actuators, controllers, and other power grid components. The well-known IEC 60870-5-104 dataset,
includes a variety of malicious attack types as Denial of Service, Switching, Injection Command, Connection
Loss, and Rogue Device, to assess the efficiency of the proposed framework.

IV. PROPOSED GCNN-HSA-XAI MODEL

This section delineates the limitations observed in existing deep learning (DL)-based Intrusion Detection
System (IDS) research and introduces the proposed GCNN-HSA-XAI model, which not only enhances detection
capabilities but also incorporates explain ability into the decision-making process. The primary objective of this
research is to identify and utilize optimal features that significantly improve the performance of IDS in terms of
accuracy, precision, and interpretability.

The proposed model leverages a Graph Convolutional Neural Network (GCNN) to effectively process
structured smart grid data, capturing spatial and topological patterns that are indicative of cyber anomalies. To
further refine the model's performance, the Harmony Search Algorithm (HSA) is used for hyper parameter
optimization, enabling efficient tuning of GCNN layers, learning rates, and other network parameters. To address
the black-box nature of deep learning systems and improve transparency, the model integrates Explainable Al
(XAI) components. Specifically, techniques such as graph node attribution and feature importance ranking are
employed to provide human-interpretable insights into the model's predictions. These XAI methods help explain
why a certain anomaly is detected, which features contributed most to the decision, and how the graph structure
influences detection outcomes.

This GCNN-HSA-XALI fusion allows the system to:

e Detect attacks in smart grid systems with high precision and minimal false positives.

e Adapt effectively to diverse attack types through optimized learning.

e Provide transparent, traceable, and interpretable justifications for each anomaly detection decision,
fostering trust and confidence in the IDS's outputs.

By combining the structural learning power of GCNN, the optimization efficiency of HSA, and the
interpretability brought by XAl the proposed model not only detects intrusions effectively but also explains them
a critical capability for securing cyber-physical infrastructure like smart grids.

A. Dataset Description

Table 1 presents details of 37 simulated operational scenarios along with the different types of events
associated with the first data set. There are six types of events, and they are explained below:

1. Normal Condition: Normal readings & Measurements.

2. Short-circuit fault: By examining the data's percentage range, it is possible to determine that there has only
been one line-to-ground fault.

3. Line maintenance: Operators turn on and off one or more IEDs to carry out maintenance on specific
sections of the electrical system and its components.
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4. Command injection attacks on remote tripping: If an attacker manages to get access to the system, they can
transmit commands that alter the status of IEDs and control the switch breakers.

5. Attacks on Data injection: Attackers alter settings, such as deactivating key functions, which prevent the
IEDs from activating.

6. Data injection attack: Attackers manipulate the PMU measurements, to imitate a legitimate fault and
trigger the tripping of breakers [3]

Table 2, presents the operational scenarios and the different types of events associated with the second data
set. There are five types of events and they are explained below.

1. Denial of Service (DoS): Unauthorized access is gained by the attacker using a fake IP address to flood the
victim with a large volume of messages, overloading and disrupt its functionality, potentially leading to grid
failure.

2. Switching Attack: The attacker's goal is to manipulate the operational status of the station to disrupt its
functionality, it may have detrimental effects on the stability and general operation of the grid.

3. Injection Command: The attacker wants to undermine the targeted device's functioning and integrity to
possibly disrupt or harm the system as a whole. The attacker tampers with the system by altering configurations
or sending fake commands to a device that is connected. This causes a variety of irregularities.

4. Connection Lost: The purpose of these assaults is to interfere with the targeted device's regular operation,
possibly leading to delays, malfunctions, or data loss. The attacker tries to tamper with particular devices in an
attempt to break their associated communications.

5. Rogue Device: Access to the communication network is obtained by the attacker without authorization, the
attacker can force authorized devices to carry out unauthorized actions and transmit arbitrary messages, which
could result in unpredictable events and potentially dangerous consequences.

B. Data Processing and Training Model

To implement an ML-based anomaly detection system, it is crucial to properly prepare the data. This research
gathered data from four PMUs with integrated relays, resulting in a total of 116 features. Data was gathered from
several PMU sources spread throughout the proposed power system framework, resulting in a significant volume
of data exceeding several terabytes. Cleaning was done as part of the data selection process to get rid of noise,
missing data, and outliers. To make sure the supplied data was reliable and consistent, data validation was done.
After that, the information was included in a real-time data platform, which made it possible to receive and
process data streams from PMU devices instantly. To guarantee the quality and consistency of the gathered data
for anomaly detection, cleaning, and preparation phases were applied.

With the increasing complexity of anomaly detection methods, there is a growing need for interpretable
models that can elucidate the rationale behind anomaly detection. Explainable Al techniques can enhance
decision-making and foster greater trust. Specific hyper parameters were used to train each algorithm, and these
adjustments were made iteratively as the algorithm was being trained. Each layer of the CCNN's activation
function, number of hidden layers, and units were changed to correspond with the complexity of the temporal
data sequences. The chosen method was refined via painstaking training with adjusted hyper parameters. The
models had to be trained and validated on various combinations of subsets, and the overall performance of the
model had to be evaluated by averaging the results. Furthermore, off-validation was carried out by sampling the
validation set to guarantee the models' performance on data that had not been observed before. Verifying that the
models could successfully detect anomalies and generalize to real-world events was crucial. The stratified dataset
configuration and algorithm-specific hyper parameter optimization were taken into consideration during the
meticulous execution of the training and validation phases. These crucial phases made sure the models were
accurate in assessing their performance in identifying anomalies in crucial smart grid infrastructure and that they
were ready for evaluation on the validation set and properly calibrated.
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Figure 3: Flow diagram of the proposed method

C. Deep Graph Convolutional Neural Network (DGCNN) Model

DGCNN:S, also known as Deep GCNN, have demonstrated effectiveness in intrusion detection, particularly in
safeguarding SG. Smart Grid systems are progressively becoming more interconnected, rendering them
susceptible to different online dangers, like malevolent assaults. Strong IDS are necessary to recognize and
neutralize these dangers. DGCNN is utilized for anomaly detection and consists of four components:

1. The high-dimensional attributes of the input nodes and the rich structure information of the input graph are
extracted by the first stage's sixteen-layer graph convolution layers.

2. To capture deeper structure information and node attributes and produce a consistent vertex ordering, the
second-stage graph convolutional layers (16 layers) blend the high-dimensional node features from the first-stage
graph convolutional layers with the initial low-dimensional data.

3. To standardize the number of nodes as the input for the next stage, Sort Pooling arranges the node
characteristics generated by the second-stage graph convolution layers.

4. The sorted continuous node features are then used to predict graph attributes with dense and one-
dimensional convolution layers.

Figure 3 shows an illustration of the flow diagram for the suggested strategy. Combining GCNN-HSA
improves the anomaly detection model's accuracy, adaptability, and robustness, which in turn improves the
security and dependability of intelligent power distribution systems [42]. The main goal of the model is to
manage vast and complicated volumes of data while effectively identifying time series anomaly patterns by
handling time series data from the power system. The addition of HSA improves the model's capacity to
recognize novel or hitherto undiscovered aberrant patterns.
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Figure 4: Overview of the GCNN-HAS

The suggested method's architecture is depicted in Figure 3. The system uses a DL method based on GCNN
in two learning steps to generate an IDS. When working with datasets that have complete features, our proposed
GCNN-IDS is computationally efficient. It reduces the possibility of false alarms while simultaneously providing
increased precision. This research utilizes GCNN-based DL to address these challenges, which combines an HSA
with a CNNDL model. The core structure of the GCNN-IDS acts as the basis for this research. A detailed
illustration of the GCNN-IDS is provided in Figure 4. Two essential parts make up a CNN, as an overview of the
GCNN-IDS demonstrates: a classifier and a feature extractor. The feature extractor consists of layers for pooling
and convolution. The feature map that is produced as a consequence serves as the classification's input. This
approach enables CNN to grasp local features effectively. However, the failure to capture temporal dependencies
among critical features is a limitation. In response, we introduce recurrent layers after the CNN layers to more
effectively capture both spatial and temporal features. This improves the capability of learning temporal and
spatial correlations from variable-length sequences by addressing problems with disappearing and expanding
gradients. In the GCNN network, the input data is first handled by the CNN and then by the recurrent layers,
resulting in sequences at each time step. Spatial and temporal feature modeling is possible with this concept. To
build the probability distribution over the classes, the sequence vector is passed to the next layer after being
processed by a fully connected layer.

1) Non-local Message Passing Neural Network (NLMP)
Graph neural networks are based on generalizing and abstracting similar GNN network structures. These are

then integrated into a single framework that offers concepts for adaptable model construction and enhancement.
A deep graph neural network system that addresses the issue of excessive smoothing to obtain greater distant
dependencies of nodes. Multi-layer graph convolution is stacked this method can enable the graph neural
network's node information aggregation to rely on local information and information aggregation from multi-hop
neighborhoods at the vertex level. To extract higher-dimensional abstract data from networks of different scales,
appropriate depth and information aggregation technologies can be created to aggregate node information and
structural information of the entire graph to the target node.
The following is the suggested NLMP framework in as follows:

(t+1) (), (&), (0) , (t=1)
R, = Z M, (hi Ay Thi TRy ,ei}-)
v;EN(v;)

The target node g aggregation update aggregates its first-order surrounding nodes’ information along with the initial

0 : t—1
input feature hg ) of the node ! and hg ) the node feature. At time t, there is a {hj(.t)h;j EN (vl-)} method for
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D

. t— 0) . . . . .
aggregating hg and hg ) in the NLMP framework. The node information aggregation process introduces
. . . - 0 .
residual connections and dense connections because initial features h§ ) of the target nodes are retained when the

. . . . t—1) . .
GNN is deep enough, after iterations. The preceding moment of node features hg ) is introduced so that the final

output node features contain a part of the output results of all convolutional layers. This guarantees that node features
produced by all earlier layers will always be present in the output of each graph convolution layer.

The average aggregate of neighborhood information after the import of deep graph convolution causes the features
in the subgraph to tend to be since the nodes in the same subgraph are frequently densely related. As a result, the
NLMP framework compensates for the over-smoothing problem brought on by the average aggregation of neighbor
nodes and proposes both single- and multi-relational graph data. The following is the more detailed design of the
NLMP framework:

1
h§“ Y= M, c(h) Z f (hgtJJth)) ' g(hjgt))\ ,g(hgn)).g(h? ]))

v;EN(17;)

The attention coefficients are represented by f in the NLMP framework. The node feature transformation function is

. . M . 1.
represented by 9, the message aggregation function by M, and the results are normalized by the factor /c (h).

2) Graph convolution layer

An adjacent matrix is determined by the attention coefficient. An inverse relationship between the weighted

2 . .
Euclidean distance, I v(N)—v(N j) I 2, can be used to describe the similarity between pixels ¢ and J. The data
similarity, compares node-to-node similarity to quantify node feature vector similarity and computes similarity using
the inner product of the linearly transformed node vectors.

f(hohy) = 70D

In this case, qo(hj) - W‘th and O(h) = Wghi. The attention coefficient between the nodes in GAT model
adopts the concatenation function based on the NLMP framework proposed is:

_ I,Ual(yRelu(aT|Wh-lIWh-|)
f(hyhy) =e B
. . . axb . .
The learnable Welght matrix 1S expressed as WER , concatenate operation 1S represented by

(2ax1) ) . .
(Whi Il Whj) €R , and the feature vectors of nodes ! and / are denoted by hi and hJ.

3)  Identity mapping-based feature transformation.

A straightforward linear transformation function (h) = Wh for feature transformation J in Eq [eq2]. Identity
mapping in ResNet is a concept for their GCN model, which also incorporates identity mapping into GCN. The

I

linear transformation function is denoted as, where the identity matrix ‘1, and the weight matrix w.

g(h) = (A=D1, + WD)

The aforementioned equation demonstrates how the number of layers, l, affects the weight matrix decay parameter,
O1. The hyper-parameter, )‘, that is set in GCN is o = log(A/ [+1) The weight matrix inactively decays as the

number of layers rises due to o1,
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The proposed DGCNN extracts the non-local structural information of nodes by stacking deep graph convolutions,
nxc
given an input graph G= (V, E) and its node feature matrix X € R . This allows for the aggregation of non-local
th
neighborhood node information. The (t + 1) graph convolutional layer has the following definition:

72D = o((@abrz® + gz +yx) (1=6D)1, + sOW®))

t tl
In the following equation, Z ® is the result of the T graph convolution layer. The adjacency matrix of the input

I ()
graph G is determined by the attention coefficient of the " graph convolution layer, where (A GAT) ij € {O’T}, can
7(0) — 7(1)

t . .
=X .AE; le € R™". The correlation between nodes’ attention coefficient t and J is

(vilvj) € E

first be made as
represented by the real number " € (0,1), if there is an edge between them, that is,

The four steps below are separated into each layer of graph convolution:

1. To create the new node feature matrix Y =Agarz , the node features are first transmitted through AgarZ to
the neighboring nodes and the nodes themselves based on various attention weights following nonlinear
activation.

2. By addingy, the output of the preceding layer’s graph convolution, and the initial node feature matrix by the

corresponding percentage, the new feature matrix bary is produced.

3.Based on identity mapping, a linear feature transformation is applied to the node feature matrix

throughbarYleft((1—delta)l, + deltaWright).

4. Lastly, the output of the GCN is acquired through the application of the nonlinear activation function to the
preceding step’s result.

4)  Remaining layers

The node attributes that the convolution layer of the network has learned are combined by the graph pooling layer.

.t} { ,
The i dimension of the node embedding is denoted byx;(;), while the neighbour nodes of node ! are represented

K
byN i. The deeper the convolution layer, the more Z 0 that can separate a node into distinct colours or groups. The
DGCNN model presented in this research, comprises 32 layers of graph convolution, whereas the DGCNN model

K
only has 4. Based on the final channel Z & output of the graph convolution layer, the nodes are ordered in

(K)

descending order. If the values of two nodes in the Z~ ° channel are the same, then they are compared via the
K-1 K
), and so on. A tensor of shape 1 X 21 Ct is received by the SortPooling layer as input from

previous layerZ ¢
K
the GCN layers. The SortPooling layer expands or truncates the input tensor of 7 X 21 C¢ to the tensor of
K
k X 21 Cy size. This allows for easier network processing in the future. First produce a row vector of

K K
ke (Z 1 Ct) X 1 from the & X 3, 1 Ct tensor output by the SortPooling layer.
D.  Harmony Search Algorithm (HSA)

One type of swarm intelligence optimization technique is the HSA, The quest for the ideal balance is similar to the
process of seeking the best solutions to engineering challenges. The HSA approach draws inspiration from the
principles of harmony improvisation, encompassing four main steps. Algorithm 1 provides the pseudocode for the
HSA.

Step 1: Initialization of parameters: The settings for the harmony search are controlled. These parameters include
fret width (fw), harmony memory considering rate (HMCR), pitch-adjusting rate (PAR), HMS, and the last criterion.
Step 2: Calculate each harmony’s fitness value and initialize the Harmony Memory (HM).

X'=0.
j=1k
a€X
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a = [rand(0,1) X N|
X'ea.

Score(i) = f(Xi);

Where a uniformly dispersed between 0 and 1 is represented by the rand(ojl). The HMS harmonies make up the

harmonic memory (HM), as shown in the equation.
new
Step 3: A new harmonyX "
Xnew — @
j=1k
Rand (0,1)< HMCR
X"*"(j) = HM([rand(0,1) x HMS],))
rand(0,1) < PAR
XI’IEW(]-) — I-Xl’leW(]) i fW-l
X"Y(j)=[rand(0,1) X N].
Step 4: Update the worst harmony in HM.
f(XnEW) > ]c(Xidworst)
Xidworst = yhew,
Score (Fdworst) = f(X"")
Where the HM worst harmony index is denoted by idworst.

Step 5: The stopping requirement is attained. The outcome is ended if the halting condition is satisfied. If not,

repeat steps three and four.

1) Data Preprocessing

Graph Construction: Smart grid data is represented as a graph, in which nodes represent components (e.g.,
sensors, meters) and edges represent connections (e.g., communication links, power lines).

Feature Extraction: Extract features, such as voltage, current, power, and status codes.

Normalization: Normalize features to ensure consistent scaling and improve model performance.

2)  Graph Convolutional Network (GCN)
Smart grids can be represented as graphs where nodes represent different components (e.g., generators,

substations, and meters) and edges represent their connections. GCNNs can extract features from these graphs,
capturing complex relationships and patterns that traditional methods might miss.

Input Layer: The GCN takes as input a graph representation of the smart grid, where nodes represent devices
(e.g., sensors, controllers) and edges represent communication links. Accepts the graph-structured input data,
consisting of node features and adjacency matrix representing the graph's connectivity.

Graph Convolution Layers: Multiple layers of graph convolution are applied to capture the structural
relationships and features among nodes. Each layer aggregates information from neighboring nodes, allowing the
network to learn complex patterns in the graph data. This allows the model to capture spatial dependencies and
structural patterns in the data.

Activation Functions: After every convolutional layer, non-linear activation functions (such ReLU) are
employed to facilitate the learning.

Pooling Layers: Optional layers to reduce the dimensionality and complexity of the graph representation,
aggregating information from larger neighborhoods.

Output Layer: The final output can be a classification of nodes (normal vs. anomalous) or a reconstruction of
the input graph for anomaly detection.

3) Harmony Search Algorithm (HSA):

HSA can be used to optimize the hyper parameters of the GCNN. This includes tuning parameters such as
learning rate, node features, and number of layers, and edge weights to enhance the GCNN's performance. HSA
can also be applied to optimize the training process itself, potentially improving the convergence speed and final
accuracy of the IDS. The GCNN can classify network activities as normal or anomalous based on learned
patterns. The system can operate in real-time, continuously monitoring data flows and flagging suspicious
activities or deviations from normal behavior.

Initialization: Generate an initial harmony memory (HM) consisting of multiple solution vectors (i.e., possible
sets of GCNN parameters).
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Improvisation: Create new solution vectors by combining existing vectors in HM, applying random
modifications based on a harmony memory considering rate (HMCR) and pitch adjusting rate (PAR).

Parameter Optimization: HSA is utilized to optimize hyper parameters of the GCN, such as learning rates,
number of layers, and regularization parameters. This optimization process helps improve the model's
performance in detecting anomalies.

Fitness Evaluation: Evaluate the fitness of each solution vector using a predefined objective function, such as
the accuracy of anomaly detection.

Harmony Memory: A memory structure is maintained to store the best-performing parameter sets found
during the search process.

Update Harmony Memory: Update HM by replacing the worst solutions with newly improvised solutions if
they offer better fitness.

Improvisation Process: New parameter sets are generated based on the harmony memory, explore the search
effectively and avoid local minima.

4) Integration and Training

Parameter Optimization: Use HSA to optimize the parameters of the GCNN, including weights, biases, and
hyper parameters (e.g., learning rate, number of layers).

Training Loop: Train the GCNN using labeled training data, iteratively updating the model parameters to
minimize the loss.

Validation and Testing: Validate the model on a separate validation dataset to tune hyper parameters and test
on a test dataset to evaluate performance.

5) Anomaly Detection Process:
Ensure the smart grid data is correctly represented as a graph structure suitable for GCNN. Properly partition

data into training, validation, and testing sets to ensure model generalization. Integrate the HSA optimization
process into the GCNN training pipeline to iteratively improve model performance. By combining the HSA with
a GCNN for an IDSin smart grids, you leverage the strengths of both optimization and DL techniques, potentially
leading to more robust and effective cybersecurity solutions for critical infrastructure like smart grids.

Training Phase: The GCN is trained on a labeled dataset including both typical and unusual data instances.
The HSA optimizes the GCN parameters during this phase.

Detection Phase: After training, the GCN is used to analyze new data from the smart grid. Anomalies are
detected based on deviations from learned normal patterns, with the HSA ensuring that the model remains finely
tuned for accurate detection.

Improved Accuracy: The combination of GCNN and HSA enhances the model's ability to detect anomalies
by leveraging graph-structured data and optimizing model parameters.

Scalability: The architecture can handle large-scale smart grid data with complex relationships and
dependencies.

Robustness: The system is robust to noise and variations in the data, improving reliability in real-world
scenarios.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The suggested model trained 64 GB of RAM and an Intel Xeon system CPU. Implemented in Tensor flow
and the Keras packages in Python 3.7. First, the dataset was split into training and testing categories, and
monitoring of accuracy and loss was done during the training. There were eight in the batch, 50 training epochs,
and a 0.001 learning rate.

A.  Training

Using the parameters and hyper parameters listed in Table 3, the training dataset is split into 80% for training and
20% for validation for each training epoch, which is how the DL network is trained. After that is done, the
accuracy and loss curves for each training period can be obtained; these curves are displayed in Fig. 7 and Fig. 7,
respectively. The accuracy approaches 95% in both training and validation. Conversely, the loss function in both
the training and validation phases falls below 0.11.
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Table 3: CNN-GRU hyper parameter configuration.

No Hyper parameter Recommended Values
1 Learning Rate 0.001
2 Convolutional Layers 23
3 GRU Units 32,64,128
4 Dropout Rate 0.2—0.5
5 Batch Size 16—128
6 Number of Epochs 50

B. 5.2. Metrics for performance

The following section outlines the standard metrics for assessing the quality of IDS in smart grid
environments. Assessing outcomes is essential for determining how well anomaly detection algorithms work
inside the vital components of the smart grid. The metrics used for detection are classified to gauge the efficiency
and effectiveness of the proposed technique. Table 4 presents several evaluation metrics used in this research,
such as sensitivity or recall, accuracy, precision, F1-score, false alarm rate, and detection rate to evaluate the
performance of the model.

Table 4: Evaluation Metrics

Evaluation Metrics Formula
Evaluation Metrics Formula
Sensitivity or Recall TrP
Recall = TP+ F N
Precision L TrP
Precision = —TRP T F P
F1-Score TrP
Fl=Score = 2% o P Y F P+ F N
Accuracy TrP + TyN
ACCUT Ay = o T N+ FaP + FuN
False Alarm Rate (FAR) F,P
FAR = /77—
TyN + F4P
Detection Rate(DR) TrP
DR =1 v F.N

The real and expected classifications are found using the confusion matrix (CM). It evaluates the results of
classifying data into two groups: normal and anomalous. Within the confusion matrix, four important states need
to be assessed:

1. True Positive (TRp): This suggests that the model accurately detects typical occurrences and forecasts
favorable results.

2. False Negative (FA,): This happens when the model misclassifies anomalies as normal and predicts
negative outcomes for those occurrences.

3. False Positive (FA;): When the observed cases are normal, the model in this instance predicts a positive
outcome wrongly.

4. True Negative (TRy): This indicates occurrences that are accurately classified as anomalies and forecasts
unfavorable results.
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C. Performance Evaluation

Test System-1: This study employs multiple assessment metrics to evaluate the system's performance,
including precision, recall, accuracy, area under the curve, and F1-score. Identifying the number of anomalies is
reliant on understanding and analyzing the critical infrastructure system being studied. The main purpose of this
metric is to analyze how well binary classification problems perform. Figure 5 shows a confusion matrix, which
is a method used to calculate the model's accuracy. The effect of expanding the dataset's instance count is shown
in the confusion matrices. The model performed a very good job of distinguishing between the anomaly and
normal scenario. The Precision-Recall curves for every anomaly detection model are shown in Figure 6a as the
decision threshold is changed, each curves shows how accuracy changes. The model's capacity to recognize
every positive instance in the dataset is measured by completeness, whereas precision indicates the percentage of
accurate positive detection's. These curves have been analyzed to gain a better knowledge of how well each
model performs in various settings. For instance, when limiting false positives is important, a model with a high
degree of precision but relatively low completeness may be preferred. Conversely, a model whose angle strikes a
compromise between fullness and precision can be suitable in situations where both metrics are equally
significant. Making informed judgments about which model is most appropriate for a certain anomaly detection
application requires the use of visualizations. Figure 6b showcases the average AUC-ROC curve of these
algorithms calculated from 15 runs for the dataset. These findings suggest that the method presented is more
capable of identifying anomalies.

D. Comparision with Existing Approaches

The graphs from a single trial of the study demonstrate how four algorithms performed. Figure 7 provides a
visual representation of the average accuracy for each target achieved by the different methods, while Table 5
displays the overall accuracy across all targets for each method. Notably, One-class SVM (OCSVM), K-nearest-
neighbor outlier detection (KNNOD), Angle-based outlier detector (ABOD), and Clustering-based local outlier
factor (CBLOF) [3] are identified as the top-performing algorithms in detecting cyber-attacks in smart grids
based on their average AUC, with the proposed algorithm exhibiting superior performance compared to the
others. The detection threshold of each algorithm, as determined by the distance to the corner’d’, influences the
recall, precision, and F1 score.

Confusion Matrix (%)

Actual Normal

Actual

- 40

13.00

- 20

Actual Anomaly
1

I
Predicted Normal Predicted Anomaly
Predicted

Figure 5: Confusion Matrix of the Proposed Method
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Figure 6: Performance Comparison of Precision-Recall Curve and ROC-Curve

Based on Figure 8a, it is evident that other algorithms exhibit slightly lower precision compared to the
algorithm being presented. The ROC curves from one run of the experiment illustrate the performance of four
algorithms, as depicted in Figure 8b. The method performs better when the area under the curve has a bigger
value. However, the compared algorithms demonstrate significantly lower recall than the presented algorithm, as
indicated in Figure 9a. This suggests that the presented algorithm is better equipped to identify attack events
compared to other algorithms. Additionally, Figure 9b illustrates that the overall performance effectiveness of the
presented algorithm, in terms of Fl-scores, is significantly superior to that of compared algorithms, indicating
that GCNN-HSA outperforms OCSVM, KNNOD, CBLOF, and ABOD, while Table 5 presents the metrics for
each method across all targets.

Various ML algorithms have been examined for anomaly detection. The research includes a comparison of
several techniques used for anomaly detection. The comparison is outlined in Table 5, which provides an
overview of the results obtained using different methods. The proposed GCNN-HSA demonstrates superior
performance in terms of accuracy and FAR with the compared techniques. It's worth noting that the similarities
are provided for reference only, as different researchers have utilized diverse data distributions, pre-processing
techniques, and sampling methods. Therefore, a simple comparison of metrics such as testing and training time
may not be adequate. While the proposed GCNN-HSA showed better performance in the evaluated metrics, it is
challenging to assert that it completely outperforms other approaches. The proposed solution, however, has the
potential to significantly enhance smart grid protection by effectively identifying attacks. The results of the
evaluation demonstrate that the provided models for anomaly detection perform well in identifying anomalies.
The findings validate the efficiency of the approach introduced for detecting anomalies.
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Figure 7: Performance Comparison in terms of Accuracy]
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Table 5: Performance comparison for compared methods

Classifier ~ Precision Recall F1-Score DR FAR Accuracy
OCSVM 0.781 0.801 0.791 0.80 11.50 86.95
KNNOD 0.845 0.834 0.839 0.83 9.13 97.50
ABOD 0.8733 0.885 0.879 0.88 7.8 97.00
CBLOF 0.9633  0.9712 0976 097 25 98.61
GCNN-HSA 09633 09712 0976 097 25 99.21

It's crucial to evaluate the performance effectiveness of an anomaly detection model after training by using
the appropriate metrics. Some common metrics for evaluation include Precision, which measures the model's
accuracy in detecting anomalies by calculating the proportion of true positive forecasts to all positive predictions,
and Recall evaluates the model's capacity to identify anomalies by calculating the proportion of real anomalies to
true positives.
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Figure 9: Performance Comparison of Recall and F1-Score
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Additionally, in the analysis of an IDS, DR and FAR are two important parameters. FAR represents the sum

of misclassified regular instances, while DR represents the number of intrusion events identified.

When working with three-class data, which consists of natural events, attacks, and normal conditions, it is
imperative to differentiate between attacks and natural occurrences that occurred in the power grids. Three-class
classification is consequently more important and challenging than binary-class classification. The F1-score,
recall, accuracy, and precision are displayed in Table 5. The best detection results using our method for three-
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class classification above 99% accuracy rate are shown in Table 6. Furthermore, the Fl-score, recall, and
precision findings, among other metrics, achieve acceptable success rates. Our approach outperforms other
approaches in terms of performance over a wide range of classes.

To distinguish between assaults and anomalies in SG system data, this paper presents an ECS model and a
Dense-Gated U-Net model based on DL approaches. One of the biggest challenges is classifying attacks and
disruptions in the SGs' control units. Though they need the settings of a DNN to be adjusted, DL approaches have
demonstrated encouraging results in identifying these types of attacks. The hybrid Dense-Gated U-Net with ECS
is a good model for comparing different approaches. The outcome shows how important optimizing the hyper
parameters of the DL models is. Results from analyzing performance using various techniques for different attack
types are inaccurate. These approaches perform better than other supervised machine-learning strategies.

Table 6: Metric Classifiers for compared methods

Metric Classifiers GCNN-HSA OCSVM KNNOD ABOD
Overall Accuracy 98.76 96.92 93.62 86.55
Average Accuracy 99.23 98.78 97.46 94.63
Overall Error Rate 1.23 2.44 5.27 12.01
Average Error Rate 1.09 1.22 2.54 5.37
Macro-Averaged Precision  99.13 98.11 95.87 91.41
Macro-Averaged Recall 95.47 92.30 86.21 69.84
Macro-Averaged F1-Score  96.52 95.12 90.78 79.18
Micro-Averaged Precision  98.67 96.92 93.62 86.55
Micro-Averaged Recall 98.56 96.92 93.62 86.55
Micro-Averaged F1-Score  98.94 96.92 93.62 86.55

Test System-2: This study employs multiple evaluation metrics to assess the system's performance through
heat maps. Identifying the number of anomalies is reliant on understanding and analyzing the critical
infrastructure system being studied. The main purpose of this metric is to analyze how well binary classification
problems perform. In the context of a denial of service attack scenario, Figure 10 (a) displays a heat map
representing the detection performance metrics of the GCNN-HSA anomaly detection method. The graphic
makes it clear that the performance levels of the GCNN-HSA approach varied when compared to other models. It
demonstrated strong precision with an accuracy of 0.9926 and Fl-score values of 0.9876 and 0.9897,
respectively. This suggests that the GCNN-HSA approach balanced precision and recall while successfully
identifying anomalies with few false positives.

On the other hand, the OCSVM approach had trouble accurately classifying cases, resulting in a lower
accuracy of 0.8875. Its recall, precision, and Fl-score were significantly lower, at 0.8269, 0.9234, and 0.9052,
respectively. However, the KNNOD and ABOD approaches performed quite well, outperforming 0.92 in
accuracy and attaining flawless precision, recall, and F1 scores, demonstrating their resilience in identifying
denial-of-service assaults. With an accuracy of 0.9765, the CBLOF approach performed somewhat worse than
the GCNN-HAS method. While the precision and Fl-score values were acceptable at 0.9876 and 0.9897,
respectively, the recall was significantly lower at 0.9923, suggesting a larger false negative rate.

Similarly, the CBLOF and ABOD approaches demonstrated efficacy in identifying denial-of-service attacks
with an accuracy of 0.9765 with flawless performance scores. The KNNOD approach, in contrast to the other
approaches, had a lower accuracy of 0.9265, efficiency measure values of 0.9350, 0.9450, and 0.8879,
respectively. This indicates that the method has a higher recall but a lower precision.

The heat map presented in Figure 10(b) compares the detection performance metrics of various anomaly
detection methods, including GCNN-HSA, CBLOF, ABOD, KNNOD, and OCSVM, during a switching attack
scenario. In this scenario, the GCNN-HSA, CBLOF, and ABOD methods exhibited good accuracy and precision.
CBLOF achieved an accuracy of 0.8692 and a precision of 0.9452, while ABOD had an accuracy of 0.8181 and a
precision of 0.8944. Conversely, the KNNOD method showed poor performance with an accuracy of 0.8945 and
a recall of 0.8904, while the OCSVM model had moderate accuracy (0.8903) and precision (0.9756). The
GCNN-HSA method outperformed the others, displaying an accuracy of 0.9952 and a perfect precision score of
0.9876. Overall, the consistent strong performance of GCNN-HSA, CBLOF, and ABOD indicates their capacity
to identify irregularities in the context of the switching attack.
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Figure 12: Performance Metrics for Scenario S

In the heat map presented in Figure 11(a), the performance metrics of the GCNN-HAS anomaly detection
methods during the injection command attack scenario. Both the GCNN-HAS and ABOD anomaly detection
techniques showed excellent accuracy, precision, and recall in this particular situation. The accuracy values of the
other methods ranged from 0.9639 to 0.9619, with the GCNN-HAS method achieving an accuracy score of
0.9926. Precision scores of 0.9876, 0.9347, 0.9647, 0.9341, and 0.9514 were shown for all approaches, showing
almost flawless identification of attack events. The recall values for the other methods varied from 0.9616 to
0.977, with the GCNN-HAS approach displaying a value of 0.9923. The GCNN-HAS approach continuously
beat the other approaches, proving its better injection attack detection powers. Furthermore, both the GCNN-
HAS and CBLOF anomaly detection techniques obtained high accuracy, precision, and recall in the injection
assault scenario, supporting the GCNN-HAS method's superior detection capabilities.

Using test data from a connection loss attack scenario, the heat map in Figure 11(b) compares the assessment
metrics of the GCNN-HSA with other anomaly detection techniques. With F1-score values of 0.9837 and 0.9642,
respectively, the CBLOF and ABOD approaches of the GCNN-HAS method demonstrated much better detection
performance than the other methods. This suggests an accuracy and recall performance that is well-balanced,
which is essential for precise anomaly identification. However, the F1 scores of other approaches, such as the
OCSVM and KNNOD methods, were lower; the OCSVM method scored 0.8899, while the KNNOD method
scored 0.9493. This shows that although these methods might be superior to the GCNN-HSA method in some
areas, such as recall, they do not perform as well overall in terms of precision and recall balance. These variations
in the Fl-score highlight how well the GCNN-HAS technique balances precision and recall, providing a more
sensible means of anomaly detection in the event of connection loss assaults. To maximize the cyber security of
smart grid networks, this balance must be maintained between limiting false positives and guaranteeing the
correct identification of anomalies.

In situations involving a rogue device attack, the GCNN-HSA anomaly detection methods displayed superior
performance compared to other methods, as illustrated in Figure 12. Specifically, the GCNN-HSA method, as
well as the CBLOF and ABOD methods, obtained outstanding F1-scores of 0.9897, demonstrating very accurate
detection with low false negatives and positives. In contrast, the KNNOD and OCSVM methods exhibited more
varied performances. The ABOD approach displayed a lower Fl-score of 0.9268, indicating a lower detection
performance, compared to the GCNN-HSA method, which attained a perfect Fl-score. Furthermore, these
findings highlight how well the GCNN-HSA anomaly detection techniques perform in precisely locating rogue
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devices in smart grid networks. These techniques, which make use of DL modeling, offer a reliable way to
improve cyber security by efficiently identifying unusual behavior. In addition, the F1-scores of 0.9667 obtained
by the CBLOF and KKNOD approaches demonstrate remarkable accuracy in detection with few false positives
and negatives. In contrast to the GCNN-HSA approach, other techniques showed more inconsistent performance
and lacked balanced precision and recall.

These definitive findings highlight how well the GCNN-HSA anomaly detection technique performs in
precisely detecting rogue devices in smart grid networks. The GCNN-HSA anomaly detection method
consistently outperformed CBLOF, ABOD, KNNOD, and OCSVM in detecting different forms of assaults in
smart grid networks, despite no single strategy showing higher performance across all considered attacks. There
are various reasons for this supremacy. First off, by using DL architectures auto encoders and GRUs in
particular—to accurately simulate the intricate temporal correlations present in time-series data, like network
traffic, the GCNN-HSA anomaly detection technique takes advantage of these capabilities. This makes it possible
for the methods to pick up on minute patterns and abnormalities that other methods would miss. Furthermore, the
GCNN-HSA model may be used to train data features through ML, which enables it to provide feature
representations that are more discriminative and informative than those produced by other techniques.

E.  Discussions

The findings highlight the effectiveness of utilizing GCNN-HSA for fine-tuning hyper parameters in a DL
model aimed at identifying fraudulent activities. The notable improvements in recall and AUROC, demonstrate a
strong capability to detect anomalies, which is crucial in real-world scenarios. These modifications underscore
the importance of fine-tuning the model to deal with the complexities as well as disparities found in the SG
dataset. The customized model better caters to the specific requirements of the anomaly detection task. Although
the results are promising, it's important to consider the possible variability brought on by GA's stochastic
character. Further investigation could explore the findings' coherence between different datasets and iterations.
Further insights into the model's applicability and efficacy may be obtained by analyzing its performance on data
from the SGCC dataset.

The results of this study demonstrate a good synergy with earlier research on hyper parameter optimization
approaches and their use in anomaly identification. Numerous scholarly investigations have underscored the
importance of sophisticated DL algorithms in augmenting the accuracy and efficacy of fraud detection systems.
To increase detection performance metrics, our research goes one step further and uses HSA to fine-tune GCNN
model hyper parameters. The significant improvement in model accuracy, along with improvements in precision,
recall, and AUROC, is consistent with the favorable outcomes of hybrid GCNN model usage. This analysis
highlights the significance of our study in the realm of smart grid anomaly detection and supports the validity of
our methodology.

VI. CONCLUSION AND FUTURE WORK

The integration of digital technologies into power grids has significantly improved sustainability, reliability,
and interconnectivity. In this study, we proposed a novel hybrid anomaly detection approach that combines
Graph Convolutional Neural Networks (GCNN) with the Harmony Search Algorithm (HSA) for effective
intrusion detection in smart grid environments. The HSA component optimizes GCNN hyper parameters to
enhance the model's ability to identify anomalies with high precision and speed. Experimental results
demonstrate that our model outperforms existing techniques, achieving superior performance across key
evaluation metrics such as AUROC, accuracy, precision, recall, and F1-score.

Notably, our method attained an impressive accuracy of 98.76%, confirming the efficacy of HSA in
navigating the complex hyper parameter space of GCNNs compared to conventional methods. This integration
not only boosts the detection capability but also addresses the critical need for robustness and scalability in
anomaly detection frameworks within cyber-physical systems like smart grids.

Furthermore, this study advances the interpretability of Al-driven anomaly detection systems by integrating
Explainable Al (XAI) components. These components help demystify the model's decision-making process by
identifying the most influential features and graph regions contributing to each detection. By providing
transparency, XAl builds operator trust, supports better incident response, and aids in compliance with safety and
regulatory standards.

In summary, the proposed GCNN-HSA model, enhanced with XAl capabilities, presents a promising and
practical solution for safeguarding smart grids. It not only strengthens cyberattack detection but also ensures the
protection of sensitive user data and system integrity in real-world deployments. Future Work: Subsequent
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research will focus on further enhancing the interpretability and real-time applicability of the model. Key
directions include: Adapting the proposed model for low-latency anomaly detection in real-time smart grid
operations. Validating the model across diverse smart grid datasets and cyberattack scenarios to test its
generalizability and resilience.
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