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Abstract: - This study tackles the significant challenge of augmenting accuracy in the two-dimensional (2D) tracking of mobile objects,
particularly in environments plagued by high noise and data uncertainty. Traditional Kalman filter-based methods often struggle under
these conditions, failing to deliver the needed precision. Consequently, the primary objective of this research is to devise, implement,
and validate a refined linear Kalman filter approach. This approach aims to significantly diminish estimation errors in tracking object
positions and velocities, addressing the identified limitations of existing methodologies. The approach involves an innovative
adaptation of the linear Kalman filter technique, rigorously evaluated through detailed simulations and analysis to ascertain its
effectiveness in enhancing tracking accuracy under challenging conditions. The results show that a linear Kalman Filter can be used
to accurately estimate the position of mobile objects, with root mean square errors of less than 0.1%. We demonstrate marked
improvements in accuracy and reliability for 2D object tracking, showcasing the method's potential applicability in real-world
scenarios such as autonomous navigation, wildlife and automobile tracking systems. While recognizing the persistent challenges posed
by noise variations, this research paves the way for future exploration into nonlinear applications and update processes. Such
investigations are anticipated to further refine object tracking methodologies, building on the foundational work presented here.
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1. INTRODUCTION

From wildlife monitoring to autonomous navigation, object tracking in two-dimensional spaces is a crucial
element across various engineering fields. Traditionally, studies have relied on remote measurements to track
objects without their own sensing capabilities [1,2].

As we move forward in the digital age, there's a shift toward a method known as probabilistic data fusion.
Imagine trying to pinpoint a location in a bustling city based on several uncertain tips; this method similarly
combines different data sources to enhance the precision of object tracking, despite the inherent uncertainties in
each data point [3,4].

To better understand how we track a vehicle's movement, consider this simplified analogy: Just as weather
forecasts use probabilities to predict the likelihood of rain, we use similar methods to estimate a vehicle's position.
In the real world, measurements like those from a car's GPS aren't always perfect due to various factors like signal
interference or obstacles.

Thus, we combine GPS data with other sensor information to improve our predictions, treating the vehicle's
position and movement as probabilities rather than certainties. This approach, rooted in a statistical method known
as Bayesian inference, is widely applicable, from helping self-driving cars navigate to enhancing military tracking
systems. At the heart of our study are two key elements: how accurately we can estimate where the vehicle is (its
position) and how fast it's going (its velocity) within a two-dimensional space, like a flat map [4].

Imagine trying to predict where a ball will land while it's still in the air, using only its past movements to guide
you. This is like the task we face in tracking objects, where we continuously predict and then update our predictions
based on new data. In this back-and-forth process, our certainty about the object's location can fluctuate. Here,
Kalman filters become essential tools. They help us refine our predictions using a mathematical approach that
combines past data with new information, much like updating your guess of the ball's landing spot with every
bounce it takes. This method is efficient enough to work even on devices with limited computing power, making
it widely applicable. [5].
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This study is centered around the purpose of designing, developing, and critically evaluating a 2D Tracking
Filter. With the help of remote radar measurements, this instrument assesses the velocity and positional attributes
of mobile entities, specifically in the context of South Africa. Among the key objectives of this task are:
understanding current object tracking methods, collecting radar sensor data, designing 2D Tracking Filters,
simulation-based evaluations, improving the filter for optimal efficiency, evaluating its broader impacts, and
sharing results with academics and stakeholders.

The scope of this study must, however, be clearly defined. Within a 2D framework, it emphasizes objects
moving at consistent velocities. In addition, most of the research relies on simulations, which are limited by a
specific time frame. Although the study covers a broad spectrum, it avoids going into exhaustive detail about the
economics and the environment.

Likewise, by deliberately excluding complex factors like radar jamming and extreme weather conditions to
maintain analytical focus. Radar jamming, an intricate electronic countermeasure, and extreme weather conditions,
which can significantly affect radar signal quality, require specialized analyses beyond this study's probabilistic
and mathematical scope.

By isolating the Kalman filter's intrinsic performance from these variables, we aim to provide clear insights
into its core capabilities. However, acknowledging these exclusions highlights essential future research directions,
including the integration of electronic countermeasures and meteorological impacts in tracking system analyses to
develop more robust and comprehensive tracking solutions.

This research marks a significant advancement in simulation methodologies, closely mirroring the complexities
encountered in real-world scenarios. It bridges a notable gap in existing literature by offering solutions that are
specifically designed for challenges prevalent in South Africa. By refining our models to minimize position and
velocity errors to remarkably small margins, we can vastly improve the efficiency of tracking systems.

This precision is crucial for applications like wildlife monitoring, where it enables the accurate tracking of
animal movements, and in combating crime, particularly in disrupting operations of criminal syndicates involved
in poaching or vehicle theft. The insights derived from this focused, simulation-based study are expected to have
far-reaching effects on enhancing radar-based tracking technologies, providing a robust framework that can be
adapted to various practical contexts beyond the initial focus on South African challenges.

This paper is arranged as follows Section (I) deals with the Introduction, Section II provides a Problem
Statement which precisely defines the issue at hand. Section (III) provides the Background and Related Work
highlights industry challenges and a selective literature review. The Section IV outlines the Theoretical Background
which presents essential concepts and formulae. Section (V) deals with the Methodology, which covers system
design, mathematical formulations, component derivations, and simulation tools. Section (VI) provides the
Decision Matrix and Solution Selection, which briefs on the decision process and the chosen solution based on
techno-economic factors. Section (VII) outlines the Impact Assessment, which evaluates the design's broader
implications. Section (VIII) deals with the Uncertainty and Risk, which deliberates on potential project pitfalls.
The narrative concludes with Summary and Conclusions (IX), followed by a comprehensive list of References.

II.  PROBLEM STATEMENT

With South Africa's vast and diverse terrain, tracking objects' movements becomes very important for
transportation, wildlife monitoring, and other applications. Given that position data is acquired via radar-based
sensors, and that objects move at a consistent speed in a 2D X-Y plane, it's imperative to have a reliable way to
estimate both their position and velocity. In this paper, we develop a 2D Tracking Filter that is capable of accurately
and efficiently estimating the position and velocity of moving objects based on remote radar measurements.

III. LITERATURE REVIEW

Various scholars have explored various strategies to address the 2D tracking challenge. For example, U. B.
Gohatre et al. have adopted a computer vision methodology to tackle the 2D estimation issue [6]. Their focus on
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real-time tracking through stereo vision and predictive analytics achieves a significant frame rate, highlighting
potential value for time-critical applications.

However, the reliance on stereo vision introduces limitations in depth perception [7], a challenge frequently
faced in real-world environments with complex 3D geometry. Moreover, such computationally intensive
approaches might face challenges in scenarios with limited hardware resources. Our research explores an
alternative, resource-efficient approach based on Kalman filtering, aiming to balance accuracy and computational
demands specifically for object tracking within a 2D plane.

Noise is a pervasive challenge in image processing, impacting the accuracy and reliability of 2D tracking
systems. Techniques like median filtering are commonly employed to mitigate noise effects, enhancing image
clarity and object tracking precision. However, such techniques introduce constraints, particularly in rapid
deployment scenarios where continuous camera calibration and stereo setup add complexity and inflexibility.

The limitations of rapid image processing deployment are well-documented, including computational overhead
and the need for frequent model updates in dynamic environments [8]. Furthermore, environmental factors can
significantly impact image quality, posing challenges for traditional approaches [9]. Despite the real-time tracking
capabilities of algorithms employing median filters, their performance benchmarks can be difficult to align with
more established methods, notably the Kalman filter, which is renowned for its efficacy in various tracking contexts
[1, 4, 7].

The existing literature indicates a gap in addressing noise impacts with enough flexibility and speed, especially
in dynamic environments requiring quick adaptation without extensive recalibration [8, 9]. Our study contributes
to this discourse by proposing a method that combines the robustness of median filtering against noise with the
adaptability and computational efficiency of the linear Kalman filter. By integrating these approaches, we aim to
offer a novel solution that maintains high tracking accuracy while accommodating the fast-paced requirements of
real-world applications, such as autonomous navigation systems and dynamic surveillance, where rapid and reliable
object tracking is paramount.

C. Zhang et al. introduce an innovative methodology to the realm of 2D object tracking by integrating 2D and
3D computer vision techniques, enhancing robustness and adaptability across various environmental conditions
[10]. Their approach, leveraging Zhang's calibration and RANSAC algorithms for plane extraction, aims to elevate
the precision in generating 3D point clouds. To boost the reliability of the homography matrix, they employ the
SIFT algorithm alongside the MSAM technique, ensuring accurate keypoint identification and thus, enhancing the
model's robustness [10, 11]. However, the algorithm's heavy reliance on detailed human movement patterns and
substantial computational demands could limit its real-time application in resource-constrained settings.

The literature acknowledges the potential of combining 2D and 3D visions to surmount the limitations of purely
2D methods, especially in complex motion scenarios [12, 13]. Yet, the computational intensity and potential
inaccuracies in unpredictable motion contexts highlight a significant gap — the need for an efficient, less resource-
intensive solution capable of maintaining high accuracy without extensive computational demands. This study
seeks to address this gap by proposing a less computationally intensive alternative that retains the benefits of 3D
enhancements in 2D tracking, potentially impacting a variety of real-world applications where rapid, accurate
tracking is crucial yet computational resources are limited.

Zhi Jin et al. introduced an innovative ground plane detection algorithm utilizing depth maps, termed the Depth-
map Driven Planar Surface Detection (DDPSD) method. This technique advances the field by growing a plane
from the largest contiguous area in the depth map with consistent depth values, which is assumed to be the ground
plane [14]. By integrating dynamic threshold adjustments and seed patch growing techniques, DDPSD significantly
improves planar surface detection, offering a strategic solution to the common issue of over-segmentation in image
and video data processing [14, 15].

Such advancements are crucial in applications where precise planar detection is vital, such as in augmented
reality interfaces where accurate anchoring of virtual elements is essential [ 16, 17] or the development of navigation
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systems for autonomous vehicles, where ground plane estimation is fundamental for path planning and obstacle
avoidance [18, 19]. The method's reliance on depth maps for primary data not only enhances its detection accuracy
but also expands its utility in detecting semi-planar surfaces, a capability that broadens the spectrum of its
applicability.

However, the DDPSD's two-tiered detection process, which depends heavily on seed patch validation,
introduces certain complexities. These include potential computational burdens when managing extensive depth
maps and difficulties in segmenting intricate planar formations like multi-layered staircases. This study delves into
these limitations by exploring optimizations of the DDPSD method to enhance its computational efficiency. The
goal is to refine its suitability for real-time applications where resource constraints are a crucial factor alongside
the need for accurate planar detection.

D. Y. Kim's study provides valuable insights into the cost-effectiveness of the Kalman Filter (KF) in multi-
object tracking systems that utilize a variety of physical sensors [20,21]. His research is particularly notable for
introducing an innovative data fusion method that leverages affordable radar modules and CCD cameras to
amalgamate data from these disparate sources effectively [22]. This fusion technique underscores a pivotal
advancement: systems that integrate data from multiple sensors manifest a substantial improvement in tracking
accuracy compared to those reliant on a singular sensor source.

This finding is crucial as it directly addresses a gap in existing literature—how to enhance tracking system
accuracy in a cost-effective manner without relying on expensive or complex hardware. The real-world
implications of this research are significant, particularly for applications where budget constraints are as pivotal as
performance requirements, such as in public security, wildlife tracking, or even consumer-grade navigation
systems.

Kim's approach, aligning the Kalman Filter's computational efficiency with the practical necessity for
affordable tracking solutions, paves the way for broader application of advanced tracking systems in sectors where
cost concerns might otherwise be a prohibitive factor. Our study builds upon this foundation, aiming to further
refine data fusion methods to optimize both accuracy and cost-efficiency, thereby extending the practical reach of
these systems in various industries.

This literature review has revealed a critical need for computationally efficient and robust tracking solutions
that can tackle noisy real-world data while maintaining accuracy. Systems using a fusion of observations from
more than one sensor significantly outperform those using just one sensor alone in terms of accuracy. Due to its
demonstrated efficacy and efficiency, the KF was chosen in this study as the method for fusing data due to its
demonstrated efficacy and efficiency.

IV. DECISION MATRIX AND SOLUTION SELECTION

Considering the emphasis on real-time performance for dynamic systems highlighted in our literature review,
a crucial factor in our filter selection will be computational efficiency and the ability to provide reliable state
estimates within strict time constraints. The Decision Matrix that follows is designed to methodically compare the
potential candidates — Kalman Filters (KF), Extended Kalman Filters (EKF), and Unscented Kalman Filters (UKF)
— against a set of criteria that are crucial for effective state estimation in dynamic systems. This comparative
analysis is grounded in our foundational understanding of the tracking challenges identified, ensuring that our
selection is closely aligned with the specific needs highlighted in our review.

A. Decision Matrix

Choosing the right filter for vehicle state estimation in intricate settings is pivotal. The main contenders are
KFs, EKFs, and UKFs [17-20]. The selection often hinges on project-specific needs. An objective matrix, displayed
in Table 1, assists in comparing these filters using predefined criteria, intending to highlight their pros and cons
[28]. The evaluation metrics include:

Application: Versatility across varied problems.
Estimation Accuracy: Precision in predicting/correcting states.
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e Computational Complexity: Resources needed, with higher scores favouring real-time applications.
e Nonlinearity Handling Technique: The efficiency in addressing nonlinearities.

e Real-world Implementation Ease: Ease of practical implementation.

e Integration with Lidar/GPS/Gyro: Sensor data fusion capability.

e Non-linearity Handling: Performance in non- linear system dynamics.

e Noise Resiliency: Stability against noisy inputs.

e  Complexity of Tuning: Ease of parameter adjustments.

e Resource Requirement: Processor and memory demand, significant for embedded systems.

e Scalability: Handling growth in system states or measurements without much added complexity.

B. Solution Selection

The Decision Matrix evaluates each filtering method against criteria derived from our literature review,
allowing us to identify strengths, weaknesses, and position our study within the research landscape. We recognize
the inherent trade-offs between accuracy and computational demands, particularly when it comes to the KF's
limitations in nonlinear systems versus the increased complexity and resource requirements of the EKF and UKF.
For instance, while the Kalman Filter is recognized for its real-time efficiency and accuracy in linear systems, it
may not be the best fit for systems with significant nonlinearities, where EKF or UKF could offer advantages.

While the EKF extends the KF's utility to nonlinear systems, it introduces approximation errors and increased
computational load. Our analysis provides insights into the trade-offs between accuracy and computational
demands, offering a nuanced perspective on when EKF's increased precision outweighs its higher resource
requirements.

Similarly, the UKF offers improved handling of nonlinearities without the need for linearization. However, its
computational burden is significant. Our study assesses the UKF's applicability in scenarios where accuracy in
nonlinear state estimation is non-negotiable, identifying contexts where its benefits justify the computational costs.

This study contributes to the field by demonstrating how, despite its inherent limitations in handling
nonlinearity, the KF can be optimized for certain real-world applications where computational resources are
constrained, thereby extending its applicability beyond traditional domains. filtering methods. Among the reasons
the Kalman Filter (KF) stood out are:

e Through its linear framework, this application is efficient in real-time.
e The ability to accurately estimate linear systems, especially when approximated as linear with Gaussian noise.
e  Compared to both EKF and UKF, this group performed better.

V. THEORETICAL BACKGROUND

Kalman filters rely on the assumption that all probability distributions associated with state and measurement
can be modeled as Gaussian distributions. This simplifies the Bayesian computations extensively. The filter's
efficiency in numerous real-world applications positions it as a cornerstone in data fusion methodologies in various
industries [17, 18].

The Kalman filter operates in two main phases:

Prediction Step:

The state and covariance are predicted using the process model. For a state x and covariance P, the prediction
is given by equations 1 and 2 respectively [17, 18]:

X = Fo1Xp—q + GroqUp—1 (1)

P¢ = Foq Pecy Fi_q + Lo QuoqLie—q (2)

Where F is the state transition model, G is the control input model, L is the process noise sensitivity matrix,
and Q is the covariance of the process noise [17, 18].
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Update:
Upon receiving a measurement, the state and covariance estimates are corrected using equations 3 to 5 respectively:

Ky = P Hi (HP; Hi + MR Mi)™" 3)
X = X + K (2 — Hexy) 4
P, = (I — K H )P, (%)

Where H is the measurement model, M is the measurement noise sensitivity matrix, R is the covariance of the
measurement noise, K is the Kalman gain, and z is the actual measurement. The discrete-time nature of the Kalman
filter allows it to work effectively on computational systems like microprocessors [17, 18].

In a continuous system, variations of the state are both smooth and continuous, but in the discrete realm,
progression happens in increments. Noise assumptions form the bedrock of the filter's operation. Both process and
measurement noises are assumed to emanate from Gaussian distributions with zero mean. Crucially, Q and R
represent their respective covariances. Furthermore, no temporal correlation is assumed among these noise
variables, and independence between process and measurement noise is a staple assumption.

VI. METHODOLOGY

A. System Formulation

In a two-dimensional tracking filter, distal measurements are used to determine both the position and velocity
of a mobile object. In contrast to internal sensors on the target, these measurements are derived from external
sources, rendering the target essentially uncooperative.

Radars and various other sensors are commonly used for providing these external measurements. As a result of
this filter's versatility, you can use it for radar-based aircraft tracking, optical tracking in autonomous vehicles,
object tracking in image sequences, as well as surveillance, military operations, robotics, and GPS-assisted
navigation [26-28].

Figure 1 visually represents the two-dimensional motion tracking scenario, where the X and Y axes define the
plane of motion. The 'Dynamics' graph demonstrates the theoretical trajectory and velocity of an object in motion,
represented by a vector originating from the point (p, p,), which marks its current position, and extending to
indicate the velocity components (vy, v,) at that position.

In contrast, the 'Measurements' graph depicts a scatter of data points; each signifies an independent position
measurement (p», py) of the object obtained from external sensors. The relative sparsity and arrangement of these
points reflect the inherent inaccuracies and noise associated with real-world sensor data. [17-20].

The workflow illustrated in Figure 2 explains the two essential stages of the Kalman filter algorithm: the “Time
Update” and the “Measurement Update”. Starting from the “a posteriori” estimates of the previous time step,
represented as £;_,and P;}_, for the mean and covariance respectively, the filter proceeds to the prediction phase.
In this stage, the filter uses a predefined linear system model to anticipate the state of the system at the next time
step, generating a priori estimates £ and Py .

Following the prediction, the Measurement Update phase commences, wherein new observational data,
depicted as z, along with its measurement covariance Ry, is incorporated to refine the predictions. This phase is
critical as it adjusts the predicted state by considering the actual measurements, culminating in the updated, or “a
posteriori”, estimates ;7 and P . These refined estimates then form the basis for predictions in the next cycle,
demonstrating the recursive nature of the Kalman filter.

It is imperative to note that the elegance of the Kalman filter resides in its recursive nature, wherein it leverages
previous post-measurement estimates to forecast current premeasurement estimates, subsequently refining them
using present measurements.
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Measurements

Figure 1. Shows a graphical description of the problem [28].
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Figure 2. Shows a system model diagram of the workings of a KF [28].
B. Mathematical formulation of subsystems

The 2D tracking system model, as depicted, is formulated based on the classical equations of motion. Initially,
acceleration a is defined as the second derivative of position with respect to time, as given in equation 7. Under
the assumption of constant acceleration, the relations between velocity v and position p in relation to their initial
values v, and p, are represented in equations 8 and 9 respectively.

For a clearer representation, these equations of motion can be transcribed into matrix form as shown in equation
9. To account for the discrete nature of most digital systems, the continuous time representation is translated to a
discrete time format, where t is replaced by At, as detailed in equation 10.

Key to understanding the system behavior is the state vector x;, which consolidates the position and velocity
components in both x and y dimensions, as articulated in equation 11.

Moreover, external disturbances or uncertainties in the system, such as sensor noise, are encapsulated within
the noise vector wy, where a, and a,, are Gaussian noises with zero mean and variances 02 and 033 respectively,
as presented in equation 12.

The discrete process model in equation 13 characterizes the evolution of the system state over time, integrating
the state and noise vectors. This equation forms the foundation for the prediction step in equation 14, which
anticipates the next state based on the current state and control inputs.

Moving forward to the update phase, the state is corrected based on new measurements. The prediction error
covariance Pj, is computed using equation 15, providing a measure of the estimated accuracy of the state prediction.
The updated or corrected state, represented as £;, is then computed using equation 16 where K} is the Kalman
gain, a factor that determines the weightage of the measurement update.

This gain is derived using equation 17 and serves to minimize the estimation error. The updated error
covariance, Py, as detailed in equation 18, provides a post-corrected estimate of state accuracy. To further enhance
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this correction, Sy, the measurement prediction covariance, is computed using equation 19 which integrates the

effect of the system's inherent noise.
This mathematical construct efficiently combines prediction and update steps to estimate the position and
velocity of an object in a 2D plane, effectively accounting for uncertainties and delivering a refined state estimate.

2D Tracking System Model:
e Derive the System Process model from the Equations of Motion:

_dv _d%p
A=~ a (©)
e Assuming constant acceleration, the relations are found:
v=v,+at @)
D =Dy + tvg +%at2 (8)

e  Write the Equations of Motion in Matrix Form:

pP1_[1 t]1[Po 12
BI=05 1B+ o ®
e Convert to Discrete Time: t = At
1
p] _[1 At][p = At?
A PR 4 M el [ 1)
Dax
Py
State Vector: x; = |, (11)
X
Vy
. a, a, ~N(0,02))
Noise-Vectorw,, = [a ] 5 (12)
e, ~N(0,02)
e Discrete Process Model:
xk = ka_1 + LWk_1
1
Px 1 0 At O][Px SAc2 0
py _ 0 1 0 At py 0 lAtZ ayx
%l "o 0o 1 of]|¥ + A 2 0 [ay]k_l (13)
wle oo o allwle, [T 0
¥ L
e Prediction Step:
Rie = Fe_qX5_q + Groquy—q (14)
Py = B Py Fy + Qi (15)
e Update Step:
Ry = X + Ki(ze — Hi %) (16)
P = (I - K H )P, (17)
Ky = Py HES;! (18)
S, = H P Hf + R, (19)
VII. COMPUTER SIMULATION
Prediction Step:

The initial phase of designing a 2D tracking filter involves a prediction step. As shown in equation 14, the
process model has historically been represented as shown in equation 15. When coupled with state and noise
vectors, Equation 15 presents the state transition matrix taking the noise into account. Considering the system's
noise properties, the random vector adheres to a Gaussian distribution with covariance Q as expressed by equation
15[17, 18].

There are distinct noise variances for X and Y accelerations in this distribution, illustrated as a diagonal matrix.
In the case of non-additive noise, this method encounters a challenge in Kalman filter's process noise prediction,
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which requires converting variance from process model units to state units through the EL transformation
represented by equation 12.

The Kalman filter becomes ill-conditioned over time if this transformation fails to yield a valid Gaussian
distribution, which necessitates modifying it. A single variance is posited for both X and Y accelerations, resulting
in a 1D Gaussian distribution for the noise. A scalar EL matrix facilitates additive noise. Equation 17 illustrates the
resulting covariance. As a result, equation 12 represents the new covariance matrix for the random vector W.

In this research, we employ the revised version to ensure the system's robustness and stability. Implementing
Kalman filter prediction equations in Python, as outlined in previous literature, is the immediate objective. To
begin, we need to initialize the state and covariance, consider initial positions and velocities, and then construct the
matrices F and Q. In subsequent steps, the Kalman filter prediction step will be implemented, as shown in equations
14 and 15.

In subsequent steps (steps 1-7), detail the underlying mechanisms and simulation results will be discussed in
greater depth.

Step 1) Open the python file ‘prediction.py’, that 1is presented by code in Appendix 1.
a. Run the simulation as is. See that the object starts at the origin (px,py) = (0,0) and moves at a 45 deg angle at
10 m/s(vx,vy) = (7.07,7.07)

Step 2) Setup the initial state and covariance
a. Assume initial position is (0,0) and initial velocity is (7.07,7.07)
b. Assume no initial uncertainty (Zero matrix)

x = [0,0,7.07,7.07]"
000

pP=

oS O O
o O oo

0 0
0 0
0 0
Step 3) Setup the model F and Q Matrices

a. Use the time step and define the F process model matrix

b. Define the Q matrix as a function of a variable accel_std
c. Assume the process model noise acceleration stdev is zero initially

10 At O

S (U B Y
00 1 0
00 0 1
Ly 0 0 o
2

Q =0l 0 ZAt2 0 0
0 0 At 0
0 0 0 At

Step 4) Implement the Kalman Filter Prediction Step Equations
a. State Prediction

b. Covariance Propagation

Step5) Run the Simulation

a. Check that the Prediction follows the truth closely.
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Figure 4. Resulting position and velocity errors from simulation test.

Figure 3. Resulting simulation from initial test.
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Following the implementation of the Kalman filter, it is observed, as per Equation 14 and 15 [11], that the
prediction aligns notably well with the true trajectory. Given the precise knowledge of the initial conditions—both
the starting position and velocity—the anticipated outcome is a minimal mean error, particularly in terms of the
resultant velocity error post-simulation. Should there be significant deviation from this expectation, it may signal

an erroneous implementation. Therefore, the congruence between the predicted state and the actual trajectory serves
as a validation of the filter's operational accuracy. Figures 3 and 4 show the results of the simulation.

Step 6) Check the Position Covariance Prediction is Working Correctly
a. Set the initial position x and y covariance to be (5)"2

b. Run the simulation and see that the (3 Sigma) position uncertainty stays at approximately +/—15 m.

Figure 5. Resulting observed three-sigma position uncertainty remains consistently within an approximate

range of +15 meters.

Upon executing the simulation once more, the observed three-sigma position uncertainty remains consistently
within an approximate range of +15 meters, as stipulated by Equation 15 and 16. This observation serves as an
empirical affirmation that the position covariance prediction, as integrated within the Kalman filter framework, is

functioning as intended. As illustrated by Figure 5.
Step 7) Check the Velocity Covariance Prediction is Working Correctly

a. Set the initial state to be all zero.

b. Set the initial position covariance to zero and the initial velocity x and y covariance to be (7/3)"2.
c. Run the simulation and see that the (3 Sigma) error position uncertainty grows at the same rate as the position

changes.
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Figure 6. velocity covariance prediction aligns closely with the genuine velocity, specifically in relation to the
error's rate of change.

In evaluating the performance of the KF, it is evident from Figure 6 that the velocity covariance prediction
aligns closely with the genuine velocity, specifically in relation to the error's rate of change. Such an observation
underscores the accuracy and robustness of the KF in estimating system states, further highlighting its reliability
in tracking applications.

Step 8) Check the Acceleration Covariance Prediction is Working Correctly

a. Set the initial state back to the original value.

b. Set the initial covariance to be all zero.

c. Set the process model accel std to be 0.1.

d. Run the simulation and see that the (3 Sigma) velocity uncertainty grows quadratically with time.

Figure 7. Shows that the three sigma velocity grows quadratically through time as expected.

Figure 7 shows that the three-sigma velocity grows quadratically through time as expected. It appears that the
velocity uncertainty starts at zero and has a quadratic shape that grows with time until it reaches a value almost at
three sigma.

Update Step:

Python script titled Update Mechanism was written to gain a deeper understanding of the update mechanism
A single update was performed with "One Update". As soon as the script is executed, an object is shown moving
from the origin with variable velocity components, and, both of which remain undetermined. The purpose of this
exercise is to estimate these parameters more accurately using the Kalman update step. In the script's initialization
segment, matrices , , and are delineated as shown in Equations 1 and 2. Furthermore, the measurement precision is
assumed to be 10 standard deviations, thus affecting the result.

Within the Python script's "Update Step" function (Equation 3), the Kalman filter update equations are
integrated.

Simulations run after Kalman filter implementation reveal that the state estimates are actively altered over time
by the Kalman filter. Nevertheless, a static filter estimate is produced by setting the initial uncertainty to zero. As
a result, the initial uncertainty of velocity is adjusted to 10 in order to compensate. Object tracking is demonstrated
in the revised simulation as a result of shrinking and converging covariance around the object, as time progresses.
Moreover, minimized errors in mean position and velocity squared are further evidence of effective tracking.

In subsequent steps (steps 1-4), detail the underlying mechanisms and simulation results will be discussed in
greater depth.

Step 1) Open the python file 'update.py’

Run the simulation as is. See that the object starts at the origin (px, py) = (0,0) but it moves in a random

direction and speed, so (vx,vy) are unknown. Each simulation run movies with a different initial velocity.
Step 2) Setup the H Matrix and R Matrix
a. Assume the position measurement std is 10.

100 0
H‘[o 10 o]
2
R=|:O-meaS . ]
0 Gmeas

Step 3) Implement the Kalman Filter Update Step Equations
def update_step(self, measurement).
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Step 4) Run the Simulation
a. See that the Kalman Filter Estimate does not change or be updated. (Initial Uncertainty is zero)
b. Change the initial velocity std to 10 and re-run the simulation.

20 Position

Postion (m
+

0 « 100 150 200 %0

Figure 8. Shows the position graph from the update step, the green circle shows the innovation.

Figure 9. Shows the new position and velocity error once the update step is activated.
Summaries for Each Simulation Step:

The following gives an overview, summary and the key findings of each of the experiments that have been
conducted thus far, as well a rationale of each of the steps taken.

Step 1 Summary: The initial simulation run confirms the filter's capability to track an object's trajectory
starting from the origin, moving at a predicted 45-degree angle. The velocity vectors observed align with the
theoretical predictions, laying a strong foundation for subsequent, more complex simulations.

Step 2 Summary: With the state and covariance matrices initialized, the filter’s predictions for position and
velocity closely mirror the initial assumptions. This step validates our setup and is crucial for accurately reflecting
the system's initial state with minimal uncertainty.

Step 3 Summary: Defining the process model and noise matrices is pivotal for capturing the system dynamics.
The assumption of zero process noise as a starting point facilitates the evaluation of the filter's prediction capability
under ideal conditions.

Step 4 Summary: The implementation of the Kalman Filter prediction equations yields results that are
consistent with the expected trajectory. This consistency supports the reliability of our prediction model in linear
system estimation.

Step 5 Summary: Upon simulation, the prediction aligns closely with the actual trajectory, suggesting the
initial conditions are well understood and the model accurately reflects system dynamics.

Step 6 Summary: Adjusting the position covariance and observing the consistent range of three-sigma position
uncertainty provides empirical evidence of the prediction's reliability and the filter's robustness against defined
uncertainty levels.

Step 7 Summary: Setting the initial state and covariance to assess velocity predictions reveals that the filter
accurately captures the rate of error growth, which is critical for dynamic tracking in systems where velocity is a
primary variable.
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Step 8 Summary: Introducing acceleration noise into the system and observing the quadratic growth in velocity
uncertainty validates the filter's capacity to adapt predictions based on changing process noises, an essential aspect
of real-world system tracking.

Update Step Summary: The update mechanism, when engaged, demonstrates the Kalman Filter's adeptness
in refining state estimates with new measurements. The visible convergence of covariance around the object’s
trajectory and minimized positional and velocity errors are indicative of an effective tracking system.

VIII.RESULTS AND DISCUSSIONS

Filter State Prediction Model Check (State Transition):

Simulations that closely represent the system's dynamics are essential for building an effective and robust
modeling system. It is recommended to validate the model in a noise-free environment with a known starting point
and run the Kalman filter prediction step concurrently, as shown in equations 18 and 19. In this way, the Kalman
filter model is validated against the dynamics of the system under observation.

The update step of the Kalman filter should be run separately from this step. Since the correction step within
the update phase may mask discrepancies or inaccuracies inherent in the model, incorrect conclusions may result.
By using such a methodology, the intrinsic prediction step can be finely tuned to the system model being estimated.
Delving into the code will reveal this empirically, as shown Appendix 2.

Based on the state behavior in the simulation, when the process model noise is set to null and the state and
covariance are initialized to zero, the system exhibits a trajectory inclined at 45° and maintains a constant velocity
of 10 meters per second, as show by Figures 10, 11 and 12, respectively and this is consistent regardless of how
many time the simulation is run, also note that the error is very large.

However, when the simulation is given an initial velocity of 7m.s!, the blue dot and red dots overlap which is
in contrast with the previous result, as shown by Figures 13 and 14 respectively. The reason for this is that, is
because we started with known conditions for velocity and position, note the errors given by L are very low.

2D Postion
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Figure 10. Shows the system exhibits a trajectory inclined at 45° and maintains a constant velocity of 10 meters
per second, when then there is no initial velocity, note the lag between the blue dot and red dot.
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Figure 11. Position velocity graphs of the first test along with the resulting errors, for the transition state test.

Figure 12. Resulting console out of the transition estimate test, note that the error is very large, when there is

no initial velocity given.
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Figure 13. Shows the system exhibits a trajectory inclined at 45° and maintains a constant velocity of 10 meters
per second, when initial velocity of 7m.s-1, the blue dot and red dots overlap which is in contrast with the previous

result.
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Figure 15. Resulting console out of the transition estimate test, note that the error reduces significantly, when
the initial velocity given.

Check that the Position Uncertainty is operating as Expected:

When the state transmission model is validated as being capable of accurately predicting the true state response
from a defined initial condition, the focus shifts to how well it manages uncertainty transformations. Ideally, there
should be no growth in the system's uncertainty when the process model noise is zero. Rather, it should be
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transformed in accordance with the model of the system. In order to assess the position uncertainty's performance,
an initial position uncertainty with a non-zero value is set while the velocity uncertainty remains at zero, this is
done through the code in Appendix 2. In the proposed approach, the position standard deviation is set to five,
yielding a variance of 25 for both X and Y axes.

An uncertainty ellipse is generated around the estimate after the developed code is executed, as shown in Figure
16. The graphical representation, in Figure 17 of the position velocity graphs, confirms that the model behaves as
expected, with constant three-sigma bounds (green trajectories) for position errors. It is apparent that this behavior
does not reflect an escalation or a decrease in uncertainty, but rather its maintenance throughout the simulation. As
a result, the covariance prediction for position uncertainty appears to be accurate.

Figure 16. Shows how the uncertainty ellipse is generated around the estimate after the developed code is
executed.
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Figure 17. Position/ velocity graphs resulting from position uncertainty and is operating as expected.

Check that the Velocity Uncertainty is operating as Expected:

It is crucial that a filtering system maintains and propagates uncertainty in a way that is consistent with the
dynamics of the system. For the filter's predictions to remain accurate, this is a prerequisite. The uncertainty in
velocity can impact the uncertainty in position over time if the only dynamic is the integration of velocity. The
explanation for this can be found in an experiment which starts with zero position uncertainty but introduces non-
zero velocity uncertainty later in the experiment. Two hypotheses are proposed:

Because no external factors or model dynamics are introduced that could perturb velocity uncertainty, this bound should
remain constant over time.
A linear growth pattern should be observed as the position uncertainty decreases over time. Based on the dynamics of
the system, integrating a constant velocity results in a linearly changing position.

When the velocity uncertainty is initialized with a standard deviation of one in a simulation environment, the

results confirm the hypothesis, shown in Figure 18. As a result of the filter's consistent handling of this parameter,
the velocity uncertainty remains within three sigma bounds, as illustrated by Figure 19. As a result of integrating a
constant velocity with time, the position uncertainty exhibits a linear growth pattern. The position uncertainty
(captured by the three-sigma bound) at 120 seconds into the simulation reaches 360, which is expected based on
the dynamics of the system.

It is evident from this empirical evidence that the filter is effective at handling uncertainties and propagating
them. An effective uncertainty propagation mechanism ensures that the filter remains both consistent and reliable
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by harmonizing with the system's inherent dynamics. When used in critical applications, where estimation errors
can have severe consequences, such demonstrations are critical to building trust in the filter's performance.

2D Pagition

Figure 18. Shows the result when no external factors or model dynamics are introduced that could perturb
velocity uncertainty.

Figure 19. Show the resulting velocity/ position graphs no external factors or model dynamics are introduced
that could perturb velocity uncertainty.

Check the Process Model Noise (Acceleration uncertainty):

The Q-matrix of the Kalman Filter (KF) estimation plays a pivotal role in the uncertainty equation of Kalman
Filter (KF) estimation. Acceleration uncertainty is a key component of this noise. An experiment was designed
where the initial uncertainties for position were set to zero, while an acceleration standard deviation was introduced
to ensure that the Q-matrix was not zero.

The cumulative system uncertainty will progressively increase over time when the KF is executed with the
parameters. It is directly related to the inherent dynamics of the system: as position is the second integral of
acceleration, velocity uncertainty should grow linearly, while position uncertainty should grow quadratically. In
Appendix 2, you will find a detailed description of how this analysis is implemented computationally.

A standard deviation of 0.1 was determined for acceleration in the present simulation. Throughout the
simulation period, the system's uncertainty increased consistently. Specifically, the three-sigma bounds expanded,
as predicted by theory. It was validated by examining the covariance matrices that velocity uncertainty increased
linearly and position uncertainty increased quadratically.

Randomness or the Q-matrix becomes marginally significant in situations with deterministic system dynamics,
like an object moving with consistent velocity from a predefined origin. Since there is no inherent uncertainty in
the system, position and velocity estimates are the only sources of uncertainty.

In a broader sense, Q-matrix or process noise serves as a compensatory mechanism for potential discrepancies
in KF process models. The Q-matrix adjusts by elevating internal system uncertainty if the model does not
accurately represent the actual system dynamics. The KF remains consistent within its uncertainty bounds thanks
to this adaptive mechanism. Process noise is intrinsically linked to measurement noise, and their combined
influence on the filter's performance is crucial.
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Figure 21. Resulting position/ velocity graphs Process Model Noise (Acceleration uncertainty) test.

Final Simulation with optimal KF Parameters

The code snippet in Figure 22 shows how to track a two-dimensional (2D) object with a recursive Kalman
filter. Among other initialization conditions, this simulation includes several defining parameters, such as end time,
measurement rate, and motion type. Kalman filters are also initialized with parameters like acceleration standard
deviation and measurement standard deviation.

Measurement shown in Figure 23, indicates the Innovation charts for both X and Y dimensions illustrate how
the actual measurements differ from the filter's predictions. blue lines here represent the innovations for each of
the update steps inside the KF. While the green dotted line here represents one sigma bounds of the covariance
uncertainty for the innovations.

In order to understand anomalies or significant deviations from expected values, this distinction is crucial. The
position and velocity estimation charts provide insight into the Kalman filter's accuracy in tracking 2D object
motion. Based on the data, it appears that KF predictions are largely within the error bounds provided, suggesting
an expected margin of error, as shown by Figure 23.

As can be seen in the 2D trajectory visualization, the object's path is random at first, in Figure 24 (this is
illustrated by the red and blue dot far apart), and eventually converging towards a more consistent trajectory as
speed and heading parameters are randomized, as in Figure 25 (this is illustrated by the red and blue dot
overlapping). As a result, the dynamic nature of the system is reaffirmed. As a result of the simulation setup and
resulting charts, the Kalman filter appears to be an effective solution for tracking 2D objects, effectively handling
the inherent dynamics and uncertainties.

In Figure 26 the graphs below illustrate the relationship between X-position versus Y-position as well as X-
velocity versus Y-velocity. The blue trajectory represents the true state of the system. As shown on the X-axis, the
time progression provides insight into the object's positional evolution over time. In a similar manner, the trajectory
reveals the object's time-dependent position on the Y-axis.

The black markers on these plots delineate the position measurements for both X and Y dimensions. The red
trajectory represents the estimated positions in the respective axes, as determined by the Kalman filter. In the lower
panel, the velocity states for both dimensions are shown, demonstrating that the true state maintains a steady
velocity. The X-axis moves at approximately one meter per second, while the Y-axis remains nearly stationary.
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Discrepancies between the Kalman filter's estimation and the true state of the system are shown on the adjacent
panel detailing errors. As a result of the Kalman filter, a zero-error would mean perfect alignment with the true
states. In the red trajectory, we see the error caused by the Kalman filter, while in the green trajectory, we see the
uncertainty around this error—namely, the three-sigma bounds derived from P's covariance matrix. These three-
sigma constraints indicate effective filter operation when observed errors are within them.

Figure 22. Shows the code snippet of the final Kalman filter.

Figure 23. Shows the innovation of the Kalman filter.

Figure 24. Shows the 2D trajectory visualization, the object's path is random at first, in Figure 24 (this is
illustrated by the red and blue dot far apart).

2D Pastion

Postion Im)
[
-
rs
-
~
’ ¢l o) ¢
S
»
o

40 <) 20 ] x W a0 "0

X Peartan im|

Figure 25. Shows the particle converging towards a more consistent trajectory as speed and heading parameters
are randomized, as in Figure 25 (this is illustrated by the red and blue dot overlapping).
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Figure 26.Illustrates the relationship between X-position versus Y-position as well as X-velocity versus Y-
velocity.

IX. CRITICAL ANALYSIS AND RECOMMENDATIONS

Data estimation can be improved using the Kalman filter, based on probability density functions. However, numerical
inaccuracies in computational systems, especially when representing floating-point numbers, cause issues when transferring
theory to practice. Covariance matrix distortions can cause system failures due to such errors. A more robust Kalman filter is
available with Joseph stabilization, but it is computationally intensive. Errors in modeling or incorrect assumptions about noise
can also pose practical challenges.

Strategies for mitigating risk include:

1. For enhanced computational precision, 64-bit numbers are used.
Stability is achieved using square root Kalman filters.
Initiating the covariance matrix appropriately and ensuring its symmetry.
The fading memory filter technique is applied.
In order to counteract modelling errors, the Q matrix needs to be adjusted.

IE NN

The variance of the filter captures the uncertainty associated with the estimate; it is important to portray it accurately.
Unreliable estimates can be produced by filters with inconsistencies, affecting downstream applications. Unless the state
transmission model is accurate, filtering can result in propagated errors or system failures. Reliability is measured by the
consistency of the filter, which is essential for the reliability of a system. There should be future studies that assess the effects of
non-linear systems on the filter and test the update step.

In the context of the Kalman Filter, the three-sigma position uncertainty can be understood as a quantitative measure of the

state estimate's uncertainty. The significance of observing three-sigma position uncertainties that remain consistent can be multi-
fold:

Three-sigma position uncertainties:

The three-sigma rule is based on common knowledge in statistical process control and Kalman filtering. This rule is also
known as the empirical rule or 68-95-99.7 rule, which is a statistical principle that asserts that nearly all values lie within three
standard deviations of the mean in a normal distribution. In the context of the Kalman Filter, the three-sigma position uncertainty
can be understood as a quantitative measure of the state estimate's uncertainty. The significance of observing three-sigma position
uncertainties that remain consistent can be multi-fold as observed in the results of this paper:

Reliability: The consistency of the three-sigma range, approximately £15 meters as shown in Figure 5, indicates that the state
estimates provided by the Kalman Filter are dependable. The actual position of the object, remaining within this range,
demonstrates that the filter is statistically sound and that the model used is capturing the system's dynamics with a high degree
of accuracy.

Confidence: By maintaining the three-sigma interval, as observed with the position uncertainty staying consistently within

+15 meters, the filter communicates the expected accuracy of its predictions. This allows users to assess the confidence level
they can place on the system's outputs and informs the reliability of subsequent actions based on these predictions.
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System Stability: Stability of the system is indicated by the three-sigma uncertainty bounds not expanding unpredictably,
suggesting the system is stable and the filter parameters are well-tuned. The observed stability, as indicated by consistent position
covariance predictions, is crucial for dynamic systems to prevent loss of tracking or incorrect predictions.

Noise Handling: The Kalman Filter's effectiveness in managing noise is demonstrated by maintaining a consistent three-
sigma range, even when initial velocity uncertainty is introduced and set to (7/3)? as seen in the velocity covariance predictions
in Figure 6. This shows the filter's capability to separate actual system changes from measurement noise and process disturbances.

Predictive Quality: For applications like navigation and tracking systems, where the Kalman Filter is utilized, the predictable
three-sigma uncertainty range indicates that the predictions are of high quality. For instance, in the step involving acceleration
uncertainty, where a standard deviation of 0.1 leads to a quadratic growth in the three-sigma bounds of velocity uncertainty, the
users can anticipate the potential variance in position estimates, facilitating effective planning around these predictions.

Conclusion

The purpose of this research is to explore two-dimensional (2D) tracking of mobile entities in South Africa's expansive
terrains, in order to highlight challenges and to demonstrate the utility of Bayesian data fusion. Especially for radar-based
systems, the Kalman filter plays a crucial role in estimating the velocity and position of 2D objects. Based on probability theories
and differential equations, the study demonstrates the cost-effectiveness and integration of GPS data with forecasts of weather
conditions. As a result, it is also ideal for microprocessor computations and vehicle state estimations due to its simplicity and
efficiency.

Although the filter effectively tracks 2D objects in a Python environment, addressing position uncertainty, it is not without
flaws, including noise deviations and computational challenges. Despite this, 64-bit representations and Joseph's stabilizations
enhance the robustness of the method. Studying nonlinear systems and refining the filter's update processes should be the focus
of future research.
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