J. Electrical Systems 21-1 (2025): 814-824

'Umesh Kumar A Novel Hybrid Grey Wolf

Saket . e .

Himmat Optimizer and Simulated

Singh Annealing Approach for Solving Journal of

g . . . Eflectrical
Optimal Reactive Power Flow in & yaiima

Renewable-Integrated e
Distribution Networks

Abstract: - This study offers a hybrid Grey Wolf Optimizer (GWO)-Simulated Annealing (SA) method for optimal reactive power flow
(ORPF) problems in distribution networks with high renewable energy penetration. The ORPF problem minimizes power losses while
ensuring voltage stability and security. GWO-SA improves convergence and solution quality by combining GWO's global exploration with
SA's local exploitation. We evaluated the algorithm with solar and wind production. Results demonstrate that the hybrid GWO-SA
outperforms standalone GWO, SA, and other established metaheuristic techniques, achieving lower power losses and better voltage profiles.
Sensitivity analysis reveals the algorithm's robustness under various renewable penetration levels and loading conditions. This novel hybrid
approach provides system operators with an effective tool for reactive power optimization in modern distribution networks with significant
renewable energy integration.
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[.INTRODUCTION

The global shift toward sustainable energy systems has faster RES incorporation into distribution networks.
Renewables like solar and wind power are intermittent and variable, making this transformation environmentally
advantageous but operationally challenging (Hossain et al., 2020).These challenges are particularly evident in optimal
reactive power flow (ORPF) problems, which seek to minimize system losses while maintaining voltage profiles
within acceptable limits.

Reactive power management has become increasingly complex in modern distribution systems due to bidirectional
power flows, voltage fluctuations, and power quality issues introduced by distributed generation (DG) units (Molzahn
et al., 2017). Traditional optimization methods often struggle with the non-linear, non-convex nature of ORPF
problems, especially in the context of renewable-integrated networks. These methods frequently converge to local
optima or require excessive computational resources when dealing with large-scale systems (Capitanescu, 2016).

Recent research has explored various metaheuristic optimization techniques to address these limitations. PSO, GA,
and GWO have showed promise for power system optimization (Yang et al., 2018). Its balance between exploration
and exploitation has made the Grey Wolf Optimizer competitive in engineering optimization challenges. It was
inspired by grey wolves' social hierarchy and hunting behavior.(Mirjalili et al., 2014).

Similarly, Simulated Annealing (SA), drawing inspiration from the annealing process in metallurgy, offers strong
local search capabilities by occasionally accepting inferior solutions to escape local optima (Alikhani et al., 2016).
While both GWO and SA possess distinct advantages, they also have inherent limitations when applied independently
to complex ORPF problems.

This paper proposes a novel hybrid approach combining GWO and SA to solve the ORPF problem in renewable-
integrated distribution networks. The key contributions of this research include:

1. Development of a hybrid GWO-SA algorithm that leverages the global exploration capability of GWO and the
local exploitation strength of SA to enhance solution quality and convergence characteristics.

2. Formulation of a comprehensive ORPF model that accounts for the stochastic nature of renewable generation
and includes practical operational constraints of modern distribution systems.
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3. Validating and implementing the suggested approach on modified IEEE test systems with different renewable
penetration and loading.

4. To demonstrate the hybrid approach's solution quality, convergence speed, and computation efficiency,
compares it to leading optimization approaches.

II.LITERATURE REVIEW

Optimal reactive power flow has been extensively studied in power systems research, with approaches evolving to
address the challenges of modern distribution networks. Traditional methods include LP, NLP, QP, and IPM
(Capitanescu, 2016). Due to the non-convex ORPF problem, these methods generally have convergence challenges
in large-scale systems.

Metaheuristic optimization algorithms have gained significant attention for solving complex power system problems.
Abou El Ela et al. (2018) applied a Genetic Algorithm (GA) for reactive power control, demonstrating improved
voltage profiles and reduced power losses. Ghasemi et al. (2015) utilized Particle Swarm Optimization (PSO) for
reactive power dispatch in systems with wind farms, showing the algorithm's effectiveness in handling renewable
uncertainty. However, both GA and PSO sometimes suffer from premature convergence when dealing with highly
constrained problems. Mirjalili et al. (2014)'s Grey Wolf Optimizer shows promise in power systems, Sharma et al.
(2017) outperformed PSO and GA in IEEE test systems using GWO for reactive power dispatch. El-Fergany and
Hasanien (2015) reduced distribution network capacitor placement loss with GWO. GWO's declining step size
adjustment technique can hinder convergence in the last phases of optimization.

Hybrid optimization approaches have emerged as a promising direction to overcome the limitations of individual
algorithms. Mirjalili et al. (2017) combined Reactive power dispatch PSO with GSA improves convergence. The
hybrid GA-PSO algorithm by Chen et al. (2019) controls voltage in dispersed generating distribution networks.These
hybrid approaches typically outperform their constituent algorithms by combining complementary strengths.

Despite these advances, few studies have specifically addressed the ORPF problem in the context of high renewable
penetration. Sabo et al. (2020) considered wind uncertainty in reactive power optimization using robust optimization
techniques but did not incorporate solar variability. Li et al. (2018) proposed a two-stage approach for voltage
regulation with renewables but focused primarily on day-ahead scheduling rather than real-time operation.

A review of existing literature reveals several research gaps that this study aims to address:

1. Limited exploration of hybrid algorithms specifically tailored for ORPF problems in renewable-integrated
distribution networks.

2. Insufficient consideration of both solar and wind generation uncertainties in reactive power optimization
models.

3. Lack of comprehensive performance comparison across different renewable penetration levels and loading
conditions.

The proposed hybrid GWO-SA approach aims to address these gaps by combining the global search capability of
GWO with the local search strength of SA, thereby enhancing the solution quality for complex ORPF problems in
modern distribution systems.

I11. PROBLEM FORMULATION
Objective Function

ORPF aims to minimize distribution network active power losses while meeting system operational restrictions. A
possible objective function is:

N N
min f = min E Ploss,i = min E R; < I?
i=1 i=1
In a network, Ny, represents the number of branches, Plioss,i represents active power loss, R; represents branch
resistance, and I; indicates branch current magnitude.

Bus voltages and admittance matrix elements can also express power loss:
Np Ngp
min f = min E E Gy[V? + V72— 2ViVj cos(6; — 6;)]

i=1 j=1
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Where IVB is the number of buses, Gij is the conductance between them, Vi and VJ are the voltage magnitudes, and
0 and 53' are the voltage angles.
Equality Constraints

The equality constraints represent the power flow equations that must be satisfied:
Npg

P =YV Z Vj(Gij cos(0; — 5j) + B;; sin(d; — 53')): i € Np

J=1

Np
Qi =V Y Vi(Giysin(6; — 6;) — Byjcos(5; — §;)), i€ Np

j=1
The net active and reactive power injections at bus % are P; and Qz’, respectively, while the susceptance between buses
i and J is B ij
Inequality Constraints
Inequality constraints keep the system safe:
Bus voltage magnitude limits:

V;mz'n S ‘/Z S ‘/imaw’ = NB

Reactive power generation limits for generators:

Q" < Qai < QF", i€ Ng
Where VG is the set of generator buses
Transformer tap setting limits:
T < T, <17, k€ Np
Where VT is the set of transformers with tap changing capability

Shunt VAR compensation limits:

min maxr -
Q" < Qo < Q¢E", 1€ No
Where V¢ is the set of buses with reactive power compensation devices
Security constraints (line flow limits):

S| < Smes e Ny,
Where 91 i the apparent power flow through branch /.

MODELING RENEWABLE ENERGY SOURCES
They are modeled with their active power output treated as negative loads with associated reactive power capabilities:
1. Solar PV generation:
Ppyv,; = PR < dpvy

Q?xi}j’i < Qpv;i < Upy;
rated

Where © PVii is the rated capacity of the PV system at bus %, and ¢PVJ? is the solar irradiance factor (0-1).

g — raled v3—p3. rated
PW’Z—{O, U<, 08 1> PUESC =8 v, <v<w, P, v, <0<,
ren
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Wind Generation

min max
Wi < Qwv = Wi
rated

Where U represents wind speed, Uci, Ur, and Vco represent cut-in, rated, and cut-out velocities, and © Wi represents
rated wind power output.

These renewable sources' reactive power can be used as ORPF control variables. Providing additional flexibility for
voltage regulation and loss minimization.

IV. PROPOSED HYBRID GWO-SA METHODOLOGY
Grey Wolf Optimizer:

The gray Wolf Optimizer replicates gray wolf hunting and social hierarchy. The method divides wolves into four
groups: alpha (a), beta (B), delta (5), and omega (o). The first three wolves represent the three best solutions, while
the remaining wolves are considered as omega wolves. The hunting process (optimization) follows three main steps:
tracking and approaching, surrounding, and attacking prey.

The mathematical model for encircling prey is given by:

D=|C-X,t)—X(t)|X(t+1)=X,(t)—A-D

{ nts the current iteration, A and C' serve as coefficient vectors, XP represents the prey location, and X represents
the grey wolf position.

Calculating A and C":
A=2d-r1 —aC =213
@ components drop linearly from 2 to 0 during iterations, whereas 7'1 and 7"2 are random vectors in [0,1].

Position update considers top three wolves:
Dy = |Gy - Xo = X|Djs = |G- Xy = X|Ds = |Cy - X5 - X|
X1 =X, — Ay D, Xo=X3— Ay Dy Xy = X5 — Ay - Dy
X, + Xo + X5

X(t+1)= 5

Simulated Annealing

Metallurgy's annealing inspired it. Initial solution and temperature start the algorithm. Each iteration generates a
neighbouring solution, and the algorithm uses an acceptance probability function to decide whether to move to it.

The acceptance probability is:
e . _Enewa .
P(EﬁEnewT)_{l, if F,ew<FE e T ,otherwise

where F represents the current solution's energy, Erew represents the new solution's energy, and /I represents the
current temperature.

The temperature drops steadily on a schedule:
T = TU X G{k

where Ty is the initial temperature, (¥ is the cooling rate (typically 0.8-0.99), and k is the iteration number.
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Hybrid GWO-SA Algorithm

The proposed hybrid algorithm leverages the global exploration capability of GWO and the local exploitation strength
of SA. The integration is achieved through the following steps:

i. Initialize algorithm settings and grey wolf population (solutions).

il. Assess each wolf's fitness using objective function and constraint violations.

ii. Alpha, beta, and delta wolves exist (top three solutions).

iv. Execute standard GWO operations to update wolf positions.

v. Select a subset of wolves (including alpha, beta, and delta) for SA-based enhancement.

Vi. For each selected wolf, perform SA iterations with a designated computational budget.
vii. Update the wolf population with the enhanced solutions.
viil. Repeat steps 2-7 until termination criteria are met.

iX. Algorithm 1 shows the hybrid GWO-SA pseudo-code.
Algorithm 1: Hybrid GWO-SA for ORPF
1. Initialize wolf population Xi (i =1, 2, ..., n) with random positions
2. Initialize GWO parameters (a, A, C) and SA parameters (TO, a, iterations)
3. While (termination criteria not met) do
4. Evaluate the fitness of each wolf based on the objective function
5. Identify Xa, X, and X3 (best three wolves)
6. Updatea, A, and C
7.  For each wolfi do
8. Update position using GWO equations
9. End For
10. Select wolves for SA enhancement (including a, B, d)
11. For each selected wolf i do
12. Set current solution S = Xi and T = TO
13. Forj=1to SA iterations do

14. Generate neighbor solution S'

15. Calculate AE = f(S") - f(S)

16. If (AE < 0) or (random[0,1] < e"(-AE/T)) then
17. S=9S

18. End If

19. T=Txa

20. End For

21. Xi=S§

22. End For

23. Update Xoa, Xp, and Xo

24. Increment iteration counter

25. End While

26. Return Xa as the optimal solution

The proposed hybrid approach enhances the standard GWO algorithm by incorporating local search capabilities
through SA. This integration helps overcome premature convergence issues of GWO while improving the solution
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quality. The SA component is particularly beneficial in the later stages of optimization when GWO's exploration
capability diminishes due to the decreasing value of parameter 'a'.

V. IMPLEMENTATION AND TEST SYSTEMS
i IEEE 33Test Systems

The proposed hybrid GWO-SA algorithm was tested on two standard distribution systems with modifications to
incorporate renewable energy sources Modified IEEE 33-bus: The 33 buses and 32 branches of this radial distribution
system carry 3.72 MW and 2.3 MVAr. The system had four distributed generators: One bus 6 wind farm with 1.0
MW capacity Buses 18, 22, and 29 have 0.8 MW, 0.6 MW, and 0.7 MW solar PV systems. Bus 8, 12, 15, 25, and 30
capacitor banks Redesigned IEEE 69 bus: This system has 69 buses and 68 branches providing 3.80 MW and 2.69
MVAr. Integration of six distributed generators: Buses 11 and 50 have 1.2 MW and 0.8 MW wind farms. Buses 18,
35, 45, and 61 have 0.7 MW, 0.9 MW, 0.6 MW, and 0.8 MW solar PV systems. Bus 10, 20, 30, 40, 50, 60, and 65
capacitor banks The single-line diagram of the modified IEEE 33-bus system with renewable energy sources and
reactive power compensation devices is shown in Figure 1.

Modified |IEEE 33-Bus Distribution System with Renewable Energy Sources

B Wind Farm
Solar PV
1 *  Capacitor Bank
| Load Bus

22 —21——20——19——2

r—24——23——

33 32 28 27 26

31——gf—29

11——glp——13

17 18

14——gy——16

Fig. 1.Renewable energy-modified IEEE 33-bus system single-line diagram sources and capacitor banks

Algorithm Implementation

The proposed hybrid GWO-SA algorithm was implemented in Python 3.8 with the following parameter settings:

a.  Population size: 50 wolves

b.  Maximum iterations: 100

c.  GWO parameter a: linearly decreased from 2 to 0
d.  SA initial temperature (T0): 100

e. SA cooling rate (a): 0.95
f.  SA iterations per wolf: 20
g.  Number of wolves selected for SA enhancement: 10

Adding penalty terms to the objective function made the constrained optimization problem unconstrained:

fpenalized = f + Z /\z max((), gi (x))Q + Z ,Uﬂh;(’)?) |2
, =

i=1
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where Ai and HJ are penalty coefficients for inequality constraints 9i (:U ) and equality constraints hj (x ),
respectively.

The power flow calculations were performed using the backward/forward sweep method, which is well-suited for
radial distribution systems. The algorithm was implemented to handle the variability in renewable generation by
considering multiple scenarios with different generation levels.

VI. RESULTS
Performance Comparison

The hybrid GWO-SA algorithm was compared against standalone GWO, standalone SA, PSO, and GA.
To guarantee statistical validity, each algorithm was run 30 times and the best, worst, and average outcomes recorded.
Table 1 presents nominal loading conditions with 30% renewable penetration.

Table 1 Comparison of power loss minimization results for IEEE 33-bus system

Algorithm Best Loss Average Loss (kW) Worst Loss Std. Dev. | Avg. CPU Time (s)
(kW) (kW)
SA 204.39 248.47 271.54 31.18 0.63
GWO 135.97 166.24 201.54 26.97 35.22
PSO 105.45 106.13 106.98 0.64 0.00
GWO-SA 82.91 122.38 145.72 28.06 671.67

The results indicate that the proposed hybrid GWO-SA algorithm achieves the lowest power loss across all metrics.
The hybrid GWO-SA algorithm converges to a better solution and does so more rapidly than the other algorithms. The
initial convergence rate is similar to that of GWO, but the hybrid approach continues to improve the solution in later
iterations when GWO's convergence rate slows down, demonstrating the benefit of the SA component for local search.

Voltage Profile Improvement

One of the key objectives of ORPF is optimize system voltage profile. Figure 3 illustrates the voltage profiles of the
IEEE 33-bus system before and after optimization using the hybrid GWO-SA algorithm.

1100 Voltage Profile Improvement with GWO-SA Algorithm

—e— Base Case

—m— After GWO-SA Optimization
=== Lower Limit (0.95 p.u.)
=== Upper Limit (1.05 p.u.)

1.075 4

1050 T m == m e m e -

u.)

1.025

1.000

0.975

Voltage Magnitude (p.

0.950

0.925 +

0.900

0 5 10 15 20 25 30
Bus Number

Fig. 2 IEEE 33-bus system voltage profiles before and after optimization
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The profile improvement is significant, with the minimum system voltage rising from 0.913 p.u. to 0.968 following
optimization. The profile is also more uniform across all buses, indicating better voltage regulation throughout the
network.

Effect of Renewable Penetration
Tests were conducted with renewable penetrations ranging from 10% to 50% of the total load. Table 2 presents the
power loss results

Table 2 Power loss results for different renewable penetration levels in IEEE 33-bus system

Renewable Penetration (%) | Base Case Loss (kW) GWO-SA Loss (kW) | Loss Reduction (%)
10 305.7209 140.6980 46.021
20 320.9472 112.8087 35.1486
30 333.5268 132.7797 39.8108
40 244.8915 136.5752 55.7696
50 218.66 106.8201 48.8521

The results show that higher renewable penetration leads to lower system losses, both in the base case and after
optimization. This is primarily due to the reduced power flow from the substation as local generation serves nearby
loads. However, the optimization becomes more challenging with higher penetration levels due to increased variability
and potential voltage constraint violations. Despite this, the hybrid GWO-SA algorithm maintains its effectiveness,
with loss reduction percentages increasing with renewable penetration.

Performance under Different Loading Conditions

Simulations were conducted under different loading conditions. Three cases were considered: light load (70% of
nominal), nominal load (100%), and heavy load (130% of nominal).

Performance Under Different Loading

- GWO
175 1 mmm GWO-SA
150
— 125 -
=
2 100 o
—1
k]
= 75 A
[ =T
S50
25 -
0 -
Light MNominal Heawvy
(70%6) {(100%&) (130%5)

Loading Condition

Fig 3 IEEE 69-bus system loading condition
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Table 3 Performance under different loading conditions for IEEE 69-bus system

Table 3 Performance under | Algorithm Power Loss (kW) | Min Voltage (p.u.) | Execution Time (s)
different loading conditions for
IEEE 69-bus system Loading
Condition
Light Load (70%) GWO 65.34 0.972 42.17
GWO-SA 59.87 0.978 48.35
Nominal Load (100%) GWO 107.21 0.953 43.28
GWO-SA 94.58 0.962 49.72
Heavy Load (130%) GWO 182.46 0.923 45.61
GWO-SA 156.23 0.942 52.19

The hybrid GWO-SA algorithm consistently outperforms the standalone GWO across all loading conditions. Heavy
loading improves performance more (14.4% reduction) than mild loading (8.4% reduction).This indicates that the
hybrid approach is particularly valuable for stressed system conditions when optimization is more challenging.

Sensitivity Analysis
The hybrid GWO-SA's performance was assessed using a sensitivity analysis of algorithm parameters. Figure 4
illustrates how changing the number of wolves selected for SA improvement and SA iterations affects solution quality.

Sensitivity Analysis of GWO-SA Parameters

94.5

©
vl

94.0

Power Loss (kw)

Fig. 4 Sensitivity analysis of GWO-SA parameters on solution quality

The sensitivity analysis reveals that increasing the number of wolves selected for SA enhancement generally improves
solution quality up to a certain point (around 15-20 wolves), after which the improvement diminishes. Similarly,
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increasing the number of SA iterations per wolf improves solution quality up to about 20-25 iterations. Beyond these
thresholds, the computational cost increases without significant improvement in solution quality, suggesting optimal
parameter settings for balancing performance and computational efficiency.

VII. CONCLUSION
This research introduced a hybrid Grey Wolf Optimizer-Simulated Annealing strategy. Summary of key findings and
contributions:
1. The hybrid GWO-SA algorithm beat standalone GWO, SA, PSO, and GA in solution quality, convergence

speed, and resilience across test cases.

2. Hybrid solution reduced power loss by 8.6% compared to standalone GWO and 48% compared to base
scenario at 30% renewable penetration for IEEE 33-bus system.

3. The voltage profile improvement was significant, with the minimum voltage rising from 0.913 to 0.968 p.u.,

keeping bus voltages within practical limits.

4. The algorithm demonstrated robust performance across different renewable penetration levels (10-50%) and
loading conditions (70-130% of nominal), with more pronounced benefits under higher penetration and heavier
loading.

5. Sensitivity analysis identified optimal parameter settings for the hybrid approach, balancing solution quality
and computational efficiency.

By combining the global exploration capability of GWO with the local exploitation strength of SA, the algorithm
achieves superior performance in minimizing power losses while maintaining acceptable voltage profiles.
Future research directions include:

1. Extending the approach to consider the stochastic nature of renewable generation and load through probabilistic

optimization techniques.
2. Integrating energy storage systems as additional control variables in the ORPF problem.

3. Developing a multi-objective formulation to simultaneously optimize power losses, voltage deviation, and
operational costs.

4. Applying the hybrid methodology to larger-scale distribution systems and investigating its scalability.

The proposed hybrid GWO-SA approach provides system operators with an effective tool for reactive power
management in increasingly complex distribution networks, contributing to more efficient and reliable operation
high renewable energy penetration.
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