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Abstract: - Against the backdrop of worsening traditional energy challenges, the automotive industry is shifting from gaso-line/diesel 

vehicles to new energy alternatives, with lithium-ion battery electric vehicles taking center stage. Accu-rate state of charge (SOC) 

estimation is critical for battery management systems, relying on precise battery model-ing. This study aims to develop a high-precision 

framework for battery modeling and SOC estimation in electric vehicles. To accurately simulate battery behavior across frequency 

bands, an equivalent circuit model integrated with fractional calculus is used instead of traditional capacitors with integer-order 

capacitors. For precise parame-ter identification, the Snake Optimization (SO) algorithm is employed based on the model’s 

characteristics. Com-pared with the integer-order counterparts, the advantage of fractional-order model is verified. SOC estimation 

uses the Fractional-Order Unscented Kalman Filter (FOUKF), with the SO algorithm optimizing the filter matrix’s initial values to 

enhance estimation. Experimental results show the optimized strategy significantly improves SOC accu-racy, with maximum error ≤

1.5% and convergence error ≤0.5%, confirming the practicality of the proposed frac-tional-order circuit model and SO-FOUKF 

algorithm. 
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I.  INTRODUCTION  

Under the current background of carbon neutrality, traditional fuel vehicles (diesel and gasoline) are clearly no 

longer aligned with the global development concept, and new energy vehicles have received widespread atten-

tion[1-3]. At present, the energy storage components widely used in the industry mainly include three categories: 

batteries, supercapacitors and high-speed flywheels. These components play a vital role in providing stable energy 

support, fast charging and long-lasting endurance. However, the most commonly used in new energy vehicles is 

the power battery with high energy density. Compared with other types of power batteries, lithium-ion power 

batteries [4-6] have excellent working performance, such as high safety, high energy density, low self-discharge 

rate, strong temperature adaptability, long service life and stable working voltage range. To ensure the safe and 

stable operation of lithium batteries, it is essential to monitor their current status in real time. Therefore, the refined 

modeling and state estimation of lithium-ion batteries have important research significance[7]. 

The accuracy of a model in fitting battery characteristics significantly influences the representation of both 

static and dynamic features of the battery[8]. The construction of the battery model is not only deeply restricted by 

its intrinsic properties, such as electrode materials, but also by many external environmental interferences, for in-

stance temperature and the number of working cycles[9] . Due to its complexity, it is extremely difficult to accu-

rately build a comprehensive model that can fully describe all battery parameters[10]. The existing battery models 

can be systematically categorized into three main types: electrochemical models, data-driven models, and equiva-

lent circuit models. Because the chemical reaction process of lithium battery is complex, the change of operating 

state in practice makes it difficult for the electrochemical model to accurately describe the reaction process. As a 

result, the electrochemical model has not been widely used. The data-driven model relies on a huge amount of ex-

perimental data to train the model, and obtains a nonlinear mapping model with superior input-output perfor-mance, 

such as a neural network model[11-13]. However, the key to data-driven models is to obtain suitable training data, 

and the model cannot be transferred well. The equivalent circuit model effectively captures the dynamic 

characteristics of the battery[14-15], depicting it as a combination of electrical components such as resistors and 

capacitors. All parts of this model have clear physical content and take external environmental factors into account. 

At the same time, the model has good accuracy and is widely used in engineering practice problems[16]. 
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The current mainstream equivalent circuit model is integer order, but this model only involves memory infor-

mation fragments at the current time. Fractional calculus, as an extension of integer calculus, can integrate all in-

formation from the past to the present. Therefore, fractional calculus can clearly describe the characteristics of the 

physical system and can remember and track the changes of the system. Extending the integer calculus elements 

in the equivalent circuit model to fractional order can enable the model to better reflect the characteristics of the 

batteries. 

At present, the state estimation methods of batteries are mainly concentrated on two types of filter state ob-

servers, but due to the complex convergence criteria of the observer, it is very difficult to design an effective state 

observer. Among the filtering methods, the Kalman series of filters have obvious advantages and can achieve high-

er calculation accuracy with lower computational complexity. Kalman is based on the optimal data processing 

method. The algorithm can filter interference noise while obtaining dynamic target data, and then estimate the past, 

present and future of the target, and can perform smooth interpolation, filtering and prediction functions. The 

standard Kalman filter only performs well when facing linear systems. Extended Kalman filters (EKF) are an up-

grade of KF. The EKF is based on the Taylor series expansion of nonlinear state space equations. It only retains 

the first-order terms of differentials and ignores higher-order terms, thereby approximating nonlinear systems to 

linear systems. Although EKF has certain advantages over KF, its disadvantages are also obvious: when the system 

is converted from linear to nonlinear, the theory of Taylor series expansion is used. This method can only work 

well when the system maintains continuity and has a high degree of linearization. The prediction results are closely 

related to process noise and observation noise. If the covariance matrix of the two noises is not accurately estimated, 

it may cause the accumulation of errors, resulting in a large deviation in the final prediction results, which in turn 

leads to the divergence of the estimated results.  

To solve the above problems, this study uses unscented Kalman filtering for processing. UKF uses unscented 

transformation to process the system matrix, avoiding the link in EKF where the Jacobian matrix must be 

calculated, thereby significantly reducing the complexity of the calculation and improving the accuracy of the 

calculation. At the same time, in order to solve the difficulty in determining the optimal initial value of the error 

covariance matrix, the strategy of joint improved particle swarm algorithm is adopted to optimize, further 

improving the ability of Kalman filtering to handle nonlinear dynamic processes. The contributions of this paper 

can be summarized as fol-lows: a lithium battery equivalent circuit model combined with fractional calculus theory 

is proposed, and the model parameters are identified; the fractional equivalent circuit model is combined with UKF, 

and the improved particle swarm algorithm is used to accurately estimate the system state and noise variance to 

solve the model dif-ference and measurement uncertainty, thus achieving accurate SOC estimation[17-20]. 

Experiments show that the SOFOUKF(Snake Optimization-Fractional-Order Unscented Kalman Filter) adopted in 

this paper has excellent performance, can converge quickly and accurately, and can keep the error of SOC 

estimation after convergence be-low 0.5% in challenging scenarios, and the maximum error during the convergence 

process does not exceed 1.5%. 

The proposed work's novelty and significant contributions are succinctly summarized below. 

(1) The equivalent circuit model of fractional calculus is used to describe the battery behavior across frequency 

bands. 

(2) According to the characteristics of fractional-order model, SO algorithm is used to realize the accurate 

identification of parameters. 

(3) Fractional-order unscented Kalman filter is used to estimate SOC, and SO algorithm is applied to optimize 

the initial value of FOUKF. 

The structure of this paper is as follows: Section 2 conducts a comprehensive mathematical analysis of SOC 

estimation, fractional calculus theory and equivalent circuit model; Section 3 introduces and analyzes the experi-

mental environment and experimental process in detail. Finally, Section 4 gives a conclusion. 

II. FRACTIONAL-ORDER EQUIVALENT MODEL OF LITHIUM BATTERY 

A. Definition of lithium battery SOC 

SOC is one of the key parameters of lithium batteries. There are many different definitions. Although the basic 

idea is the same, scholars have proposed many definitions from different perspectives such as battery power and 

energy. The ratio of the remaining battery capacity to the nominal capacity of the lithium battery is the most com-

mon measurement method at the same discharge rate. The specific explanation is as follows. 
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=  (1) 

If the battery is fully charged, SOC = 100%, then: 

 SOC (1 ) 100%C

I

Q

Q


= − 


 (2) 

Where QC is the remaining power of the battery, QI is the rated capacity of the battery, and ΔQ=0 is the power 

that has been discharged. The most commonly used method for calculating SOC is the AH integration method. The 

AH integration method requires the SOC value of the battery at the initial time t0 to be known. SOC is defined as 

the sum of the initial soc state and the integral of the battery charge and discharge charge. The calculation formula 

is: 

 

0

0

0

1
(t) ( )

t

t

t

SOC SOC t i dt
Q

= +   (3) 

Among them, it is the current value during the charging and discharging process of the lithium battery. When 

charging, it takes a positive value, and when discharging, it takes a negative value. Q0 is the actual capacity of the 

lithium battery. It should be noted that this calculation formula lacks real-time feedback, and its result will be 

affected by the accumulation of current measurement errors. At the same time, actual factors such as battery 

degradation, temperature and self-discharge will affect the accuracy of the battery. 

B. Definition of Fractional Calculus 

Fractional Order Calculus (FOC) is an ancient discipline with a history of several hundred years. It first ap-

peared in Leibniz's diary. As a generalized form of integer order calculus, fractional order calculus is unique in that 

it can integrate all information from the past to the present, while traditional integer order calculus only involves 

information fragments at the current moment. Therefore, fractional order calculus can clearly describe the charac-

teristics of the physical system and can remember and track the changes of the system, which is its great advantage 

over integer order theory[21-24]. As a highly complex physical system, lithium batteries can be well simulated by 

using fractional calculus theory to describe them. 

The fractional calculus operator can be defined as follows: 
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 (4) 

α is the order of the fractional order, which is a real number; t is the independent variable of the function, t0 

represents the integral's lower limit of integration. When α>0, the operator represents the α-order derivative of the 

function, with respect to the independent variable, represents the fractional differential t; when α=0 represents the 

original function, when α<0 represents the negative integral of the original function, the operator expresses the 

concept of fractional integral. Since the lithium battery fractional system model discussed in this article only 

involves the application of fractional differentials, and the initial conditions are always set to zero, this part can be 

ignored. 

Fractional calculus is widely used in mathematics and engineering. Because different fields have different 

research focuses and require different forms of fractional calculus, scholars have proposed multiple definitions of 

fractional calculus. Among them, the three most common definitions include RL definition, Caputo definition and 

GL definition. Considering the specific research background and needs of this article, the GL definition is more 

suitable because of its direct discretization of fractional calculus equations. Therefore, in this study[25], we chose 

the GL definition as the theoretical basis: 

 ( ) ( ) ( )0 0

1
lim 1

s

l i

T si
s

D f t f t iT
iT






→ =

 
= − − 

 
  (5) 
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In the above formula[26] , Ts represents the sampling time, l represents the duration of memory, and here is 

l=[(t-t0)/Ts]. The data point collected in the past [t-t0, t] time range, which means that the present state is relevant 

to the past sampling points. 
i

 
 
 

represents the Newton binomial coefficient: 
( )

!

! !i i i

 



 
= 

− 
. 

C. Establishment of battery equivalent circuit model 

Equivalent circuit models are widely used to characterize the dynamic behavior and voltage response of 

batteries under different current states. The model is constructed by basic circuit elements (voltage source, resistor 

and capacitor), and usually uses a series RC network to improve accuracy and structural integrity. Taking into 

account the model accuracy and computational complexity, the first-order model is too simple to accurately 

describe the circuit behavior of the battery. The computational complexity of the third-order model will be greatly 

increased. Therefore, the Thevenin equivalent circuit model of the second-order RC network is adopted, as shown 

in Figure 1 [27]. 

I

Uoc(soc)

+

-

R0

R1

C1

R2

C2

RL

Ohm voltage 

dropFast dynamic response Solid phase diffusion

 
Figure. 1. Fractional-order equivalent circuit model of lithium-ion battery 

The circuit model uses a voltage source Uoc to accurately characterize the open circuit voltage (OCV) 

characteristics of the battery. The open circuit voltage characteristics depend on the battery state of charge (SOC), 

and its identification process is achieved by analyzing the open circuit voltage curve. C1 and C2 are capacitor 

elements with fractional-order characteristics, and R0, R1 and R2 are resistors. R0 represents the inherent ohmic 

resistance of the battery, which represents the ohmic voltage drop generated by the battery at the moment of power-

on, reflecting the total impedance of the battery electrodes, electrolyte and connecting parts. The parallel links of 

the two R and fractional-order capacitor elements are used to simulate the polarization effects of the battery on 

different time scales. The first R1C1 branch usually represents the fast dynamic response of the battery electrode 

process (such as electrochemical double-layer capacitance), and the second R2C2 branch represents slower 

processes such as solid phase diffusion. RL represents the load resistor, the voltage across it is U0, and I represents 

the charge and discharge current. 

The circuit can be represented mathematically as: 

 

oc 0 1 2

1 2

1 1 2 2

1 2

U U U U U

U U
I C D U C D U

R R

 

= − − −



= + = +


 (6) 

 ( )
0

0

1 t

t
SOC SOC I t dt

Q
= −   (7) 

According to the principles of fractional calculus theory, the following battery state space equation is 

established: 

 
Δ

 
n x Ax BI

y Cx DI

 = +


= +
 (8) 

In the above definition, x=[U1 U2 SOC]T is the variable of the state space equation; I is the terminal current 

value of the battery; y is the observed quantity of the system, i.e. , y=[U0-Uoc] is the voltage output by the model, n 

is the order of the fractional-order system , A,B,C,D is the coefficient matrix: 
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Discretizing the above state equation, the results are as follows: 

 1Δn

k k k K k k

k k k k k k
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According to the GL definition, it is easy to get the following formula: 
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In the above formula, Ts is the sampling time of the system, take Ts=1, and get the discretization equation of 

the system: 
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γi defined as follows: 
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D. OCV-SOC curve fitting 

The hysteresis effect of the battery reveals that the quantity of electricity discharged does not precisely equal 

the quantity charged. This phenomenon is depicted in the image as two non-overlapping OCV-SOC curves. In 

order to obtain more precise voltage data, this study employs the average OCV during the charging and discharging 

processes. This is then used to construct the OCV-SOC curve. The drawn OCV-SOC fitting curve is displayed in 

Figure 2[29]. 
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Figure. 2. SOC-OCV Curve Fitting 

The experiment found that the fitting performance of the sixth-order polynomial is better than that of the fourth-

order and fifth-order polynomials. At the same time, if a higher-order polynomial is used, the function will be very 

complicated and the improvement in accuracy is not obvious[30]. Therefore, this study uses a sixth-order 

polynomial for fitting, and its fitting formula is: 

 ( ) 6 5 4 3 2f x ax bx cx dx ex fx g= + + + + + +  (14) 

It is easy to find that a=35.6181, b=-104.5178, c=113.2984, d=-54.5189, e=10.1016, f=1.0577,g=3.1439. 
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III. PARAMETER IDENTIFICATION AND SOC ESTIMATION OF FRACTIONAL-ORDER MODELS 

A. Circuit Parameter Identification Based on SO 

The SO algorithm is a new meta-heuristic swarm intelligence optimization algorithm proposed in recent years, 

which is inspired by the behavioral strategies of snakes in different environments. It is a model based on the mating 

habits of snakes[31]. Snake mating usually occurs in the cooler spring, and food supply is also a key factor at this 

time. The algorithm aims to reflect the dependence of the mating process on temperature and food supply. Com-

pared with the particle swarm algorithm, the snake optimization algorithm has a dynamic behavior adjustment 

mechanism, strong adaptive ability in the search process, and stronger global search ability, especially for multi-

modal functions. The lithium battery is a highly nonlinear strongly coupled system, and there are multiple coupling 

parameters in the model. The behavior migration mechanism in the So algorithm helps to integrate distributed ex-

ploration with local fine search. 

The algorithm constructs a mathematical model with two phases: the exploration phase (characterized by the 

absence of food) and the development phase (characterized by the presence of physical objects). In the development 

phase, the model further distinguished two modes: fighting and mating. 

(1)Exploration phase (no food) 

The exploration phase mainly describes environmental factors. In a cold place with no food, the snake will not 

look for food around it, but will go to where there is food. At this time, the amount of food is less than the tempera-

ture (the temperature is normal). 

The formula for male individual position is as follows: 

 ( ) ( ) ( )( ), R,m 2 m max min min1 Ri mX t X t c A X X X+ =  −  +  (15) 

Where: Xi,m represents the position of the i-th male individual; XR,m refers to the position of an arbitrary male 

individual; c2 is a constant; R represents a random number, ranging between 0 and 1; Am refers to the capability of 

the male individual to locate food. 

The female individual position formula is as follows: 

 ( ) ( ) ( )( ), R, 2 max min min1 Ri f f fX t X t c A X X X + =  − +  (16) 

Where: Xi,f is the position of the i female individuals; XR,f refers to the location of a randomly selected female 

individual; Af refers to the capability of the female individual to locate food. 

(2)Development stage (with food) 

The amount of food in the development phase must be greater than the temperature (the temperature is nor-

mal), which is the opposite of the exploration phase. If the temperature exceeds the normal range, it can be classi-

fied as hot, the snake's movement is unidirectional towards the food, and its position is subsequently updated: 

 ( ) ( )( ), food 3 food ,1 T Ri j i jX t X c X X t+ =     −  (17) 

Where: Xi,j represents the position of all individuals, encompassing both males and females; Xfood represents the 

optimal individual position; c3 is a constant (c2 not equal to); T is the temperature at this time. If the current 

temperature is below the typical temperature range, it can be inferred that the temperature is currently cold. When 

threatened or courting, the snake will assume either a defensive or an offensive stance. The two modes are randomly 

generated with equal probability. 

(3)Battle Mode 

Currently, the male snake's position is being updated: 

 ( ) ( ) ( )( ), , 3 FM best,f ,1 Ri m i m i mX t X t c E Q X X t+ = +     −  (18) 

In the formula: EFM refers to the combative prowess of the male; Q is the amount of food; Xbest,f occupies the 

dominant position within the female snake hierarchy. 

The current position update formula for the female snake is as follows: 

 ( ) ( ) ( )( ), , 3 FF best,m ,1 Ri t i t i tX t X t c E Q X X t+ = +     −  (19) 

In the formula: EFM refers to the combative prowess of the male; Q is the amount of food; Xbest,f occupies the 

dominant position within the female snake hierarchy. 

The current position update formula for the female snake is as follows: 

 ( ) ( ) ( )( ), , 3 FF best,m ,1 Ri t i t i tX t X t c E Q X X t+ = +     −  (20) 

Where: EFF represents the combative prowess of the female; Xbest,f holds the dominant position within the male 

snake hierarchy. 
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(4)Mating mode 

In this instance, the locations of both male and female snakes are revised in the manner described below: 

 ( ) ( ) ( ) ( )( ), , 3 , ,1 Ri m i m m i t i mX t X t c M Q X t X t+ = +     −  (21) 

 ( ) ( ) ( ) ( )( ), , 3 , ,1 Ri f i f f i m i fX t X t c M Q X t X t+ = +     −  (22) 

Where: Mm and Mf are the mating abilities of males and females respectively. If after the eggs hatch, if there 

are offspring that are better than the worst parent, the offspring will supplant the least fit parent, necessitating the 

replacement of both male and female individuals. Figure 3 is the pseudo code of the SO algorithm. 

Algorithm 1. Snake Optimization Algorithm 

Algorithm: Snake Optimization Algorithm 

1 Parameter initialization: maximum number of iterations T, population size N, etc. 

2 Population initialization: Split the population into two equal populations  

3 For t=1:T 

4  For i=1:N/2 

5  Calculate the fitness value of each individual in the population and find the best female 

and male individuals 

6  Calculate the temperature Temp and the amount of food Q 

  
( )

t
Temp exp

T

−
= 1 exp

t T
Q c

T

− 
=   

 
 

7   If Q<0.25? 

8    Exploration(Formula 15&16) 

9   else    

10    If T>0.6? 

11     Finding Food(Formula 17) 

12    Else   

13     If rand <0.6? 

14      Complete mating(Formula 20&21) 

15     else  

16      Battle Mode(Formula 18&19) 

17      Replace the worst females and males in the population 

18     End if 

19    End if   

20   End if 

21  End for 

22 End for 

23 Output the optimal value of the optimization result 

B. SOC estimation based on FOUKF 

This study adopts the Unscented Kalman Filter (UKF) for processing. UKF uses unscented transformation to 

estimate the system matrix, avoiding the step of calculating the Jacobian matrix in the extended Kalman filter 

algorithm, thereby significantly reducing the complexity of the calculation and improving the accuracy of the 

calculation. 

The number of sampling points in UKF is small (generally defined as Sigma points), and 2n+1 symmetric 

Sigma system sampling is generally selected. The operation process of the UKF algorithm can be described as 

follows: 

1) Initialize the state vector matrix and the state estimation error covariance matrix 

2) Select the error covariance of the sampling point at the previous moment according to the state vector and 

calculate the weighted value 

3) Use the state space equation to calculate the mean and covariance and update the sampling point 

4) Use the nonlinear observation equation to update the selected sampling point endpoint 

5) Update the Kalman filter coefficients in real time 

The definition of Sigma point is: 

1) Construct Sigma point 

 

0 , 0

( ) , 1 ~

( ) , 1 ~ 2

i

i

i

i

X X i

X X n P i n

X X n P i n n





 = =


= + + =


= − + = +

 (23) 
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2) Calculate the weight corresponding to Sigma point 
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0 2(1 )

, 1 ~ 2
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m

c

i i

m c
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




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






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+


= + − +
+


= = =

+

 (24) 

Where P is the covariance matrix of variable X, i is the number of columns, 2 ( )n k n = + − ; 410 1−   ; 

k is the secondary scale adjustment factor, usually 0; if the state distribution is Gaussian distribution, take k=n-3, 

which should satisfy the matrix ( )n P+  is semi-positive definite; m represents the mean of the sampling point; n 

represents the covariance of the sampling point; 0  , for Gaussian distribution, when 2 =  is the optimal 

solution. 

The following is the iterative formula of the FOUKF algorithm: 
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 (25) 

For FOUKF, the accuracy and robustness of its state estimation are highly dependent on multiple key 

parameters, especially the initial covariance matrix, process noise covariance matrix and observation noise 

covariance matrix. P0 affects the convergence speed and initial stability of the filter, Q0 reflects the uncertainty of 

the error and system process, and R reflects the sensor accuracy and measurement disturbance level. At present, 

the initial value of the matrix is usually determined by empirical methods, which can easily lead to poor 

convergence or filter divergence. Especially in fractional-order systems, the memory effect of the system is 

enhanced, and the initial value of the matrix is more sensitive to the result. Therefore, it is necessary to use an 

optimization algorithm to optimize the initial value of the matrix.The algorithm shown in Figure 3 solves this 

problem. 
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Update Point Sigma          Update 
1k
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+ yyP
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             Update
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(Fighting Mating)

FOUKF SO optimization

 
Figure.3. Flowchart of SO-FOUKF 

IV. EXPERIMENTAL VERIFICATION 

The battery used in this experiment is Yiwei commercial battery, the battery model is INR18650. The experimental environment 

temperature is room temperature, and the test temperature is 25℃, the specific parameters are as follows: 

Table.1 Battery parameters 
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Item Data 

Model 18650 

Rated capacity 3500 mAh 

Charge limit voltage 4.20±0.05V 

Charge cut-off current 0.02C 

Discharge cut-off voltage 2.5V 

Operating temperature 25℃ 

The equipment for testing the external characteristics of the battery is the Xinwei CT-4008T-5V6A-S1 battery 

charge and discharge detection equipment. The equipment has eight channels, each of which can provide a 

maximum charge and discharge current of 6A, with a data recording frequency of 10 times per second, a voltage 

acquisition resolution of 10 mV, a current acquisition resolution of 12mA, a current and voltage sampling accuracy 

of 0.05%, and a current response time of 1 millisecond. It supports charging modes such as constant current, 

constant voltage, and constant power charging, and discharge modes such as constant current, constant resistance, 

and constant power discharge. The hardware system is modularly designed, and the test channels are completely 

independent and do not interfere with each other. Each channel can be independently programmed and tested, and 

multiple unit modules can be connected into any combination through serial communication. The equipment 

communication is based on the TCP/IP network protocol and uses the C/S mode for communication. It can realize 

the monitoring of thousands of channels by one server, including a data processing system to ensure that data will 

not be lost due to external reasons during the test. The equipment also has a battery protection function to limit 

battery overvoltage and overcurrent, thereby improving the safety of the test. 

The lithium-ion battery test system consists of a host computer, a middle computer and a battery test device. It 

adopts a cascade structure and designs the battery test scheme for each channel through the dedicated programming 

software BTS. The middle computer encodes and transmits data through the connection with the upper and lower 

computers through the TCP/IP protocol. The battery test device performs corresponding tests on the battery and 

records the terminal voltage, working current, charge and discharge capacity and other data of the lithium-ion 

battery in real time, and sends it to the host computer through the middle computer. It can be saved as an EXCEL 

file to facilitate user data processing. The experimental system is shown in Figure 4. 

Battery Tester

Host computer

Testing the battery

 
Figure.4. Schematic diagram of experimental test system 

In our research, we utilize the Snake Optimization (SO) technique to accurately determine the coefficients of 

the system model. Throughout the determination process, the order of the model is considered a variable. The 

model's order is assessed based on the root mean square error (RMSE) between the predicted terminal voltage and 

the measured terminal voltage . Among them[28]: 

 ( )
2

1

1
:

N

k k

k

min f U ol
N


=

= −  (26) 

Among them, N is the sampling number, Uk represents the terminal voltage estimated by the model, and volk is 

the actual voltage. The fitness value change curves are shown in Figure 5 and 6. 
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Figure.5. Fitness value curve-Integer order model 
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Figure.6. Fitness value curve- Fractional order model 

The data used for parameter identification is battery test data under DST conditions at 25°C, and the data used 

for model verification are FUDS condition battery test data at the same temperature. To ascertain the efficacy of 

the fractional order model, an analysis and com-parison is conducted on the integer order model. 

Table 2. Parameter identification results of Fraction-order 

Parameters Values 

0 /R 
 

0.06923 

1 /R 
 

0.38735 

1 /C F
 

2807651004.6397 

2 /R 
 

0.06423 

2 /C F
 

1068436368.3503 

  0.762399 


 0.749957 

Table 3. Parameter identification results of Integer-order 

Parameters Values 

0 /R 
 

0.06922 

1 /R 
 

0.05282 

1 /C F
 

4530311182.6886 

2 /R 
 

0.07325 



J. Electrical Systems 21-1 (2025): 799-813 

 

809 

2 /C F
 

4855157971.4149 

In order to evaluate the actual application of the two models, the two battery models were verified under FUDS 

conditions, and the model output was compared with the actual value. The results are shown in Figure 7 and Figure 

8, where the blue curve is the actual voltage value and the red curve is the model output value. The average error 

of the integer order model is 0.024252 V and the root mean square error is 0.028425 V. In contrast, the average 

error of the fractional order model is 0.021232 V and the root mean square error is 0.027413 V. From these results, 

it can be seen that the fractional order model has higher accuracy than the integer order model, indicating that it is 

more suitable for use in actual battery management systems. 
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Figure.7. Integer-order model terminal voltage 
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Figure.8. Fractional order model terminal voltage 

For the effectiveness of the battery state estimation algorithm, the battery test data under DST conditions is 

used, the ambient temperature is still 25°C, the model parameters are the same as the previous step, and the model 

output is compared with the actual output value to verify its accuracy. The terminal voltage and state of charge 

estimation results under the SO-FOUKF algorithm are shown in Figures 9-12. In Figure 9, the black curve is the 

true value of the terminal voltage, the red curve is the model output value, the curve in Figure 10 represents the 

error between the true value of the terminal voltage and the model output value, the black curve in Figure 11 is the 

true value of the state of charge, the red curve is the model output value of the state of charge, and the curve in 

Figure 12 represents the error between the actual state of charge value and the model output value. 
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Figure. 9. Terminal voltage estimation 
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Figure. 10. Terminal voltage estimation error 
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Figure. 12. SOC estimation 
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Figure. 13. SOC estimation error 

The SOC estimation results based on the SO-FOUKF algorithm are illustrated in the corresponding figures. As 

shown in Figure 9, the algorithm demonstrates high accuracy in terminal voltage estimation, exhibiting rapid 

response and effective tracking of the actual voltage signal. According to Figure 10, the absolute voltage estimation 

error is predominantly within ±0.05 V, with the maximum deviation not exceeding 0.1 V, corresponding to a 

relative error below 2%. This indicates the algorithm’s reliable performance in voltage estimation. 

Figure 11 presents the dynamic behavior of SOC estimation. A slight fluctuation is observed during the initial 

phase; however, the filter quickly converges to the true value and remains stable across the entire SOC range. This 

demonstrates the algorithm’s robustness and applicability throughout the full SOC domain. As shown in Figure 

12, the maximum SOC estimation error does not exceed 1.5%, and the final steady-state error is maintained within 

0.5%, meeting the requirements for high-accuracy SOC estimation. 

In summary, the SO-FOUKF algorithm, when applied to the proposed battery equivalent model, exhibits 

excellent estimation performance. It proves to be practical for real-world applications, enabling accurate and 

reliable SOC monitoring and control in battery management systems. 

V. CONCLUSION 

This study uses a high-order fractional equivalent circuit model to study lithium batteries. Through theoretical 

analysis, the state space expression of the second-order fractional circuit model is derived, mainly including 

terminal voltage and state of charge. The model parameters are accurately identified using the SO algorithm and 

curve fitting, and the accuracy is verified using different working conditions. The accuracy of the developed 

parameter identification method exceeds 98%. In order to achieve accurate state estimation of lithium-ion battery 

SOC, fractional-order unscented Kalman filter and SO algorithm are combined. The fractional-order unscented 

Kalman filter solves the problem that the traditional extended Kalman filter has large errors for nonlinear systems. 

The SO algorithm is used to optimize the initial value of the matrix to improve the filtering effect. The experiment 

verifies the effectiveness of the algorithm, and the error margin is less than 2%. Although this study has conducted 

a relatively comprehensive study on battery management and state of charge estimation, there are still some 

problems: lithium batteries are extremely susceptible to temperature and material aging, which will significantly 

reduce the applicability of the algorithm. This reminds us of the future research direction and proposes a more 

comprehensive strategy to deal with these problems. 
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