
J. Electrical Systems 21-1 (2025): 814-824 

 

 

814 

1Umesh  1Umesh Kumar 

Saket 

2Himmat 

Singh  

 

A Novel Hybrid Grey Wolf 

Optimizer and Simulated 

Annealing Approach for Solving 

Optimal Reactive Power Flow in 

Renewable-Integrated 

Distribution Networks 

 

 

Abstract: - This study offers a hybrid Grey Wolf Optimizer (GWO)-Simulated Annealing (SA) method for optimal reactive power flow 

(ORPF) problems in distribution networks with high renewable energy penetration. The ORPF problem minimizes power losses while 

ensuring voltage stability and security.  GWO-SA improves convergence and solution quality by combining GWO's global exploration with 

SA's local exploitation.  We evaluated the algorithm with solar and wind production. Results demonstrate that the hybrid GWO-SA 

outperforms standalone GWO, SA, and other established metaheuristic techniques, achieving lower power losses and better voltage profiles. 

Sensitivity analysis reveals the algorithm's robustness under various renewable penetration levels and loading conditions. This novel hybrid 

approach provides system operators with an effective tool for reactive power optimization in modern distribution networks with significant 

renewable energy integration. 
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I.INTRODUCTION 

The global shift toward sustainable energy systems has faster RES incorporation into distribution networks.  

Renewables like solar and wind power are intermittent and variable, making this transformation environmentally 

advantageous but operationally challenging (Hossain et al., 2020).These challenges are particularly evident in optimal 

reactive power flow (ORPF) problems, which seek to minimize system losses while maintaining voltage profiles 

within acceptable limits. 

Reactive power management has become increasingly complex in modern distribution systems due to bidirectional 

power flows, voltage fluctuations, and power quality issues introduced by distributed generation (DG) units (Molzahn 

et al., 2017). Traditional optimization methods often struggle with the non-linear, non-convex nature of ORPF 

problems, especially in the context of renewable-integrated networks. These methods frequently converge to local 

optima or require excessive computational resources when dealing with large-scale systems (Capitanescu, 2016). 

Recent research has explored various metaheuristic optimization techniques to address these limitations. PSO, GA, 

and GWO have showed promise for power system optimization (Yang et al., 2018).  Its balance between exploration 

and exploitation has made the Grey Wolf Optimizer competitive in engineering optimization challenges. It was 

inspired by grey wolves' social hierarchy and hunting behavior.(Mirjalili et al., 2014). 

Similarly, Simulated Annealing (SA), drawing inspiration from the annealing process in metallurgy, offers strong 

local search capabilities by occasionally accepting inferior solutions to escape local optima (Alikhani et al., 2016). 

While both GWO and SA possess distinct advantages, they also have inherent limitations when applied independently 

to complex ORPF problems. 

This paper proposes a novel hybrid approach combining GWO and SA to solve the ORPF problem in renewable-

integrated distribution networks. The key contributions of this research include: 

1. Development of a hybrid GWO-SA algorithm that leverages the global exploration capability of GWO and the 

local exploitation strength of SA to enhance solution quality and convergence characteristics. 

2. Formulation of a comprehensive ORPF model that accounts for the stochastic nature of renewable generation 

and includes practical operational constraints of modern distribution systems. 
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3. Validating and implementing the suggested approach on modified IEEE test systems with different renewable 

penetration and loading. 

4. To demonstrate the hybrid approach's solution quality, convergence speed, and computation efficiency, 

compares it to leading optimization approaches. 

II.LITERATURE REVIEW 

Optimal reactive power flow has been extensively studied in power systems research, with approaches evolving to 

address the challenges of modern distribution networks. Traditional methods include LP, NLP, QP, and IPM 

(Capitanescu, 2016).  Due to the non-convex ORPF problem, these methods generally have convergence challenges 

in large-scale systems. 

Metaheuristic optimization algorithms have gained significant attention for solving complex power system problems. 

Abou El Ela et al. (2018) applied a Genetic Algorithm (GA) for reactive power control, demonstrating improved 

voltage profiles and reduced power losses. Ghasemi et al. (2015) utilized Particle Swarm Optimization (PSO) for 

reactive power dispatch in systems with wind farms, showing the algorithm's effectiveness in handling renewable 

uncertainty. However, both GA and PSO sometimes suffer from premature convergence when dealing with highly 

constrained problems. Mirjalili et al. (2014)'s Grey Wolf Optimizer shows promise in power systems,  Sharma et al. 

(2017) outperformed PSO and GA in IEEE test systems using GWO for reactive power dispatch.  El-Fergany and 

Hasanien (2015) reduced distribution network capacitor placement loss with GWO.  GWO's declining step size 

adjustment technique can hinder convergence in the last phases of optimization. 

Hybrid optimization approaches have emerged as a promising direction to overcome the limitations of individual 

algorithms. Mirjalili et al. (2017) combined Reactive power dispatch PSO with GSA improves convergence.  The 

hybrid GA-PSO algorithm by Chen et al. (2019) controls voltage in dispersed generating distribution networks.These 

hybrid approaches typically outperform their constituent algorithms by combining complementary strengths. 

Despite these advances, few studies have specifically addressed the ORPF problem in the context of high renewable 

penetration. Sabo et al. (2020) considered wind uncertainty in reactive power optimization using robust optimization 

techniques but did not incorporate solar variability. Li et al. (2018) proposed a two-stage approach for voltage 

regulation with renewables but focused primarily on day-ahead scheduling rather than real-time operation. 

A review of existing literature reveals several research gaps that this study aims to address: 

1. Limited exploration of hybrid algorithms specifically tailored for ORPF problems in renewable-integrated 

distribution networks.  

2. Insufficient consideration of both solar and wind generation uncertainties in reactive power optimization 

models. 

3. Lack of comprehensive performance comparison across different renewable penetration levels and loading 

conditions. 

The proposed hybrid GWO-SA approach aims to address these gaps by combining the global search capability of 

GWO with the local search strength of SA, thereby enhancing the solution quality for complex ORPF problems in 

modern distribution systems. 

III. PROBLEM FORMULATION 

Objective Function 

ORPF aims to minimize distribution network active power losses while meeting system operational restrictions.  A 

possible objective function is: 

 

In a network,  represents the number of branches,  represents active power loss,  represents branch 

resistance, and  indicates branch current magnitude. 

Bus voltages and admittance matrix elements can also express power loss: 
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Where  is the number of buses,  is the conductance between them,  and  are the voltage magnitudes, and 

 and  are the voltage angles. 

Equality Constraints 

The equality constraints represent the power flow equations that must be satisfied: 

 

 

The net active and reactive power injections at bus  are  and , respectively, while the susceptance between buses 

 and  is  

Inequality Constraints 

Inequality constraints keep the system safe: 

1. Bus voltage magnitude limits: 

 

2. Reactive power generation limits for generators:  

 

Where  is the set of generator buses 

3. Transformer tap setting limits: 

 

Where  is the set of transformers with tap changing capability 

4. Shunt VAR compensation limits: 

 

Where  is the set of buses with reactive power compensation devices 

5. Security constraints (line flow limits):  

 

Where  is the apparent power flow through branch . 

 

MODELING RENEWABLE ENERGY SOURCES 

They are modeled with their active power output treated as negative loads with associated reactive power capabilities: 

1. Solar PV generation:  

  

 

Where  is the rated capacity of the PV system at bus , and  is the solar irradiance factor (0-1). 
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2. Wind Generation 

 

Where  represents wind speed, , , and  represent cut-in, rated, and cut-out velocities, and  represents 

rated wind power output. 

These renewable sources' reactive power can be used as ORPF control variables. Providing additional flexibility for 

voltage regulation and loss minimization. 

IV. PROPOSED HYBRID GWO-SA METHODOLOGY 

Grey Wolf Optimizer: 

The gray Wolf Optimizer replicates gray wolf hunting and social hierarchy.  The method divides wolves into four 

groups: alpha (α), beta (β), delta (δ), and omega (ω). The first three wolves represent the three best solutions, while 

the remaining wolves are considered as omega wolves. The hunting process (optimization) follows three main steps: 

tracking and approaching, surrounding, and attacking prey. 

The mathematical model for encircling prey is given by: 

  

 nts the current iteration,  and  serve as coefficient vectors,  represents the prey location, and  represents 

the grey wolf position. 

 Calculating  and : 

  

 components drop linearly from 2 to 0 during iterations, whereas  and  are random vectors in [0,1]. 

 Position update considers top three wolves: 

   

   

 

 

Simulated Annealing 

Metallurgy's annealing inspired it.  Initial solution and temperature start the algorithm.  Each iteration generates a 

neighbouring solution, and the algorithm uses an acceptance probability function to decide whether to move to it. 

 The acceptance probability is: 

 

where  represents the current solution's energy,  represents the new solution's energy, and  represents the 

current temperature. 

 The temperature drops steadily on a schedule: 

 

where  is the initial temperature,  is the cooling rate (typically 0.8-0.99), and  is the iteration number. 
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              Hybrid GWO-SA Algorithm 

The proposed hybrid algorithm leverages the global exploration capability of GWO and the local exploitation strength 

of SA. The integration is achieved through the following steps: 

i. Initialize algorithm settings and grey wolf population (solutions). 

ii. Assess each wolf's fitness using objective function and constraint violations. 

iii. Alpha, beta, and delta wolves exist (top three solutions). 

iv. Execute standard GWO operations to update wolf positions. 

v. Select a subset of wolves (including alpha, beta, and delta) for SA-based enhancement. 

vi. For each selected wolf, perform SA iterations with a designated computational budget. 

vii. Update the wolf population with the enhanced solutions. 

viii. Repeat steps 2-7 until termination criteria are met. 

ix. Algorithm 1 shows the hybrid GWO-SA pseudo-code. 

Algorithm 1: Hybrid GWO-SA for ORPF 

1. Initialize wolf population Xi (i = 1, 2, ..., n) with random positions 

2. Initialize GWO parameters (a, A, C) and SA parameters (T0, α, iterations) 

3. While (termination criteria not met) do 

4.     Evaluate the fitness of each wolf based on the objective function 

5.     Identify Xα, Xβ, and Xδ (best three wolves) 

6.     Update a, A, and C 

7.     For each wolf i do 

8.     Update position using GWO equations 

9.     End For 

10.    Select wolves for SA enhancement (including α, β, δ) 

11.    For each selected wolf i do 

12.        Set current solution S = Xi and T = T0 

13.        For j = 1 to SA_ iterations do 

14.            Generate neighbor solution S' 

15.            Calculate ΔE = f(S') - f(S) 

16.            If (ΔE < 0) or (random[0,1] < e^(-ΔE/T)) then 

17.                S = S' 

18.            End If 

19.            T = T × α 

20.        End For 

21.        Xi = S 

22.    End For 

23.    Update Xα, Xβ, and Xδ 

24.    Increment iteration counter 

25. End While 

26. Return Xα as the optimal solution 

The proposed hybrid approach enhances the standard GWO algorithm by incorporating local search capabilities 

through SA. This integration helps overcome premature convergence issues of GWO while improving the solution 
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quality. The SA component is particularly beneficial in the later stages of optimization when GWO's exploration 

capability diminishes due to the decreasing value of parameter 'a'. 

V.  IMPLEMENTATION AND TEST SYSTEMS 

i. IEEE 33Test Systems 

The proposed hybrid GWO-SA algorithm was tested on two standard distribution systems with modifications to 

incorporate renewable energy sources Modified IEEE 33-bus:  The 33 buses and 32 branches of this radial distribution 

system carry 3.72 MW and 2.3 MVAr.  The system had four distributed generators:  One bus 6 wind farm with 1.0 

MW capacity Buses 18, 22, and 29 have 0.8 MW, 0.6 MW, and 0.7 MW solar PV systems.  Bus 8, 12, 15, 25, and 30 

capacitor banks  Redesigned IEEE 69 bus:  This system has 69 buses and 68 branches providing 3.80 MW and 2.69 

MVAr.  Integration of six distributed generators:  Buses 11 and 50 have 1.2 MW and 0.8 MW wind farms.  Buses 18, 

35, 45, and 61 have 0.7 MW, 0.9 MW, 0.6 MW, and 0.8 MW solar PV systems.  Bus 10, 20, 30, 40, 50, 60, and 65 

capacitor banks  The single-line diagram of the modified IEEE 33-bus system with renewable energy sources and 

reactive power compensation devices is shown in Figure 1. 

  
Fig. 1.Renewable energy-modified IEEE 33-bus system single-line diagram sources and capacitor banks 

Algorithm Implementation 

The proposed hybrid GWO-SA algorithm was implemented in Python 3.8 with the following parameter settings: 

a. Population size: 50 wolves 

b. Maximum iterations: 100 

c. GWO parameter a: linearly decreased from 2 to 0 

d. SA initial temperature (T0): 100 

e. SA cooling rate (α): 0.95 

f. SA iterations per wolf: 20 

g. Number of wolves selected for SA enhancement: 10 

Adding penalty terms to the objective function made the constrained optimization problem unconstrained: 
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where  and  are penalty coefficients for inequality constraints  and equality constraints , 

respectively. 

The power flow calculations were performed using the backward/forward sweep method, which is well-suited for 

radial distribution systems. The algorithm was implemented to handle the variability in renewable generation by 

considering multiple scenarios with different generation levels. 

VI. RESULTS 

Performance Comparison 

The hybrid GWO-SA algorithm was compared against standalone GWO, standalone SA, PSO, and GA.  

 To guarantee statistical validity, each algorithm was run 30 times and the best, worst, and average outcomes recorded. 

Table 1 presents nominal loading conditions with 30% renewable penetration. 

Table 1 Comparison of power loss minimization results for IEEE 33-bus system 

Algorithm Best Loss 

(kW) 

Average Loss (kW) Worst Loss 

(kW) 

Std. Dev. Avg. CPU Time (s) 

SA 204.39 248.47 271.54 31.18 0.63 

GWO 135.97 166.24 201.54 26.97 35.22 

PSO 105.45 106.13 106.98 0.64 0.00 

GWO-SA 82.91 122.38 145.72 28.06 671.67 

 

The results indicate that the proposed hybrid GWO-SA algorithm achieves the lowest power loss across all metrics. 

The hybrid GWO-SA algorithm converges to a better solution and does so more rapidly than the other algorithms. The 

initial convergence rate is similar to that of GWO, but the hybrid approach continues to improve the solution in later 

iterations when GWO's convergence rate slows down, demonstrating the benefit of the SA component for local search. 

            Voltage Profile Improvement 

One of the key objectives of ORPF is optimize system voltage profile. Figure 3 illustrates the voltage profiles of the 

IEEE 33-bus system before and after optimization using the hybrid GWO-SA algorithm. 

  

Fig. 2 IEEE 33-bus system voltage profiles before and after optimization 
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The profile improvement is significant, with the minimum system voltage rising from  0.913 p.u. to 0.968 following 

optimization. The profile is also more uniform across all buses, indicating better voltage regulation throughout the 

network. 

               Effect of Renewable Penetration 

Tests were conducted with renewable penetrations ranging from 10% to 50% of the total load. Table 2 presents the 

power loss results  

Table 2 Power loss results for different renewable penetration levels in IEEE 33-bus system 

Renewable Penetration (%) Base Case Loss (kW) GWO-SA Loss (kW) Loss Reduction (%) 

10 305.7209 140.6980 46.021 

20 320.9472 112.8087 35.1486 

30 333.5268 132.7797 39.8108 

40 244.8915 136.5752 55.7696 

50 218.66 106.8201 48.8521 

 

The results show that higher renewable penetration leads to lower system losses, both in the base case and after 

optimization. This is primarily due to the reduced power flow from the substation as local generation serves nearby 

loads. However, the optimization becomes more challenging with higher penetration levels due to increased variability 

and potential voltage constraint violations. Despite this, the hybrid GWO-SA algorithm maintains its effectiveness, 

with loss reduction percentages increasing with renewable penetration. 

               Performance under Different Loading Conditions 

Simulations were conducted under different loading conditions. Three cases were considered: light load (70% of 

nominal), nominal load (100%), and heavy load (130% of nominal).  

 

 Fig 3 IEEE 69-bus system loading condition 
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Table 3 Performance under different loading conditions for IEEE 69-bus system 

 

Table 3 Performance under 

different loading conditions for 

IEEE 69-bus system Loading 

Condition 

Algorithm Power Loss (kW) Min Voltage (p.u.) Execution Time (s) 

Light Load (70%) GWO 65.34 0.972 42.17 

 GWO-SA 59.87 0.978 48.35 

Nominal Load (100%) GWO 107.21 0.953 43.28 

 GWO-SA 94.58 0.962 49.72 

Heavy Load (130%) GWO 182.46 0.923 45.61 

 GWO-SA 156.23 0.942 52.19 

 

The hybrid GWO-SA algorithm consistently outperforms the standalone GWO across all loading conditions. Heavy 

loading improves performance more (14.4% reduction) than mild loading (8.4% reduction).This indicates that the 

hybrid approach is particularly valuable for stressed system conditions when optimization is more challenging. 

              Sensitivity Analysis 

The hybrid GWO-SA's performance was assessed using a sensitivity analysis of algorithm parameters.  Figure 4 

illustrates how changing the number of wolves selected for SA improvement and SA iterations affects solution quality. 

 

Fig. 4 Sensitivity analysis of GWO-SA parameters on solution quality 

The sensitivity analysis reveals that increasing the number of wolves selected for SA enhancement generally improves 

solution quality up to a certain point (around 15-20 wolves), after which the improvement diminishes. Similarly, 
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increasing the number of SA iterations per wolf improves solution quality up to about 20-25 iterations. Beyond these 

thresholds, the computational cost increases without significant improvement in solution quality, suggesting optimal 

parameter settings for balancing performance and computational efficiency. 

VII. CONCLUSION 

This research introduced a hybrid Grey Wolf Optimizer-Simulated Annealing strategy.  Summary of key findings and 

contributions: 

1. The hybrid GWO-SA algorithm beat standalone GWO, SA, PSO, and GA in solution quality, convergence 

speed, and resilience across test cases. 

2.  Hybrid solution reduced power loss by 8.6% compared to standalone GWO and 48% compared to base 

scenario at 30% renewable penetration for IEEE 33-bus system. 

3. The voltage profile improvement was significant, with the minimum voltage rising from 0.913 to 0.968 p.u., 

keeping bus voltages within practical limits. 

4. The algorithm demonstrated robust performance across different renewable penetration levels (10-50%) and 

loading conditions (70-130% of nominal), with more pronounced benefits under higher penetration and heavier 

loading. 

5. Sensitivity analysis identified optimal parameter settings for the hybrid approach, balancing solution quality 

and computational efficiency. 

By combining the global exploration capability of GWO with the local exploitation strength of SA, the algorithm 

achieves superior performance in minimizing power losses while maintaining acceptable voltage profiles. 

Future research directions include: 

1. Extending the approach to consider the stochastic nature of renewable generation and load through probabilistic 

optimization techniques. 

2. Integrating energy storage systems as additional control variables in the ORPF problem. 

3. Developing a multi-objective formulation to simultaneously optimize power losses, voltage deviation, and 

operational costs. 

4. Applying the hybrid methodology to larger-scale distribution systems and investigating its scalability. 

The proposed hybrid GWO-SA approach provides system operators with an effective tool for reactive power 

management in increasingly complex distribution networks, contributing to more efficient and reliable operation 

high renewable energy penetration. 
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