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Abstract: - The development of automated techniques for speech analysis-based Parkinson's disease (PD) detection has attracted a lot of ir
especially because of its possible uses in health tele-monitoring. Due to the drawbacks of the ¢ - Synuclein Seed Amplification Assay tecl
scientists are looking more closely at speech signals as a potential substitute for PD detection. In order to identify PD, this proposal desc
thorough investigation that emphasizes using both voice and unvoiced source material. Acquiring relative speech data is part of the methoc
which is followed by pitch synchronous and block processing for data preprocessing. Cloud computing will also be used for comput
requirements and data storage. Feature extraction will be made easier by the Enhanced Simple Inverse Filter Tracking (ESIFT) techniqu
classification will be carried out by combining Support Vector Machines, XGBoost, and LightGBM methods. Finally, to attain the best p:
solution for a voice recognition system, use the Ensemble technique of supervised machine learning with the goal of a detection accuracy o
than 80%. When compared to current speech detection systems, the expected result is a notable increase in accuracy.

Keywords: Parkinson’s disease (PD), Machine learning (ML), Speech signal processing (SSP), Cloud computing, Multi classific
synchronization (PS), Block Signal Processing (BSP), Enhanced Simple Inverse Filter Tracking (ESIFT)

1. INTRODUCTION

Parkinson disease (PD) stands as the second most prevalent neurodegenerative disorder which targets neurons
inside the brain’s substantial nigra leading to dopamine loss. Clinical diagnosis of these dysfunctions occurs when
50% of dopaminergic neurons already suffer irreversible damage. Early diagnosis of PD during its prodromal
phases proves to be essential. Parkinson's disease shows high prevalence among people aged 55 to 90 years old but
also affects those younger than that range. Timely discovery of this disease allows for simple treatment yet if it
remains undetected until it reaches the chronic phrase it becomes deadly and dangerous. A specialized technique
detects abnormal protein deposits tied to Parkinson’s disease in cerebrospinal fluid and identifies patients with
complete accuracy through a detection rate that exceeds 100%. The diagnostic technique goes by the name “g-
Synuclein Seed Amplification Assay” (¢-Syn- SAA) which enables classification through genetic and clinical
markers. The limitations of this technique motivate researchers to improve Parkinson’s detection accuracy through
speech signals. Such drawbacks include; the process is prohibitively expensive while patients face the fear of
surgical intervention or obtaining fluid samples from the brain or spinal cord.

This study aims to develop a dependable speech recognition system that analyzes voiced and unvoiced speech
patterns to enhance early diagnosis accuracy for Parkinson’s disease. Achieving this aim requires the application
of feature extraction methods as well as data categorization and pre-processing techniques. This research requires
obtaining a validated supervised speech dataset of Parkinson’s disease that includes both voiced and unvoiced
speech signals. The collected speech data requires pre-processing through both pitch synchronous processing and
block processing methods before analysis. The essential characteristics of vocal impairments from the illness
emerge through the application of the strong feature extraction technique ESIFT alongside cross-validation
methods. To design a hybrid machine learning models, both XGBoost and LightGBM techniques are applied with
Support Vector Machines (SVM) and ensemble approaches that can use the unimodal dataset to accurately and
early diagnose Parkinson's disease. To carry out performance metrics on the final output based on accuracy,
precision, recall, sensitivity, specificity, AUC-ROC, and F1 score.

In [7], the author proposes a novel and efficient approach to the Parkinson's disease (PD) diagnosis system that
uses the voice samples of the patients who have been diagnosed before. The method is based on multi-level feature
selection. Chi-square and L1-Norm SVM algorithms (CLS) were used for feature selection at the first level. An
audio-based depression detection system is suggested in [12], where transformation of a “deep learning (DL)”
approach is used to make the data not only compact but also very essential. The proposed method increases the
accuracy of the depression detection system through the structure suggested as it learns the specially important and
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characteristic markers from raw consecutive acoustic information using an end-to-end “Convolutional Neural
Network-based Auto-encoder (CNN AE)” technique. In this study [2], a vowel-based artificial neural network
(ANN) structure is introduced for PD prediction from a single vowel phonation. To build a voice-based model to
predict Parkinson's disease, a new multi-layer neural network is suggested; 48 Parkinson's disease patients and 20
healthy people provide instances of vowels, numbers, words, and short phrases. In the second step they create ANN
models from a single type of speech samples rather than merging several bases. [4], in this study proposed a
“speech-based machine learning” method to distinguish the participants with healthy controls (HC) from relapsing-
remitting subtype of Multiple Sclerosis (MS) using their speech. It is hypothesized that the potential for MS to
create motor speech impairment similar to dysarthria could affect the phonetic posterior estimates of a "deep neural
network acoustic model." This approach was created by investigating the fundamentals of the biological
mechanism behind speech perception [6]. Two cochlear implant types are examined in the study: one uses a bank
of optimized gamma-tone filters, while the other uses a conventional bank of band pass filters. The critical center
frequencies of such filters are selected to mimic the vibrating patterns produced by auditory waves in the human
cochlea. According to [9], this study suggests that traits can be gleaned from transcripts and unplanned speech
utterances by fusing techniques from natural language processing and speech analysis. The transcriptions are
examined using contemporary word-embedding techniques like Bidirectional Encoder Representations from
Transformer (BERT). This work [3] is novel in two respects. First, the proposed assessment methodology was used
to continuous speech samples for speech analysis. Second, the suitability of Wiener filters for voice de-noising in
Parkinson Speech Context recognition was investigated and evaluated. They contend that speech energy, Mel
spectrograms, prosody, articulation, intonation, vibrancy, and phonation are all instances of Parkinsonian traits.
This work uses a short-time energy-established structure to discriminate between the voiced and unvoiced
components of the speech signal [11]. After extracting the frame-wise mel frequency cepstral coefficients (MFCC)
features from the voiced and unvoiced parts of each spoken phrase, the mean, variance, skewness, and kurtosis
statistics are used to generate the feature vector for each spoken utterance. The support vector machine (SVM) can
be used to assess the efficacy of features extracted from the voiced and unvoiced regions. In [5], he investigates
whether deep learning may be used to automatically estimate the Grade, Roughness, Breathiness, Asthenia, and
Strain (GRBAS) using fewer data. Eight experts created and evaluated a collection of 300 pathological continuous
vowel samples that ended in /a/ (200 for training, 50 for validation, and 50 for testing). To predict the binomial
distribution of GRBAS ratings from a waveform with an onset to an offset, a neural network method was suggested.
The study suggested a hybrid Parkinson's disease detection system [8]. The two speech datasets used in the system's
design were Parkinson's voice and speech in Italian and the datasets for mobile devices used for voice recordings
at King's College London. From the voice samples in the datasets, seventeen acoustic features have been produced
using the Parselmouth package. Moreover, the eight most significant aspects, determined by the features’
importance, were used in the model’s design. Choosing these features used a genetic algorithm approach: four
classifiers were used in the classification step— XGBoost, random forest, logistic regression, and k-nearest
neighbors. In the dataset under examination, 85 individuals underwent “open partial horizontal laryngectomy
(OPHL)” of type I (22 subjects), II (32 subjects), and III (31 subjects). They had two different ways of pre-
processing the available vocal data (reading assignment: extended vowel sound) to remove non-harmonic frames.
After the pre-processing, they retrieved a large number of spectral, cepstral, and temporal features from the
allocated harmonic frames. In this study [13], the structure of the speech signal is used to distinguish the voiced
and unvoiced components. To obtain the information needed for a comprehensive analysis of the speech signal,
the signal was first preprocessed using frame-wise mel-frequency cepstral coefficients (MFCC) analysis. An
utterance was represented by a feature vector, which was then populated with the first four statistical moments of
the speech signal: mean, variance, skewness, and kurtosis. From these statistics, estimates of the type and amount
of information carried by a given speech section were made. The computational engine carried out this processing
in real-time and was able to function in two different modes. In one mode, it operated on just the voiced section of
a speech signal, while in the other, it operated on the section of speech that was unvoiced. According to the findings
of this research work [10], a system was developed to detect Parkinson’s disease in patients through their voiced
speech with 6% accuracy. The author compared traditional pipelines against end-to-end approaches. A multilayer
perception (MLP) algorithm of deep reinforcement learning was used to train the extracted data source.
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II. METHODS

Fig 1 displays an overview of the entire methods applied in this research work, from the dataset to pre-
processing, then feature extraction and finally to the classification phase.
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Fig 1: Overall diagram of proposed system.

Dataset

This dataset, which was finished on November 5, 2018, is for sale in the field of speech analysis and Parkinson's
disease research training. The study's data were from 758 people, both men and women, with PD and in good
health. Their ages ranged from 33 to 87 (65.1 £ 10.9), and they were all from the Department of Neurology at
Cerrahpasa University, Faculty of Medicine, Istanbul University, Turkey. The microphone was adjusted to 44.1
KHz during the data collecting process, and each subject's sustained phonation of the vowel /a/ was recorded three
times. Parkinson's disease (PD) patients' speech recordings have been subjected to a variety of speech signal
processing algorithms, such as Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs),
Wavelet Transform based Features, Vocal Fold Features, and TWQT features, in order to extract clinically
relevant information for PD assessment. There are 758 patients in this dataset, both male and female. The loading
of the uploaded dataset is displayed in Fig. 2.
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Fig 2: Dataset loaded in python

Pre-processing

Pitch synchronization and block processing are crucial pre-processing techniques for speech data analysis in
Parkinson disease. Both spoken and unvoiced speech can be used using these techniques. Pitch synchronous
processing separates data based on their fundamental frequency, allowing for a more thorough analysis of specific
speech traits. This method improves the accuracy of collecting relevant data by ensuring alignment with the
periodicity of the voice signal. In order to handle voiced and unvoiced portions equally, block processing, on the
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other hand, splits the signal into smaller blocks. To overcome memory and computational limitations, it is feasible
to train and test the proposed Parkinson's disease model using the entire dataset by utilizing cloud computing
resources. The computational load will fall on cloud-based solutions, which offer powerful and scalable
computing resources as needed. This eliminates memory limitations and speeds up model training throughout the
entire dataset in Parkinson's disease research by enabling parallel processing and efficient use of cloud-based
infrastructure.

Block Signal Processing: The Block processing can be conducted by applying either the block convolution or the
block recursion. For the purpose of this research, the block convolution method was used during the block
processing. This method groups signal samples into blocks, to be processed one after the other.

The operation of a finite impulse response (FIR) filter is described by a finite convolution as;

T—1
ym= Y hk) x(n—K) oo (1a)
k=0

where x(n) is causal, h(n) is causal and of length LL" role="presentation"
style="position:relative;" tabindex="0">LL, and the time index LL" role="presentation"
style="position:relative;" tabindex="0">nn, nn" role="presentation" style="position:relative;"
tabindex="0">goes from zero to infinity or some large value.

The delay between the input and output signals is dependent on the number of samples in each block.

X¢qm) = Xm(M—dy) = Xm(M+tm—1tg) oo (1b)
tq is the synthesis pitch marks, dj is the sequence of delays (= tq— tm),

Pitch synchronous: The least-square overlap-add synthesis approach can be used to obtain the synthetic signal
x(n). By splitting the voice waveform into tiny overlapping segments, this approach alters the pitch and length of
a speech signal. The segments are repeated several times or removed to alter duration, and they are moved closer
or farther to alter pitch.
Xm (M) = hm (tm—n) x(n) e 2

tm represents the pitch marks (set at the pitch-synchronous rate on the voiced portions of the signal, & at a

constant rate on the unvoiced portions).

x(n) represents the digitalized speech waveform.

xm(n) represents the sequences of short-time signals,

hm(n) is the sequences of pitch synchronous

but first, we calculate the short term energy of the input signal x(n);

[60)
S= 3% x(n) S = np.sum (frames ** 2, axis=1) .................. (2b)
n=-

Feature Extraction

The Enhanced Simple Inverse Filter Tracking (ESIFT) algorithm is a sophisticated technique for feature
extraction in the context of Parkinson's disease that records both voice and unvoiced speech components. ESIFT
improves the extraction of pertinent information from voice recordings affected by Parkinson's disease by
combining inverse filtering and tracking algorithms. By breaking down the speech signal into its source and filter
components, this method can capture the key elements of the vocal impairments brought on by the illness. The
improved tracking technology guarantees precise monitoring of dynamic changes in voiced and unvoiced regions
and offers a thorough depiction of speech disorders. ESIFT’s advanced features (id, gender, PPE, DFA, RPDE,
numPulses, numPeriodspulses, stdDevPeriod pulses, and Locpct jitter) help improve diagnostic and monitoring
processes in both voiced and unvoiced speech domains by identifying subtle variations in voice patterns
associated with Parkinson’s disease. Cognitive impairment, autonomic dysfunction, sleep disruptions, anxiety
and sadness, difficulty speaking and swallowing, exhaustion, pain, dysautonomia, and mood swings are examples
of unvoiced traits. The Enhanced Simple Inverse Filter Tracking algorithm is used to classify speech segments
according to their voicing and to estimate the pitch period of the speech that has been labeled as voiced.

The decimated speech signal /Wn/ is then inverse filtered by the FIR filter with transfer function

m

A@= 1+Yaz' . (B a)
i=1
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In the sampled data-time domain this equation is equivalent to

Yn = Wnt Y Qi Wn-1 i 3b)
i=1
where {yn} is the spectrally flattened prediction error signal.

Classification

In the analysis of voiced and unvoiced speech in Parkinson's disease, a robust classification framework is
produced by combining the XGBoost and LightGBM approaches with Support Vector Machines (SVM). SVM
establishes a helpful baseline by dividing data into distinct groups based on identified patterns. The performance
of the model is enhanced by combining two powerful gradient boosting algorithms, XGBoost and LightGBM,
which handle complex interactions in the data and continuously enhance its predictions.

XGBoost technique comprises of smaller colSample byTree values which are used to simplify models and avoid
over fitting, which has been a significant problem with SVM. As a result, the model performs better during
training and increases accuracy during testing.

LightGBM approach offers two primary types of feature importance, which are split scores and gain scores. The
number of times a feature is applied to split the data across all of the model's trees is indicated by the Split score.
Gain score measures the increase in the model's accuracy attained by employing a certain feature for splitting,
while it is helpful for determining which features are most frequently used in the decision-making process.

The capabilities of SVM's discriminative abilities with the boosting algorithms' ability to capture intricate feature
interactions, are further combined by the ensemble technique. Because it takes into account the subtle patterns
found in speech data that are in both voice and unvoiced segments, combining the two is particularly helpful for
identifying Parkinson's disease.

Support Vector Machine Model: The number of features was determined according to the cost parameter for the
feature selection-based L1-Norm SVM. The dataset with n samples is expressed as:

S={(xi,yi)|xi ER" yi € {-L,1}}% =1 ... (4a)

where: xi is the ith sample which has n features and a class label (yi).

The SVM in the classification problem with two classes can be re-arranged in the below equation to correct
classification errors resulting from the distance from the margin.

yi(wxi-b)>1-d, di>0, i=1,...,k ... (4b)

XGBoost Model: In filling out missing data, in cross validation by stopping the process on time once
there’s no more improvement.
start = time.time()
xg=xgb.XGBClassifier(max_depth=7,learning_rate=0.05,
silent=1,eta=1,0objective="multi:softprob',
num_round=50,num_classes=06)

Similarity Score (Gain) = Y R?
of XGBoost Nr+A )
Where:

(X, Y) = Dataset split to LHS & RHS of leaf
A = Regularization parameter

y = Threshold on gain,
(This determines if the tree will split or not)

R =Pseudo (X, Y) of dataset

Nk = Numbers of given R

Light GBM Model: This algorithm is based on decision trees to tackle complex problems. It gives speed,
and can easily train a large amount of data by using less memory than other algorithms. This speed and
efficiency results to greater accuracy and better performance.
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Gain(j)= G (G - Gj)? G’
+ —
Hj+ L H-Hj+2 H+) (6)

where: G = Gradients for the dataset
H = Hessians for the dataset
A= Regularization terms

eta = Learning rate

Tree Ensemble Model: This uses a lot of decision trees called Random Forest, where each tree is little
different from the others. When a new data is obtained, we take the majority vote of ensemble to get a
final result.

yi =0x» =k fixi),fk€F ... )
K=1
where F= {f(x)=wq(x)}(q: Rm — T, w € R T) is the space of regression trees (also known as CART)
(q represents the structure of each tree that maps an example to the corresponding leaf index)
(T is the number of leaves in the tree) (w is the leaf weight)
fi corresponds to an independent tree structure q and leaf weights w
k is the additive functions to predict the output.

x; is the speech signal (data)

Evaluation metrics
To evaluate the performance of the proposed system, the following parameters have been used:-

Accuracy is simply a ratio of the correctly predicted observations to the total observations,

Accuracy = TP + TN
(TP+FP+FN+TN) ... (8 a)

Precision is the ratio of correctly predicted positive observations to the total predicted positive observations.

The precision is defined by:
Precision = TP
(TP+FP) i (8 b)

Recall is the ratio of correctly predicted positive observations to all observations in the actual class. It is
formulated by:

Recall = P
(TP+FN) oo, (8¢)

F1 score is the weighted average of precision and recall. Therefore, this score takes both false positives and
false negatives into account. The F1 score is defined by:

Fl= 2 . Recall « Precision
Recall + Precision ... (8d)

NPV defines the fraction of the tests that correctly detect healthy individuals.

NPV = N
(IN+FN) oo, 8e)

Where:
TP is True Positive ~ TN is True Negative  FP is False Positive ~ FN is False Negative

III.  RESULTS

The diagram in Fig 3 is the GUI of the processes, each click automatically initiates the selected process.
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@ Autormnated identification of Parkinson disease — >

AUTOMATED IDENTIFICATION OF PARKINSON DISEASE
UTILIZING BOTH VOICE AND UNVOICED DATA

Fig 3: GUI Model based on the specific objectives of this research
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Feature Extraction
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Fig 5: Enhanced Simple Inverse Filter Tracking (ESIFT) algorithm for the feature extraction

Classification
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Fig 6: lClassiﬁcation process using XGBoost and LightGBM techniques with Support Vector Machine (SVM) and Ensemble technique,
for the Model Accuracy.

The proposed work is compared with evaluation metrics such as:-

Accuracy: This is the state of be precise and correct, with insignificant errors.

Sensitivity: The quality to quickly detect essential features in the signals

Specificity: The quality of relating uniquely only to the unessential features.

AUC-ROC: To provide aggregate measure of performance across classifications threshold.
Recall: To measure the performance of classifier in binary & multiclass classifications.
Fl-score: This integrates precision and recall into a single metric, for better understanding.

Fig 7: Evaluation metrics running in python

720



J. Electrical Systems 21- 1 (2025):712-725

From the above evaluation metrics, the following graphs were obtained;

Accuracy Graph
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Sensitivity Graph
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IV. DISCUSSION

The process begins by clicking on the Dataset button on the GUI model, this process allows the dataset to be
uploaded into the IDLE of python, which takes a short while to load in, before the pre-processing phase can be
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initiated by clicking on the Pre-processing button on the GUI model. The Fig.4 shows how the data are pitch
synchronized and divided into block parameters during the pre-processing. Once this step is completed, the feature
extraction phase can be initiated by clicking on the Feature extraction button. The Fig.5 shows how relevant speech
features are extracted from the pre-processed data, applying the Enhanced Simple Inverse Filter Tracking method
in the process. The next step is by initialling the classification process, as seeing in (Fig.6), which adapts the SVM
model together with the XGBoost and LightGBM classifiers, and combined with the Ensemble model to give a
resultant output of 99.54% accuracy rate which is key in detection of early Parkinson’s disease. The final step can
now be initiated by click on the Performance metrics button, this allows the evaluation process to commence in
(Fig.7). The outcome of the evaluation produces the following graphs;

The Accuracy graph in (Fig.8) displays the rate at which the model performs, it shows us how correct a prediction
is made on dataset on a percentage scale. The X-axis shows the steps of the training progression, while the Y-axis
shows the level of accuracy. From this graph, the maximum level of attainable accuracy on the Parkinson’ disease
detection is 99.54%, which becomes the workable level.

The Recall graph in (Fig.9) known as the Precision-Recall curve displays the relationship between the values of
precision and recall for the classification models across different settings of threshold. The higher the threshold,
the higher the precision but lower the recall, and vice-verse.

The Specificity graph in (Fig.10) known as the Receiver Operating Characteristics (ROC) displays a correct
identification of individuals with absence of a particular disease, this illustrates the trade-off between correct
negative cases and incorrect negative cases across multiple cut-off points on the scale of test result. A better
specificity test is as a result of higher curves.

The Sensitivity graph shows how a change in one input variable can affect the outcome of a model, which helps to
notify the most significant variables in arriving to a final resultant. Thus it can visualise which factors are more
critical in decision making, the input variable is plotted on the x-axis while output variable is plotted on the y-axis.
The graph in (Fig.11) has tornado charts which display its variables vertically with bars showing changes within
possible output values, thus allows fast visual comparison of most significant factors.

The AUC ROC graph is known as Area under the Receiver Operating Characteristics Curve which represents the
performance of binary classification model across several thresholds, whereby the rate of true positive is plotted
against false positive. This graph in (Fig.12) is important because it sets balance between sensitivity and specificity.
The F1-Score graph helps classification model in balancing between precision and recall. The F1 score displays
values between 0 and 1 across datasets and model variations. A higher F1 score as shown in (Fig.13) indicates a
better balanced and model performance.

V. CONCLUSIONS

Parkinson disease dataset is pre-processed by applying pitch synchronous and block processing Segmentation
is essential to improve the accuracy of identifying diseased and normal voices and to detect the disease's
progression.

Utilizing cloud computing resources is a workable method to get beyond memory and computational limitations
in training and testing the proposed model for Parkinson's disease utilizing the whole dataset. The computational
burden will be moved to cloud-based platforms with on-demand access to scalable and potent computer resources.

Improving the Simple Inverse Filter Tracking (SIFT) algorithm is a practical way to solve the method's lack of
learnable parameters and make it work with less demanding hardware for clinical situations. A balance is
maintained between hardware needs and model complexity in the SIFT method with the integration of lightweight
learnable components or adaptable features.

Enhanced Simple Inverse Filter Tracking (ESIFT) method with a multilingual phonetic set is an efficient way to
overcome the language-specific limitation in the proposed feature extraction strategy for Chinese, Spanish, and
English speakers.

An ensemble technique using Support Vector Machines (SVM) in conjunction with XGBoost and LightGBM
was used to overcome classification issues resulting from limited pathological sample numbers and gender
imbalance. This group minimizes the effects of sparse data and gender inequality by using the advantages of each
method to improve classification performance.

In conclusion, this research successfully demonstrated the effectiveness of utilizing a dataset that includes voiced
and unvoiced supervised speech signals for detecting Parkinson’s disease. By employing advanced techniques such
as Enhanced Simple Inverse Filter Tracking (ESIFT), Support Vector Machines (SVM), XGBoost, LightGBM,
and Ensemble Machine Learning algorithms, we achieved an impressive accuracy rate of 99.54%. This
significantly exceeds the existing benchmark of 75% in this field. Moreover, our results are comparable to the q-
Synuclein Seed Amplification Assay, which reports accuracy rates exceeding 100%. Given the minimal difference
of only -0.46% accuracy, this research alleviates concerns regarding the invasive procedures typically required for
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cerebrospinal fluid collection to determine PD status. Our findings underscore that speech signal analysis for
Parkinson’s disease detection is superior to traditional methods, offering simplicity, affordability, flexibility, and
reliability advantages.

LIST OF ABBREVIATIONS
AE Auto-Encoder
ANN Artificial Neural Networks
AUC-ROC Area Under the ROC Curve
BERT Bidirectional Encoder Representations from Transformer
CAS Complete Active Speech
CLS Chi-square and L1-Norms algorithms
CNN Convolutional Neural Networks
DT Decision Tree algorithm
ESIFT Enhanced Simple Inverse Filter Tracking
GMM-UBM Gaussian Mixture Model-Universal Background Model
GRBAS scores Grade, Roughness, breathiness, asthenia, strain
GUI Graphic User Interface
HNR Harmonic-to-Noise Ratio
INFVo Intelligibility, Fluency, Voicing and noise
LightGBM Light Gradient-Boosting Machine
MFCC Mel frequency Cepstral coefficient
MLP MultiLayer Perceptron
PD Parkinson’s disease
QcCp Quasi-Closed Phase
RNN Recurrent Neural Networks
SIFT Simple Inverse Filter Tracking
SVM Support Vector Machine
XGBoost eXtreme Gradient Boosting
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