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Abstract: - This study tackles the significant challenge of augmenting accuracy in the two-dimensional (2D) tracking of mobile objects, 

particularly in environments plagued by high noise and data uncertainty. Traditional Kalman filter-based methods often struggle under 

these conditions, failing to deliver the needed precision. Consequently, the primary objective of this research is to devise, implement, 

and validate a refined linear Kalman filter approach. This approach aims to significantly diminish estimation errors in tracking object 

positions and velocities, addressing the identified limitations of existing methodologies. The approach involves an innovative 

adaptation of the linear Kalman filter technique, rigorously evaluated through detailed simulations and analysis to ascertain its 

effectiveness in enhancing tracking accuracy under challenging conditions. The results show that a linear Kalman Filter can be used 

to accurately estimate the position of mobile objects, with root mean square errors of less than 0.1%. We demonstrate marked 

improvements in accuracy and reliability for 2D object tracking, showcasing the method's potential applicability in real-world 

scenarios such as autonomous navigation, wildlife and automobile tracking systems. While recognizing the persistent challenges posed 

by noise variations, this research paves the way for future exploration into nonlinear applications and update processes. Such 

investigations are anticipated to further refine object tracking methodologies, building on the foundational work presented here. 
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I.  INTRODUCTION  

From wildlife monitoring to autonomous navigation, object tracking in two-dimensional spaces is a crucial 

element across various engineering fields. Traditionally, studies have relied on remote measurements to track 

objects without their own sensing capabilities [1,2]. 

 

 As we move forward in the digital age, there's a shift toward a method known as probabilistic data fusion. 

Imagine trying to pinpoint a location in a bustling city based on several uncertain tips; this method similarly 

combines different data sources to enhance the precision of object tracking, despite the inherent uncertainties in 

each data point [3,4]. 

 

To better understand how we track a vehicle's movement, consider this simplified analogy: Just as weather 

forecasts use probabilities to predict the likelihood of rain, we use similar methods to estimate a vehicle's position. 

In the real world, measurements like those from a car's GPS aren't always perfect due to various factors like signal 

interference or obstacles.  

 

Thus, we combine GPS data with other sensor information to improve our predictions, treating the vehicle's 

position and movement as probabilities rather than certainties. This approach, rooted in a statistical method known 

as Bayesian inference, is widely applicable, from helping self-driving cars navigate to enhancing military tracking 

systems. At the heart of our study are two key elements: how accurately we can estimate where the vehicle is (its 

position) and how fast it's going (its velocity) within a two-dimensional space, like a flat map [4]. 

 

Imagine trying to predict where a ball will land while it's still in the air, using only its past movements to guide 

you. This is like the task we face in tracking objects, where we continuously predict and then update our predictions 

based on new data. In this back-and-forth process, our certainty about the object's location can fluctuate. Here, 

Kalman filters become essential tools. They help us refine our predictions using a mathematical approach that 

combines past data with new information, much like updating your guess of the ball's landing spot with every 

bounce it takes. This method is efficient enough to work even on devices with limited computing power, making 

it widely applicable. [5]. 
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This study is centered around the purpose of designing, developing, and critically evaluating a 2D Tracking 

Filter. With the help of remote radar measurements, this instrument assesses the velocity and positional attributes 

of mobile entities, specifically in the context of South Africa. Among the key objectives of this task are: 

understanding current object tracking methods, collecting radar sensor data, designing 2D Tracking Filters, 

simulation-based evaluations, improving the filter for optimal efficiency, evaluating its broader impacts, and 

sharing results with academics and stakeholders. 

 

The scope of this study must, however, be clearly defined. Within a 2D framework, it emphasizes objects 

moving at consistent velocities. In addition, most of the research relies on simulations, which are limited by a 

specific time frame. Although the study covers a broad spectrum, it avoids going into exhaustive detail about the 

economics and the environment.  

 

Likewise, by deliberately excluding complex factors like radar jamming and extreme weather conditions to 

maintain analytical focus. Radar jamming, an intricate electronic countermeasure, and extreme weather conditions, 

which can significantly affect radar signal quality, require specialized analyses beyond this study's probabilistic 

and mathematical scope.  

 

By isolating the Kalman filter's intrinsic performance from these variables, we aim to provide clear insights 

into its core capabilities. However, acknowledging these exclusions highlights essential future research directions, 

including the integration of electronic countermeasures and meteorological impacts in tracking system analyses to 

develop more robust and comprehensive tracking solutions. 

 

This research marks a significant advancement in simulation methodologies, closely mirroring the complexities 

encountered in real-world scenarios. It bridges a notable gap in existing literature by offering solutions that are 

specifically designed for challenges prevalent in South Africa. By refining our models to minimize position and 

velocity errors to remarkably small margins, we can vastly improve the efficiency of tracking systems.  

 

This precision is crucial for applications like wildlife monitoring, where it enables the accurate tracking of 

animal movements, and in combating crime, particularly in disrupting operations of criminal syndicates involved 

in poaching or vehicle theft. The insights derived from this focused, simulation-based study are expected to have 

far-reaching effects on enhancing radar-based tracking technologies, providing a robust framework that can be 

adapted to various practical contexts beyond the initial focus on South African challenges. 

 

This paper is arranged as follows Section (I) deals with the Introduction, Section II provides a Problem 

Statement which precisely defines the issue at hand. Section (III) provides the Background and Related Work 

highlights industry challenges and a selective literature review. The Section IV outlines the Theoretical Background 

which presents essential concepts and formulae. Section (V) deals with the Methodology, which covers system 

design, mathematical formulations, component derivations, and simulation tools. Section (VI) provides the 

Decision Matrix and Solution Selection, which briefs on the decision process and the chosen solution based on 

techno-economic factors. Section (VII) outlines the Impact Assessment, which evaluates the design's broader 

implications. Section (VIII) deals with the Uncertainty and Risk, which deliberates on potential project pitfalls. 

The narrative concludes with Summary and Conclusions (IX), followed by a comprehensive list of References.  

II. PROBLEM STATEMENT 

With South Africa's vast and diverse terrain, tracking objects' movements becomes very important for 

transportation, wildlife monitoring, and other applications. Given that position data is acquired via radar-based 

sensors, and that objects move at a consistent speed in a 2D X-Y plane, it's imperative to have a reliable way to 

estimate both their position and velocity. In this paper, we develop a 2D Tracking Filter that is capable of accurately 

and efficiently estimating the position and velocity of moving objects based on remote radar measurements. 

III. LITERATURE REVIEW 

Various scholars have explored various strategies to address the 2D tracking challenge. For example, U. B. 

Gohatre et al. have adopted a computer vision methodology to tackle the 2D estimation issue [6]. Their focus on 
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real-time tracking through stereo vision and predictive analytics achieves a significant frame rate, highlighting 

potential value for time-critical applications.  

 

However, the reliance on stereo vision introduces limitations in depth perception [7], a challenge frequently 

faced in real-world environments with complex 3D geometry. Moreover, such computationally intensive 

approaches might face challenges in scenarios with limited hardware resources. Our research explores an 

alternative, resource-efficient approach based on Kalman filtering, aiming to balance accuracy and computational 

demands specifically for object tracking within a 2D plane. 

 

Noise is a pervasive challenge in image processing, impacting the accuracy and reliability of 2D tracking 

systems. Techniques like median filtering are commonly employed to mitigate noise effects, enhancing image 

clarity and object tracking precision. However, such techniques introduce constraints, particularly in rapid 

deployment scenarios where continuous camera calibration and stereo setup add complexity and inflexibility.  

 

The limitations of rapid image processing deployment are well-documented, including computational overhead 

and the need for frequent model updates in dynamic environments [8]. Furthermore, environmental factors can 

significantly impact image quality, posing challenges for traditional approaches [9]. Despite the real-time tracking 

capabilities of algorithms employing median filters, their performance benchmarks can be difficult to align with 

more established methods, notably the Kalman filter, which is renowned for its efficacy in various tracking contexts 

[1, 4, 7].  

 

The existing literature indicates a gap in addressing noise impacts with enough flexibility and speed, especially 

in dynamic environments requiring quick adaptation without extensive recalibration [8, 9]. Our study contributes 

to this discourse by proposing a method that combines the robustness of median filtering against noise with the 

adaptability and computational efficiency of the linear Kalman filter. By integrating these approaches, we aim to 

offer a novel solution that maintains high tracking accuracy while accommodating the fast-paced requirements of 

real-world applications, such as autonomous navigation systems and dynamic surveillance, where rapid and reliable 

object tracking is paramount. 

 

C. Zhang et al. introduce an innovative methodology to the realm of 2D object tracking by integrating 2D and 

3D computer vision techniques, enhancing robustness and adaptability across various environmental conditions 

[10]. Their approach, leveraging Zhang's calibration and RANSAC algorithms for plane extraction, aims to elevate 

the precision in generating 3D point clouds. To boost the reliability of the homography matrix, they employ the 

SIFT algorithm alongside the MSAM technique, ensuring accurate keypoint identification and thus, enhancing the 

model's robustness [10, 11]. However, the algorithm's heavy reliance on detailed human movement patterns and 

substantial computational demands could limit its real-time application in resource-constrained settings. 

 

The literature acknowledges the potential of combining 2D and 3D visions to surmount the limitations of purely 

2D methods, especially in complex motion scenarios [12, 13]. Yet, the computational intensity and potential 

inaccuracies in unpredictable motion contexts highlight a significant gap — the need for an efficient, less resource-

intensive solution capable of maintaining high accuracy without extensive computational demands. This study 

seeks to address this gap by proposing a less computationally intensive alternative that retains the benefits of 3D 

enhancements in 2D tracking, potentially impacting a variety of real-world applications where rapid, accurate 

tracking is crucial yet computational resources are limited. 

 

Zhi Jin et al. introduced an innovative ground plane detection algorithm utilizing depth maps, termed the Depth-

map Driven Planar Surface Detection (DDPSD) method. This technique advances the field by growing a plane 

from the largest contiguous area in the depth map with consistent depth values, which is assumed to be the ground 

plane [14]. By integrating dynamic threshold adjustments and seed patch growing techniques, DDPSD significantly 

improves planar surface detection, offering a strategic solution to the common issue of over-segmentation in image 

and video data processing [14, 15].  

 

Such advancements are crucial in applications where precise planar detection is vital, such as in augmented 

reality interfaces where accurate anchoring of virtual elements is essential [16, 17] or the development of navigation 
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systems for autonomous vehicles, where ground plane estimation is fundamental for path planning and obstacle 

avoidance [18, 19]. The method's reliance on depth maps for primary data not only enhances its detection accuracy 

but also expands its utility in detecting semi-planar surfaces, a capability that broadens the spectrum of its 

applicability.  

 

However, the DDPSD's two-tiered detection process, which depends heavily on seed patch validation, 

introduces certain complexities. These include potential computational burdens when managing extensive depth 

maps and difficulties in segmenting intricate planar formations like multi-layered staircases. This study delves into 

these limitations by exploring optimizations of the DDPSD method to enhance its computational efficiency. The 

goal is to refine its suitability for real-time applications where resource constraints are a crucial factor alongside 

the need for accurate planar detection. 

 

D. Y. Kim's study provides valuable insights into the cost-effectiveness of the Kalman Filter (KF) in multi-

object tracking systems that utilize a variety of physical sensors [20,21]. His research is particularly notable for 

introducing an innovative data fusion method that leverages affordable radar modules and CCD cameras to 

amalgamate data from these disparate sources effectively [22]. This fusion technique underscores a pivotal 

advancement: systems that integrate data from multiple sensors manifest a substantial improvement in tracking 

accuracy compared to those reliant on a singular sensor source. 

 

This finding is crucial as it directly addresses a gap in existing literature—how to enhance tracking system 

accuracy in a cost-effective manner without relying on expensive or complex hardware. The real-world 

implications of this research are significant, particularly for applications where budget constraints are as pivotal as 

performance requirements, such as in public security, wildlife tracking, or even consumer-grade navigation 

systems. 

 

Kim's approach, aligning the Kalman Filter's computational efficiency with the practical necessity for 

affordable tracking solutions, paves the way for broader application of advanced tracking systems in sectors where 

cost concerns might otherwise be a prohibitive factor. Our study builds upon this foundation, aiming to further 

refine data fusion methods to optimize both accuracy and cost-efficiency, thereby extending the practical reach of 

these systems in various industries. 

 

This literature review has revealed a critical need for computationally efficient and robust tracking solutions 

that can tackle noisy real-world data while maintaining accuracy. Systems using a fusion of observations from 

more than one sensor significantly outperform those using just one sensor alone in terms of accuracy. Due to its 

demonstrated efficacy and efficiency, the KF was chosen in this study as the method for fusing data due to its 

demonstrated efficacy and efficiency. 

IV. DECISION MATRIX AND SOLUTION SELECTION 

Considering the emphasis on real-time performance for dynamic systems highlighted in our literature review, 

a crucial factor in our filter selection will be computational efficiency and the ability to provide reliable state 

estimates within strict time constraints. The Decision Matrix that follows is designed to methodically compare the 

potential candidates – Kalman Filters (KF), Extended Kalman Filters (EKF), and Unscented Kalman Filters (UKF) 

– against a set of criteria that are crucial for effective state estimation in dynamic systems. This comparative 

analysis is grounded in our foundational understanding of the tracking challenges identified, ensuring that our 

selection is closely aligned with the specific needs highlighted in our review. 

 

A. Decision Matrix  

 

Choosing the right filter for vehicle state estimation in intricate settings is pivotal. The main contenders are 

KFs, EKFs, and UKFs [17-20]. The selection often hinges on project-specific needs. An objective matrix, displayed 

in Table 1, assists in comparing these filters using predefined criteria, intending to highlight their pros and cons 

[28]. The evaluation metrics include:  

• Application: Versatility across varied problems.   

• Estimation Accuracy: Precision in predicting/correcting states.  
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• Computational Complexity: Resources needed, with higher scores favouring real-time applications.  

• Nonlinearity Handling Technique: The efficiency in addressing nonlinearities.  

• Real-world Implementation Ease: Ease of practical implementation.  

• Integration with Lidar/GPS/Gyro: Sensor data fusion capability.  

• Non-linearity Handling: Performance in non- linear system dynamics.  

• Noise Resiliency: Stability against noisy inputs.  

• Complexity of Tuning: Ease of parameter adjustments.  

• Resource Requirement: Processor and memory demand, significant for embedded systems.  

• Scalability: Handling growth in system states or measurements without much added complexity.  

 

B. Solution Selection 

 

The Decision Matrix evaluates each filtering method against criteria derived from our literature review, 

allowing us to identify strengths, weaknesses, and position our study within the research landscape. We recognize 

the inherent trade-offs between accuracy and computational demands, particularly when it comes to the KF's 

limitations in nonlinear systems versus the increased complexity and resource requirements of the EKF and UKF. 

For instance, while the Kalman Filter is recognized for its real-time efficiency and accuracy in linear systems, it 

may not be the best fit for systems with significant nonlinearities, where EKF or UKF could offer advantages.  

While the EKF extends the KF's utility to nonlinear systems, it introduces approximation errors and increased 

computational load. Our analysis provides insights into the trade-offs between accuracy and computational 

demands, offering a nuanced perspective on when EKF's increased precision outweighs its higher resource 

requirements.  

 

Similarly, the UKF offers improved handling of nonlinearities without the need for linearization. However, its 

computational burden is significant. Our study assesses the UKF's applicability in scenarios where accuracy in 

nonlinear state estimation is non-negotiable, identifying contexts where its benefits justify the computational costs. 

 

This study contributes to the field by demonstrating how, despite its inherent limitations in handling 

nonlinearity, the KF can be optimized for certain real-world applications where computational resources are 

constrained, thereby extending its applicability beyond traditional domains. filtering methods. Among the reasons 

the Kalman Filter (KF) stood out are: 

 

• Through its linear framework, this application is efficient in real-time. 

• The ability to accurately estimate linear systems, especially when approximated as linear with Gaussian noise. 

• Compared to both EKF and UKF, this group performed better. 

V. THEORETICAL BACKGROUND 

Kalman filters rely on the assumption that all probability distributions associated with state and measurement 

can be modeled as Gaussian distributions. This simplifies the Bayesian computations extensively. The filter's 

efficiency in numerous real-world applications positions it as a cornerstone in data fusion methodologies in various 

industries [17, 18]. 

 

The Kalman filter operates in two main phases: 

Prediction Step: 

The state and covariance are predicted using the process model. For a state x and covariance P, the prediction 

is given by equations 1 and 2 respectively [17, 18]: 

 

𝑥𝑘
− = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1              (1) 

 

      𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1
𝑇                (2) 

 

Where 𝐹 is the state transition model, 𝐺 is the control input model, 𝐿 is the process noise sensitivity matrix, 

and 𝑄 is the covariance of the process noise [17, 18]. 
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Update: 

Upon receiving a measurement, the state and covariance estimates are corrected using equations 3 to 5 respectively: 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 +𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1     (3)   

 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥𝑘

−)      (4)   

                    𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−                   (5) 

 

Where 𝐻 is the measurement model, 𝑀 is the measurement noise sensitivity matrix, 𝑅 is the covariance of the 

measurement noise, 𝐾 is the Kalman gain, and 𝑧 is the actual measurement. The discrete-time nature of the Kalman 

filter allows it to work effectively on computational systems like microprocessors [17, 18]. 

 

In a continuous system, variations of the state are both smooth and continuous, but in the discrete realm, 

progression happens in increments. Noise assumptions form the bedrock of the filter's operation. Both process and 

measurement noises are assumed to emanate from Gaussian distributions with zero mean. Crucially, 𝑄 and 𝑅 

represent their respective covariances. Furthermore, no temporal correlation is assumed among these noise 

variables, and independence between process and measurement noise is a staple assumption. 

VI. METHODOLOGY 

A. System Formulation 

 

In a two-dimensional tracking filter, distal measurements are used to determine both the position and velocity 

of a mobile object. In contrast to internal sensors on the target, these measurements are derived from external 

sources, rendering the target essentially uncooperative. 

 

Radars and various other sensors are commonly used for providing these external measurements. As a result of 

this filter's versatility, you can use it for radar-based aircraft tracking, optical tracking in autonomous vehicles, 

object tracking in image sequences, as well as surveillance, military operations, robotics, and GPS-assisted 

navigation [26-28]. 

 

Figure 1 visually represents the two-dimensional motion tracking scenario, where the X and Y axes define the 

plane of motion. The 'Dynamics' graph demonstrates the theoretical trajectory and velocity of an object in motion, 

represented by a vector originating from the point (px, py), which marks its current position, and extending to 

indicate the velocity components (vx, vy) at that position.  

 

In contrast, the 'Measurements' graph depicts a scatter of data points; each signifies an independent position 

measurement (px, py) of the object obtained from external sensors. The relative sparsity and arrangement of these 

points reflect the inherent inaccuracies and noise associated with real-world sensor data. [17-20]. 

 

The workflow illustrated in Figure 2 explains the two essential stages of the Kalman filter algorithm: the “Time 

Update” and the “Measurement Update”. Starting from the “a posteriori” estimates of the previous time step, 

represented as 𝑥̂𝑘−1
+ and 𝑃̂𝑘−1

+ for the mean and covariance respectively, the filter proceeds to the prediction phase. 

In this stage, the filter uses a predefined linear system model to anticipate the state of the system at the next time 

step, generating a priori estimates 𝑥̂𝑘
−and 𝑃̂𝑘

−. 

 

Following the prediction, the Measurement Update phase commences, wherein new observational data, 

depicted as 𝑧𝑘, along with its measurement covariance 𝑅𝑘, is incorporated to refine the predictions. This phase is 

critical as it adjusts the predicted state by considering the actual measurements, culminating in the updated, or “a 

posteriori”, estimates 𝑥̂𝑘
+and 𝑃̂𝑘

+. These refined estimates then form the basis for predictions in the next cycle, 

demonstrating the recursive nature of the Kalman filter. 

 

It is imperative to note that the elegance of the Kalman filter resides in its recursive nature, wherein it leverages 

previous post-measurement estimates to forecast current premeasurement estimates, subsequently refining them 

using present measurements. 
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Figure 1. Shows a graphical description of the problem [28]. 

 

 

 

 
Figure 2. Shows a system model diagram of the workings of a KF [28]. 

 

B. Mathematical formulation of subsystems 

 

The 2D tracking system model, as depicted, is formulated based on the classical equations of motion. Initially, 

acceleration 𝑎 is defined as the second derivative of position with respect to time, as given in equation 7. Under 

the assumption of constant acceleration, the relations between velocity 𝑣 and position 𝑝 in relation to their initial 

values 𝑣0 and 𝑝0 are represented in equations 8 and 9 respectively. 

For a clearer representation, these equations of motion can be transcribed into matrix form as shown in equation 

9. To account for the discrete nature of most digital systems, the continuous time representation is translated to a 

discrete time format, where 𝑡 is replaced by Δ𝑡, as detailed in equation 10. 

Key to understanding the system behavior is the state vector 𝑥𝑘, which consolidates the position and velocity 

components in both x and y dimensions, as articulated in equation 11. 

Moreover, external disturbances or uncertainties in the system, such as sensor noise, are encapsulated within 

the noise vector 𝑤𝑘, where 𝑎𝑥 and 𝑎𝑦 are Gaussian noises with zero mean and variances 𝜎𝑥
2 and 𝜎𝑦

2 respectively, 

as presented in equation 12. 

The discrete process model in equation 13 characterizes the evolution of the system state over time, integrating 

the state and noise vectors. This equation forms the foundation for the prediction step in equation 14, which 

anticipates the next state based on the current state and control inputs. 

Moving forward to the update phase, the state is corrected based on new measurements. The prediction error 

covariance 𝑃𝑘
−is computed using equation 15, providing a measure of the estimated accuracy of the state prediction. 

The updated or corrected state, represented as 𝑥̂𝑘
+, is then computed using equation 16 where 𝐾𝑘 is the Kalman 

gain, a factor that determines the weightage of the measurement update.  

This gain is derived using equation 17 and serves to minimize the estimation error. The updated error 

covariance, 𝑃𝑘
+, as detailed in equation 18, provides a post-corrected estimate of state accuracy. To further enhance 
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this correction, 𝑆𝑘, the measurement prediction covariance, is computed using equation 19 which integrates the 

effect of the system's inherent noise. 

This mathematical construct efficiently combines prediction and update steps to estimate the position and 

velocity of an object in a 2D plane, effectively accounting for uncertainties and delivering a refined state estimate. 

 

2D Tracking System Model: 

• Derive the System Process model from the Equations of Motion: 

          𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑝

𝑑𝑡2
           (6) 

• Assuming constant acceleration, the relations are found: 

        𝑣 = 𝑣0 + 𝑎𝑡                                      (7) 

 𝑝 = 𝑝0 + 𝑡𝑣0 +
1

2
𝑎𝑡2                             (8) 

 

• Write the Equations of Motion in Matrix Form: 

  [
𝑝
𝑣
] = [

1 𝑡
0 1

] [
𝑝0
𝑣0
] + [

1

2
𝑡2

𝑡
] 𝑎       (9) 

• Convert to Discrete Time: 𝒕 = 𝚫𝒕 

     [
𝑝
𝑣
]
𝑘
= [
1 Δ𝑡
0 1

] [
𝑝
𝑣
]
𝑘−1

+ [
1

2
Δ𝑡2

Δ𝑡
] [𝑎]            (10) 

  State Vector: 𝑥𝑘 = [

𝑝𝑥
𝑝𝑦
𝑣𝑥
𝑣𝑦

]                              (11) 

Noise-Vector𝑤𝑘 = [
𝑎𝑥
𝑎𝑦
]

𝑎𝑥 ∼ 𝑁(0, 𝜎𝑎𝑥
2 )

𝑎𝑦 ∼ 𝑁 (0, 𝜎𝑎𝑦
2 )

        (12) 

• Discrete Process Model: 

𝑥𝑘 = 𝐅𝑥𝑘−1 + 𝐋𝑤𝑘−1

[

𝑝𝑥
𝑝𝑦
𝑣𝑥
𝑣𝑦

]

𝑘

= [

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

]

⏟          
 ⏟
𝐅

[

𝑝𝑥
𝑝𝑦
𝑣𝑥
𝑣𝑦

]

𝑘−1

+

[
 
 
 
 
1

2
Δ𝑡2 0

0
1

2
Δ𝑡2

Δ𝑡 0
0 Δ𝑡 ]

 
 
 
 

⏟        
L

[
𝑎𝑥
𝑎𝑦
]
𝑘−1

 (13) 

 

• Prediction Step: 

      𝑥̂𝑘
− = 𝐅𝑘−1𝑥̂𝑘−1

+ + 𝐆𝑘−1𝑢𝑘−1           (14) 

        𝐏𝑘
− = 𝐅𝑘−1𝐏𝑘−1

+ 𝐅𝑘−1
𝑇 +𝐐𝑘−1     (15) 

• Update Step: 

     𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐊𝑘(𝑧𝑘 − 𝐇𝑘𝑥̂𝑘
−)                         (16) 

            𝐏𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘

−                           (17) 

    𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇𝐒𝑘
−1            (18) 

                  𝐒𝑘 = 𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑𝑘                          (19) 

 

 

VII. COMPUTER SIMULATION 

Prediction Step: 

The initial phase of designing a 2D tracking filter involves a prediction step. As shown in equation 14, the 

process model has historically been represented as shown in equation 15. When coupled with state and noise 

vectors, Equation 15 presents the state transition matrix taking the noise into account. Considering the system's 

noise properties, the random vector adheres to a Gaussian distribution with covariance Q as expressed by equation 

15 [17, 18]. 

 There are distinct noise variances for X and Y accelerations in this distribution, illustrated as a diagonal matrix. 

In the case of non-additive noise, this method encounters a challenge in Kalman filter's process noise prediction, 
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which requires converting variance from process model units to state units through the EL transformation 

represented by equation 12.  

The Kalman filter becomes ill-conditioned over time if this transformation fails to yield a valid Gaussian 

distribution, which necessitates modifying it. A single variance is posited for both X and Y accelerations, resulting 

in a 1D Gaussian distribution for the noise. A scalar EL matrix facilitates additive noise. Equation 17 illustrates the 

resulting covariance. As a result, equation 12 represents the new covariance matrix for the random vector W. 

 In this research, we employ the revised version to ensure the system's robustness and stability. Implementing 

Kalman filter prediction equations in Python, as outlined in previous literature, is the immediate objective. To 

begin, we need to initialize the state and covariance, consider initial positions and velocities, and then construct the 

matrices F and Q. In subsequent steps, the Kalman filter prediction step will be implemented, as shown in equations 

14 and 15. 

In subsequent steps (steps 1-7), detail the underlying mechanisms and simulation results will be discussed in 

greater depth. 

• Step 1) Open the python file 'prediction.py', that is presented by code in Appendix 1. 

a. Run the simulation as is. See that the object starts at the origin (px,py) = (0,0) and moves at a 45 deg angle at 

10 m/s(vx, vy) = (7.07,7.07) 

 

• Step 2) Setup the initial state and covariance 

a. Assume initial position is (0,0) and initial velocity is (7.07,7.07) 

b. Assume no initial uncertainty (Zero matrix) 

 

𝑥 = [0,0,7.07,7.07]𝑇

𝑃 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
 

 

• Step 3) Setup the model F and Q Matrices 

a. Use the time step and define the F process model matrix 

b. Define the 𝑄 matrix as a function of a variable accel_std 

c. Assume the process model noise acceleration stdev is zero initially 

 

𝐅  = [

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

]

𝐐  = 𝜎𝑎
2

[
 
 
 
 
 
1

2
Δ𝑡2 0 0 0

0
1

2
Δ𝑡2 0 0

0 0 Δ𝑡 0
0 0 0 Δ𝑡]

 
 
 
 
  

• Step 4) Implement the Kalman Filter Prediction Step Equations 

a. State Prediction 

b. Covariance Propagation 

• Step5) Run the Simulation 

a. Check that the Prediction follows the truth closely. 
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Figure 3. Resulting simulation from initial test. 

 
Figure 4. Resulting position and velocity errors from simulation test. 

Following the implementation of the Kalman filter, it is observed, as per Equation 14 and 15 [11], that the 

prediction aligns notably well with the true trajectory. Given the precise knowledge of the initial conditions—both 

the starting position and velocity—the anticipated outcome is a minimal mean error, particularly in terms of the 

resultant velocity error post-simulation. Should there be significant deviation from this expectation, it may signal 

an erroneous implementation. Therefore, the congruence between the predicted state and the actual trajectory serves 

as a validation of the filter's operational accuracy. Figures 3 and 4 show the results of the simulation. 

• Step 6) Check the Position Covariance Prediction is Working Correctly 

a. Set the initial position 𝑥 and 𝑦 covariance to be (5)∧2 

b. Run the simulation and see that the (3 Sigma) position uncertainty stays at approximately +/−15 m. 

 
Figure 5. Resulting observed three-sigma position uncertainty remains consistently within an approximate 

range of ±15 meters. 

Upon executing the simulation once more, the observed three-sigma position uncertainty remains consistently 

within an approximate range of ±15 meters, as stipulated by Equation 15 and 16. This observation serves as an 

empirical affirmation that the position covariance prediction, as integrated within the Kalman filter framework, is 

functioning as intended. As illustrated by Figure 5. 

• Step 7) Check the Velocity Covariance Prediction is Working Correctly 

a. Set the initial state to be all zero. 

b. Set the initial position covariance to zero and the initial velocity 𝑥 and 𝑦 covariance to be (7/3)∧2. 

c. Run the simulation and see that the (3 Sigma) error position uncertainty grows at the same rate as the position 

changes. 
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Figure 6. velocity covariance prediction aligns closely with the genuine velocity, specifically in relation to the 

error's rate of change. 

In evaluating the performance of the KF, it is evident from Figure 6 that the velocity covariance prediction 

aligns closely with the genuine velocity, specifically in relation to the error's rate of change. Such an observation 

underscores the accuracy and robustness of the KF in estimating system states, further highlighting its reliability 

in tracking applications. 

• Step 8) Check the Acceleration Covariance Prediction is Working Correctly 

a. Set the initial state back to the original value. 

b. Set the initial covariance to be all zero. 

c. Set the process model accel_std to be 0.1. 

d. Run the simulation and see that the (3 Sigma) velocity uncertainty grows quadratically with time. 

 
Figure 7. Shows that the three sigma velocity grows quadratically through time as expected. 

Figure 7 shows that the three-sigma velocity grows quadratically through time as expected. It appears that the 

velocity uncertainty starts at zero and has a quadratic shape that grows with time until it reaches a value almost at 

three sigma. 

Update Step: 

Python script titled Update Mechanism was written to gain a deeper understanding of the update mechanism 

A single update was performed with "One_Update". As soon as the script is executed, an object is shown moving 

from the origin with variable velocity components, and, both of which remain undetermined. The purpose of this 

exercise is to estimate these parameters more accurately using the Kalman update step. In the script's initialization 

segment, matrices , , and are delineated as shown in Equations 1 and 2. Furthermore, the measurement precision is 

assumed to be 10 standard deviations, thus affecting the result. 

Within the Python script's "Update_Step" function (Equation 3), the Kalman filter update equations are 

integrated. 

Simulations run after Kalman filter implementation reveal that the state estimates are actively altered over time 

by the Kalman filter. Nevertheless, a static filter estimate is produced by setting the initial uncertainty to zero. As 

a result, the initial uncertainty of velocity is adjusted to 10 in order to compensate. Object tracking is demonstrated 

in the revised simulation as a result of shrinking and converging covariance around the object, as time progresses. 

Moreover, minimized errors in mean position and velocity squared are further evidence of effective tracking. 

In subsequent steps (steps 1-4), detail the underlying mechanisms and simulation results will be discussed in 

greater depth. 

• Step 1) Open the python file 'update.py' 

 Run the simulation as is. See that the object starts at the origin (𝑝𝑥, 𝑝𝑦) = (0,0) but it moves in a random 

direction and speed, so (vx,vy) are unknown. Each simulation run movies with a different initial velocity. 

• Step 2) Setup the H Matrix and R Matrix 

a. Assume the position measurement std is 10. 

 

𝐻 = [
1 0 0 0
0 1 0 0

]

𝑅 = [
𝜎meas 
2 0

0 𝜎meas 
2 ]

 

 

• Step 3) Implement the Kalman Filter Update Step Equations 

def update_step(self, measurement). 
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• Step 4) Run the Simulation 

a. See that the Kalman Filter Estimate does not change or be updated. (Initial Uncertainty is zero) 

b. Change the initial velocity std to 10 and re-run the simulation. 

 
Figure 8. Shows the position graph from the update step, the green circle shows the innovation. 

 
Figure 9. Shows the new position and velocity error once the update step is activated. 

 

Summaries for Each Simulation Step: 

 

The following gives an overview, summary and the key findings of each of the experiments that have been 

conducted thus far, as well a rationale of each of the steps taken. 

 

Step 1 Summary: The initial simulation run confirms the filter's capability to track an object's trajectory 

starting from the origin, moving at a predicted 45-degree angle. The velocity vectors observed align with the 

theoretical predictions, laying a strong foundation for subsequent, more complex simulations. 

 

Step 2 Summary: With the state and covariance matrices initialized, the filter’s predictions for position and 

velocity closely mirror the initial assumptions. This step validates our setup and is crucial for accurately reflecting 

the system's initial state with minimal uncertainty. 

 

Step 3 Summary: Defining the process model and noise matrices is pivotal for capturing the system dynamics. 

The assumption of zero process noise as a starting point facilitates the evaluation of the filter's prediction capability 

under ideal conditions. 

 

Step 4 Summary: The implementation of the Kalman Filter prediction equations yields results that are 

consistent with the expected trajectory. This consistency supports the reliability of our prediction model in linear 

system estimation. 

 

Step 5 Summary: Upon simulation, the prediction aligns closely with the actual trajectory, suggesting the 

initial conditions are well understood and the model accurately reflects system dynamics. 

 

Step 6 Summary: Adjusting the position covariance and observing the consistent range of three-sigma position 

uncertainty provides empirical evidence of the prediction's reliability and the filter's robustness against defined 

uncertainty levels. 

 

Step 7 Summary: Setting the initial state and covariance to assess velocity predictions reveals that the filter 

accurately captures the rate of error growth, which is critical for dynamic tracking in systems where velocity is a 

primary variable. 
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Step 8 Summary: Introducing acceleration noise into the system and observing the quadratic growth in velocity 

uncertainty validates the filter's capacity to adapt predictions based on changing process noises, an essential aspect 

of real-world system tracking. 

 

Update Step Summary: The update mechanism, when engaged, demonstrates the Kalman Filter's adeptness 

in refining state estimates with new measurements. The visible convergence of covariance around the object’s 

trajectory and minimized positional and velocity errors are indicative of an effective tracking system. 

 

VIII. RESULTS AND DISCUSSIONS 

 

Filter State Prediction Model Check (State Transition): 

Simulations that closely represent the system's dynamics are essential for building an effective and robust 

modeling system. It is recommended to validate the model in a noise-free environment with a known starting point 

and run the Kalman filter prediction step concurrently, as shown in equations 18 and 19. In this way, the Kalman 

filter model is validated against the dynamics of the system under observation. 

 

The update step of the Kalman filter should be run separately from this step. Since the correction step within 

the update phase may mask discrepancies or inaccuracies inherent in the model, incorrect conclusions may result. 

By using such a methodology, the intrinsic prediction step can be finely tuned to the system model being estimated. 

Delving into the code will reveal this empirically, as shown Appendix 2.  

 

Based on the state behavior in the simulation, when the process model noise is set to null and the state and 

covariance are initialized to zero, the system exhibits a trajectory inclined at 45° and maintains a constant velocity 

of 10 meters per second, as show by Figures 10, 11 and 12, respectively and this is consistent regardless of how 

many time the simulation is run, also note that the error is very large.  

 

However, when the simulation is given an initial velocity of 7m.s-1, the blue dot and red dots overlap which is 

in contrast with the previous result, as shown by Figures 13 and 14 respectively. The reason for this is that, is 

because we started with known conditions for velocity and position, note the errors given by L are very low. 

 

 
Figure 10. Shows the system exhibits a trajectory inclined at 45° and maintains a constant velocity of 10 meters 

per second, when then there is no initial velocity, note the lag between the blue dot and red dot. 
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Figure 11. Position velocity graphs of the first test along with the resulting errors, for the transition state test. 

 

 
Figure 12. Resulting console out of the transition estimate test, note that the error is very large, when there is 

no initial velocity given. 

 
Figure 13. Shows the system exhibits a trajectory inclined at 45° and maintains a constant velocity of 10 meters 

per second, when initial velocity of 7m.s-1, the blue dot and red dots overlap which is in contrast with the previous 

result. 

 
Figure 14. Position velocity graphs of the first test along with the resulting errors, for the transition state test. 

 

 
Figure 15. Resulting console out of the transition estimate test, note that the error reduces significantly, when 

the initial velocity given. 

 

Check that the Position Uncertainty is operating as Expected: 

When the state transmission model is validated as being capable of accurately predicting the true state response 

from a defined initial condition, the focus shifts to how well it manages uncertainty transformations. Ideally, there 

should be no growth in the system's uncertainty when the process model noise is zero. Rather, it should be 
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transformed in accordance with the model of the system. In order to assess the position uncertainty's performance, 

an initial position uncertainty with a non-zero value is set while the velocity uncertainty remains at zero, this is 

done through the code in Appendix 2. In the proposed approach, the position standard deviation is set to five, 

yielding a variance of 25 for both X and Y axes. 

An uncertainty ellipse is generated around the estimate after the developed code is executed, as shown in Figure 

16. The graphical representation, in Figure 17 of the position velocity graphs, confirms that the model behaves as 

expected, with constant three-sigma bounds (green trajectories) for position errors. It is apparent that this behavior 

does not reflect an escalation or a decrease in uncertainty, but rather its maintenance throughout the simulation. As 

a result, the covariance prediction for position uncertainty appears to be accurate. 

 

 
Figure 16. Shows how the uncertainty ellipse is generated around the estimate after the developed code is 

executed. 

 
Figure 17. Position/ velocity graphs resulting from position uncertainty and is operating as expected. 

 

Check that the Velocity Uncertainty is operating as Expected: 

It is crucial that a filtering system maintains and propagates uncertainty in a way that is consistent with the 

dynamics of the system. For the filter's predictions to remain accurate, this is a prerequisite. The uncertainty in 

velocity can impact the uncertainty in position over time if the only dynamic is the integration of velocity. The 

explanation for this can be found in an experiment which starts with zero position uncertainty but introduces non-

zero velocity uncertainty later in the experiment. Two hypotheses are proposed: 

1. Because no external factors or model dynamics are introduced that could perturb velocity uncertainty, this bound should 
remain constant over time. 

2. A linear growth pattern should be observed as the position uncertainty decreases over time. Based on the dynamics of 
the system, integrating a constant velocity results in a linearly changing position. 

When the velocity uncertainty is initialized with a standard deviation of one in a simulation environment, the 

results confirm the hypothesis, shown in Figure 18. As a result of the filter's consistent handling of this parameter, 

the velocity uncertainty remains within three sigma bounds, as illustrated by Figure 19. As a result of integrating a 

constant velocity with time, the position uncertainty exhibits a linear growth pattern. The position uncertainty 

(captured by the three-sigma bound) at 120 seconds into the simulation reaches 360, which is expected based on 

the dynamics of the system. 

It is evident from this empirical evidence that the filter is effective at handling uncertainties and propagating 

them. An effective uncertainty propagation mechanism ensures that the filter remains both consistent and reliable 
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by harmonizing with the system's inherent dynamics. When used in critical applications, where estimation errors 

can have severe consequences, such demonstrations are critical to building trust in the filter's performance. 

 
Figure 18. Shows the result when no external factors or model dynamics are introduced that could perturb 

velocity uncertainty. 

 

 
Figure 19. Show the resulting velocity/ position graphs no external factors or model dynamics are introduced 

that could perturb velocity uncertainty. 

Check the Process Model Noise (Acceleration uncertainty): 

The Q-matrix of the Kalman Filter (KF) estimation plays a pivotal role in the uncertainty equation of Kalman 

Filter (KF) estimation. Acceleration uncertainty is a key component of this noise. An experiment was designed 

where the initial uncertainties for position were set to zero, while an acceleration standard deviation was introduced 

to ensure that the Q-matrix was not zero. 

 

The cumulative system uncertainty will progressively increase over time when the KF is executed with the 

parameters. It is directly related to the inherent dynamics of the system: as position is the second integral of 

acceleration, velocity uncertainty should grow linearly, while position uncertainty should grow quadratically. In 

Appendix 2, you will find a detailed description of how this analysis is implemented computationally. 

 

A standard deviation of 0.1 was determined for acceleration in the present simulation. Throughout the 

simulation period, the system's uncertainty increased consistently. Specifically, the three-sigma bounds expanded, 

as predicted by theory. It was validated by examining the covariance matrices that velocity uncertainty increased 

linearly and position uncertainty increased quadratically. 

 

Randomness or the Q-matrix becomes marginally significant in situations with deterministic system dynamics, 

like an object moving with consistent velocity from a predefined origin. Since there is no inherent uncertainty in 

the system, position and velocity estimates are the only sources of uncertainty. 

 

In a broader sense, Q-matrix or process noise serves as a compensatory mechanism for potential discrepancies 

in KF process models. The Q-matrix adjusts by elevating internal system uncertainty if the model does not 

accurately represent the actual system dynamics. The KF remains consistent within its uncertainty bounds thanks 

to this adaptive mechanism. Process noise is intrinsically linked to measurement noise, and their combined 

influence on the filter's performance is crucial. 
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Figure 20. Resulting trajectory from the Process Model Noise (Acceleration uncertainty). 

 
Figure 21. Resulting position/ velocity graphs Process Model Noise (Acceleration uncertainty) test. 

 

 Final Simulation with optimal KF Parameters 

The code snippet in Figure 22 shows how to track a two-dimensional (2D) object with a recursive Kalman 

filter. Among other initialization conditions, this simulation includes several defining parameters, such as end time, 

measurement rate, and motion type. Kalman filters are also initialized with parameters like acceleration standard 

deviation and measurement standard deviation.  

 

Measurement shown in Figure 23, indicates the Innovation charts for both X and Y dimensions illustrate how 

the actual measurements differ from the filter's predictions. blue lines here represent the innovations for each of 

the update steps inside the KF. While the green dotted line here represents one sigma bounds of the covariance 

uncertainty for the innovations. 

 

In order to understand anomalies or significant deviations from expected values, this distinction is crucial. The 

position and velocity estimation charts provide insight into the Kalman filter's accuracy in tracking 2D object 

motion. Based on the data, it appears that KF predictions are largely within the error bounds provided, suggesting 

an expected margin of error, as shown by Figure 23. 

 

As can be seen in the 2D trajectory visualization, the object's path is random at first, in Figure 24 (this is 

illustrated by the red and blue dot far apart), and eventually converging towards a more consistent trajectory as 

speed and heading parameters are randomized, as in Figure 25 (this is illustrated by the red and blue dot 

overlapping). As a result, the dynamic nature of the system is reaffirmed. As a result of the simulation setup and 

resulting charts, the Kalman filter appears to be an effective solution for tracking 2D objects, effectively handling 

the inherent dynamics and uncertainties. 

 

In Figure 26 the graphs below illustrate the relationship between X-position versus Y-position as well as X-

velocity versus Y-velocity. The blue trajectory represents the true state of the system. As shown on the X-axis, the 

time progression provides insight into the object's positional evolution over time. In a similar manner, the trajectory 

reveals the object's time-dependent position on the Y-axis. 

 

The black markers on these plots delineate the position measurements for both X and Y dimensions. The red 

trajectory represents the estimated positions in the respective axes, as determined by the Kalman filter. In the lower 

panel, the velocity states for both dimensions are shown, demonstrating that the true state maintains a steady 

velocity. The X-axis moves at approximately one meter per second, while the Y-axis remains nearly stationary. 
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Discrepancies between the Kalman filter's estimation and the true state of the system are shown on the adjacent 

panel detailing errors. As a result of the Kalman filter, a zero-error would mean perfect alignment with the true 

states. In the red trajectory, we see the error caused by the Kalman filter, while in the green trajectory, we see the 

uncertainty around this error—namely, the three-sigma bounds derived from P's covariance matrix. These three-

sigma constraints indicate effective filter operation when observed errors are within them. 

 

 
Figure 22. Shows the code snippet of the final Kalman filter. 

 

 
Figure 23. Shows the innovation of the Kalman filter. 

 
Figure 24. Shows the 2D trajectory visualization, the object's path is random at first, in Figure 24 (this is 

illustrated by the red and blue dot far apart). 

 
Figure 25. Shows the particle converging towards a more consistent trajectory as speed and heading parameters 

are randomized, as in Figure 25 (this is illustrated by the red and blue dot overlapping). 
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Figure 26.Illustrates the relationship between X-position versus Y-position as well as X-velocity versus Y-

velocity. 

 

IX. CRITICAL ANALYSIS AND RECOMMENDATIONS 

Data estimation can be improved using the Kalman filter, based on probability density functions. However, numerical 

inaccuracies in computational systems, especially when representing floating-point numbers, cause issues when transferring 

theory to practice. Covariance matrix distortions can cause system failures due to such errors. A more robust Kalman filter is 

available with Joseph stabilization, but it is computationally intensive. Errors in modeling or incorrect assumptions about noise 

can also pose practical challenges. 

Strategies for mitigating risk include: 

1. For enhanced computational precision, 64-bit numbers are used. 

2. Stability is achieved using square root Kalman filters. 

3. Initiating the covariance matrix appropriately and ensuring its symmetry. 

4. The fading memory filter technique is applied. 

5. In order to counteract modelling errors, the Q matrix needs to be adjusted. 

The variance of the filter captures the uncertainty associated with the estimate; it is important to portray it accurately. 

Unreliable estimates can be produced by filters with inconsistencies, affecting downstream applications. Unless the state 

transmission model is accurate, filtering can result in propagated errors or system failures. Reliability is measured by the 

consistency of the filter, which is essential for the reliability of a system. There should be future studies that assess the effects of 

non-linear systems on the filter and test the update step. 

 

In the context of the Kalman Filter, the three-sigma position uncertainty can be understood as a quantitative measure of the 

state estimate's uncertainty. The significance of observing three-sigma position uncertainties that remain consistent can be multi-

fold: 

 

Three-sigma position uncertainties: 

The three-sigma rule is based on common knowledge in statistical process control and Kalman filtering. This rule  is also 

known as the empirical rule or 68-95-99.7 rule, which is a statistical principle that asserts that nearly all values lie within three 

standard deviations of the mean in a normal distribution. In the context of the Kalman Filter, the three-sigma position uncertainty 

can be understood as a quantitative measure of the state estimate's uncertainty. The significance of observing three-sigma position 

uncertainties that remain consistent can be multi-fold as observed in the results of this paper: 

 

Reliability: The consistency of the three-sigma range, approximately ±15 meters as shown in Figure 5, indicates that the state 

estimates provided by the Kalman Filter are dependable. The actual position of the object, remaining within this range, 

demonstrates that the filter is statistically sound and that the model used is capturing the system's dynamics with a high degree 

of accuracy. 

 

Confidence: By maintaining the three-sigma interval, as observed with the position uncertainty staying consistently within 

±15 meters, the filter communicates the expected accuracy of its predictions. This allows users to assess the confidence level 

they can place on the system's outputs and informs the reliability of subsequent actions based on these predictions. 
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System Stability: Stability of the system is indicated by the three-sigma uncertainty bounds not expanding unpredictably, 

suggesting the system is stable and the filter parameters are well-tuned. The observed stability, as indicated by consistent position 

covariance predictions, is crucial for dynamic systems to prevent loss of tracking or incorrect predictions. 

 

Noise Handling: The Kalman Filter's effectiveness in managing noise is demonstrated by maintaining a consistent three-

sigma range, even when initial velocity uncertainty is introduced and set to (7/3)2 as seen in the velocity covariance predictions 

in Figure 6. This shows the filter's capability to separate actual system changes from measurement noise and process disturbances. 

 

Predictive Quality: For applications like navigation and tracking systems, where the Kalman Filter is utilized, the predictable 

three-sigma uncertainty range indicates that the predictions are of high quality. For instance, in the step involving acceleration 

uncertainty, where a standard deviation of 0.1 leads to a quadratic growth in the three-sigma bounds of velocity uncertainty, the 

users can anticipate the potential variance in position estimates, facilitating effective planning around these predictions. 

 

Conclusion 

The purpose of this research is to explore two-dimensional (2D) tracking of mobile entities in South Africa's expansive 

terrains, in order to highlight challenges and to demonstrate the utility of Bayesian data fusion. Especially for radar-based 

systems, the Kalman filter plays a crucial role in estimating the velocity and position of 2D objects. Based on probability theories 

and differential equations, the study demonstrates the cost-effectiveness and integration of GPS data with forecasts of weather 

conditions. As a result, it is also ideal for microprocessor computations and vehicle state estimations due to its simplicity and 

efficiency.  

Although the filter effectively tracks 2D objects in a Python environment, addressing position uncertainty, it is not without 

flaws, including noise deviations and computational challenges. Despite this, 64-bit representations and Joseph's stabilizations 

enhance the robustness of the method. Studying nonlinear systems and refining the filter's update processes should be the focus 

of future research. 
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