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Abstract: - Action recognition in videos has become crucial in computer vision because of its diverse applications, such as multimedia 

indexing and surveillance in public environments. The incorporation of attention mechanisms into deep learning has gained considerable 

attention. This approach aims to emulate the human visual processing system by enabling models to focus on pertinent aspects of a scene 

and derive significant insights. This study introduces an advanced soft attention mechanism designed to enhance the CNN-sLSTM 

architecture for recognizing human actions in videos. We used the VGG19 convolutional neural network to extract spatial features from 

the video frames, whereas the sLSTM network models the temporal relationships between frames. The performance of our model was 

assessed using two widely used datasets, HMDB-51 and UCF-101, with precision as the key evaluation metric. Our results indicate 

substantial improvements, achieving accuracy scores of 53.12% (base approach) and 67.18% (with attention) for HMDB-51 and 83.98% 

(base approach) and 94.15% (with attention) for UCF-101. These results underscore the effectiveness of the proposed soft attention 

mechanism in improving the performance of video action recognition models. 

Keywords: Action recognition, Soft Attention Mechanism (SAM), Convolutional Neural Network (CNN), Scalar Long Short-Term 

Memory Neural Networks (sLSTM), VGG19. 

 

I.  INTRODUCTION  

In human action recognition (HAR) systems, the a posteriori probability 𝑃(𝑌|𝑋) is usually modelled to build a 

relationship between a sequence of observations X and a specific Y, therefore tying the inputs X to their 

corresponding class labels Y. The objective was to identify the action being performed from a set of potential actions 

depicted in the video of an individual. While humans can effortlessly recognize specific actions using visual cues 

alone, developing an automated solution poses significant challenges owing to various factors. These factors include 

substantial variability among individuals regarding physical appearance, such as body structure and clothing, and 

differences in how actions are performed. Furthermore, the environment where the action occurs often involves 

complex conditions, including crowded settings, shadows, lighting changes, occlusions, and other variables, such 

as the angle of view and the subject's distance from the camera. Human actions encompass both spatial and temporal 

dimensions that are highly variable, resulting in the same action never being performed identically. The work of 

Dutta et al. is highly recommended for a comprehensive examination of the current challenges in this domain [1].  

Human Activity Recognition (HAR) is a subject of significant importance in the fields of computer vision and 

pattern recognition, as the ability to automatically detect actions performed in a recording can serve as a valuable 

resource for various applications: 

• Evaluating surveillance video footage [2] is a common scenario. Numerous security systems rely on the 

data collected from an extensive array of cameras. When the number of cameras is substantial, manual detection of 

critical events within the videos becomes challenging or even impractical. 

• A practical application discussed in the previous section is the deployment of video comprehension 

techniques to supervise and care for elderly individuals and children in confined settings such as private residences 

and intelligent healthcare facilities. 

• The monitoring and automatic recognition of daily activities can significantly aid residents and facilitate 

the generation of reports regarding their functional capacities and health status [3]. 
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• Another application generates concise video summaries by selecting significant scenes from original 

content. This process entails a content-based search within the video databases. The ability to automatically generate 

textual descriptions of a given video obviates the need for manual annotations, and is crucial for developing more 

valuable and informative databases. 

• Human-computer interaction [4] represents another domain that significantly benefits from advancements 

in action recognition techniques. These techniques can be employed to develop interfaces for individuals with 

reduced mobility, enhance their interactions with computers, and facilitate communication with others. 

• Another example is the progression of video games [5], which permit users to engage with a console or 

computer without needing a physical device. 

• Behavior-based biometrics has recently garnered significant attention. In contrast to traditional biometric 

methods, such as fingerprint analysis, behavior-based techniques collect identification data without disrupting an 

individual's activity. A notable example of this approach is the identification of individuals based on their gait. 

• A related application is the development of tools that automatically guide patients in rehabilitation with 

motor problems. 

 In summary, emerging advancements in video action recognition techniques are expected to capture significant 

interest in various applications. 

This study aimed to establish a system for identifying actions in video sequences. To accomplish this objective, the 

following approach is recommended: 

(1) The CNN–sLSTM model uses a convolutional neural network (CNN) to extract video features, whereas an 

sLSTM neural network categorizes videos into specific classes. (2) An attention mechanism was included in this 

study. The remainder of this paper is organized as follows: Section II presents a summary of the state of the art of 

the problem in question; Section III describes the overall basic architecture of the model; and Section IV presents 

the attention mechanism of the model. Section V explains the datasets used, the evaluation approach, the 

experiments conducted, and the results obtained. Section VI concludes the study by summarizing the results and 

proposing directions for future research. 

II. LITERATURE REVIEW 

The approaches applied in the literature to address the challenge of recognizing human actions can be classified 

into three groups: 

A. Classical Approaches 

Traditional methodologies focus on extracting descriptors that encapsulate video frames' visual features and motion. 

• Methods utilizing spatio-temporal points of interest (STIP) effectively capture video points within the 

spatio-temporal domain. A point of interest can be reliably identified by an STIP-based detector, such as a corner 

point or an isolated point where the intensity reaches a maximum or minimum, the endpoint of a line, or the point 

on a curve where the curvature is at its peak. Liu et al. [6] extend the Harris edge detector [7] to develop a 3D-

Harris detector. STIPs are invariant to translation and scale but not to rotation. 

• Trajectory-based methods utilize the paths of tracked feature points to represent the actions. Labana et al. 

[8] introduced a dense trajectory approach. Initially, clouds of characteristic points are sampled from each video 

frame, and the movement data is determined by tracking these features across frames applying an optical flow 

method. The resulting trajectories were used to represent the videos. In this research domain, compensating for 

camera movement by aligning characteristic points between frames using accelerated robust function descriptors 

(SURF [9]) and integrating them with other local descriptors, such as the histogram of oriented gradients (HOG 

[10]), histogram of optical flow (HOF [11]), and motion boundary histogram (MBH [12]), has yielded highly 

favorable results [13] in controlled environments. 
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B. Deep Approaches 

Applying deep learning to computer vision challenges has yielded remarkable outcomes in recent years. The 

primary achievement of neural networks (ANNs) is their capacity to approximate any continuous function, given a 

sufficient number of neurons [14]. Multilayered neural networks must integrate an adequate number of layers and 

neurons to learn meaningful input-output mappings efficiently. They obtain hierarchical features from unprocessed 

information with ascending complexity levels before the classification stage. 

Convolutional Neural Networks (CNNs) were created to handle spatial data. Although they succeeded in image 

classification, they overlooked the temporal aspects of spatiotemporal data, such as videos. In particular, 3D CNNs 

are an extension of CNNs in the time domain that can capture features in a frame and the temporal evolution between 

consecutive frames. Vrskova et al. [15] propose a 3D-CNN approach, extracting data characteristics in spatial and 

temporal dimensions, thus capturing motion information in video transmissions. This architecture generates 

different feature maps from the features obtained through convolution and downsampling from each channel of 

successive video frames independently, with the final feature being formed from all channels. Experimental results 

show a considerable increase in performance from the modified models over the 2D-CNN architecture and other 

classic methods. However, it's important to acknowledge that the expectation of a universal feature map is 

problematic since each convolution is dependent upon a predetermined number of successive frames captured. 

Recurrent Neural Networks (RNN) are typically trained to understand complex temporal dynamics, meaning RNN 

architectures excel at tasks involving sequential data, such as word generation, speech recognition, and human 

action recognition. Human actions are a series of complex movements and motor acts which, at their core, can be 

considered temporal dynamics. Thus, it's logical to develop a way through RNN architectures capable of 

understanding such sequential data. Moreover, specific scalar versions can prove even more valuable. For example, 

the Scalar Long Short-Term Memory Neural Networks (sLSTM) [16], [17] was designed to combat some inherent 

problems with basic RNNs, such as the vanishing gradient. The sLSTM is a memory cell that learns internal states 

through the storage, adjustment, and retrieval of information over time; thus, it excels at retaining and predicting 

information over long time dependencies. Therefore, using the sLSTM would be beneficial in any scenario where 

long-term temporal dynamics need to be understood and predicted, like with human action recognition. 

Ye et al. [18] implement a hybrid model combining 3D convolutional networks to extract spatiotemporal 

characteristics from recording content with an Long short-term memory network that simplifies the temporal 

sequence into the video's ultimate feature vector. 

Zhang et al. [19] use the recording sequence's velocity vector rather than the optical flow stream for online human 

action recognition to reduce processing time for faster, real-time results. 

Sharma et al. [20] propose an LSTM neural network with an attention mechanism that allows each video frame to 

focus on a region most distinctive for the task. Learning such weights is a part of model training. 

C. Dual-Flow Approaches 

Ibrayev et al. [21] propose the dual-stream hypothesis, which posits that the human visual cortex comprises two 

distinct pathways: the ventral stream, responsible for object recognition, and the dorsal stream, which is involved 

in the perception of movement. 

Simonyan et al. [22] present a network of two flows containing a spatial and temporal network, exploiting the 

ImageNet dataset for pre-training and optical flow calculation to capture motion information explicitly. 

Feichtenhofer et al. [23] implement a two-stream network with ResNet architecture [24] and additional connections 

between streams [25]. The additional two-stream approaches include Time Segment Networks [26], Action 

Transformations [27], and Convolutional Fusion [28]. 

III. CNN - SLSTM BASE APPROACH 

Consider 𝑣 = {𝑥1, 𝑥2, … , 𝑥𝑛} represent a video consisting of a sequence of frames 𝑥𝑖  with 𝑖 = 1, … , 𝑛,. Fig. 1 

illustrates a foundational Human Activity Recognition (HAR) system, which begins with the input phase, during 

which the video is normalized to 40 frames. In the Convolutional Neural Network (CNN) phase, a pre-trained 

VGG19 model was employed to extract the video features, resulting in feature dimensions of 40 ×  25088 . 
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Subsequently, the Scalar Long Short-Term Memory (sLSTM) phase is implemented, accompanied by a dense layer 

containing one node per class for the final classification. 

 

                       Figure 1. Proposed CNN-sLSTM Base Architecture. 

 

The color blocks that make up the CNN-sLSTM base architecture, shown in Fig. 1, are as follows: 

 Encoder: We used the VGG19 convolutional architecture proposed by [22]. For each 𝑥𝑡 ∈  𝑣, we encode the frame 

in a cuboid 𝑋𝑡 of size 7 ×  7 ×  512, resulting from the subsampling layer of VGG19, as shown in Fig. 2. 

 sLSTM: As proposed by [16], sLSTM is the natural behavior of remembering information over long periods. The 

inputs for a specific time 𝑡 are frame 𝑥𝑡, previous state ℎ𝑡−1, and prior memory 𝑐𝑡−1. The outputs are the present 

state ℎ𝑡 and memory 𝑐𝑡. 

 MLP1: The multilayer perception comprises three or more layers: an input layer, an output layer, and the remaining 

intermediate layers, called hidden layers. The details of the classification stage are presented in Table 2 (first row 

of the table). 

: Indicates output dimension. 

It should be noted that the weights associated with the sLSTM, such as the MLP, are part of the architecture training. 

 

             

 

Figure 2. Illustration of the VGG19 Architecture. 

 

A. Extraction of Features 

CNNs are constructed from a sequential set of layers that process input data. Each comprises computational modules 

that function based on the results of the previous layer. The most commonly applied layers are as follows: (a) 

convolutional layers, which employ k filters (or kernels) to generate k activation maps. (b) Subsampling layer: In 

most cases, a max-pooling operation is applied to each feature map, which systematically decreases the spatial 

https://edit.paperpal.com/drafts/83ee514c-a808-4bc0-ac37-a07c23cd705b?tab=language#_bookmark2
https://edit.paperpal.com/drafts/83ee514c-a808-4bc0-ac37-a07c23cd705b?tab=language#_bookmark13
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dimensions of the representation and the number of weights that require training. (c) Dense layer: This layer consists 

of fully connected neurons. The features derived from the training dataset were used to classify the input image into 

one of the predefined categories. The VGG19 convolutional architecture, as introduced by [22], achieved 

outstanding performance in classification and localization tasks during the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC-2014). Table 1 lists the layers comprising this architecture. The first column 

specifies the layer number and type of operation, such as 2 × Conv for Convolution, Max Pool for Max Pooling, 

and FC for Fully Connected. The second column denotes the number of the feature maps. The third column presents 

the sizes of the output features of each layer. The fourth column lists the kernel and stride architecture parameters. 

Table 1. Implementation of VGG using the pre-trained model. 

Layer Feature 
map 

Size Kernel 
Stride Activation 

Input Image 1 224 × 224 × 3 - - - 

1 2 × Conv2D 64 224 × 224 × 64 3 × 3 1 ReLU 

 MaxPooling2D 64 112 × 112 × 64 2 × 2 2 - 

2 2 × Conv2D 128 112 × 112 × 128 3 × 3 1 ReLU 

 MaxPooling2D 128 56 × 56 × 128 3 × 3 2 - 

3 4 × Conv2D 256 56 × 56 × 256 3 × 3 1 ReLU 

 MaxPooling2D 256 28 × 28 × 256 3 × 3 2 - 

4 4 × Conv2D 512 28 × 28 × 512 3 × 3 1 ReLU 

 MaxPooling2D 512 14 × 14 × 512 3 × 3 2 - 

5 4 × Conv2D 512 14 × 14 × 512 3 × 3 1 ReLU 

 MaxPooling2D 512 7 × 7 × 512 3 × 3 2 - 

6 Flatten - 25088 - - - 

7 FC - 4096 - - ReLU 

8 FC - 4096 - - ReLU 

Output FC - 1000 - - Softmax 

 

For each 𝑥𝑖 ∈ 𝑣, we encode the frame to a cuboid of shape 𝑋𝑖 of 7 × 7 × 512, resulting in the subsampling layer 

of the VGG19. 

B. Classification 

The sLSTM networks introduced by [16], [17] are characterized by their ability to retain information over long 

periods. Fig. 3 shows the fundamental configuration of the sLSTM unit. At any given time 𝑡, the inputs consist of 

the frame 𝑥𝑡 , the preceding output ℎ𝑡−1, and the preceding memory 𝑐𝑡−1. The results produced are the present 

output ℎ𝑡 and the memory 𝑐𝑡. 
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The Scalar Long Short-Term Memory (sLSTM) network can add or remove information from its memory cell using 

gates. These gates enable the system to selectively transmit information, update the memory cells, or release 

information. 

The first step in the sLSTM is to decide what information will be retained in the memory cell. This decision is made 

by the forgetting gate, which at time 𝑡 looks at the output of the memory block at time 𝑡 −  1, ht, in the input 

sequence at time 𝑡, 𝑥𝑡, and in the state of the memory cell, 𝑐𝑡−1. Equation (1) shows how the gate of oblivion 

calculates its value: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                                                 (1) 

The following step involves selecting the information to be integrated into memory cells. This is accomplished 

through a two-step process: initially, the input to the neural network and the output from the sLSTM block at time 

𝑡 −  1  are analyzed to determine the vector that refreshes the memory cell. Subsequently, the input gate is 

computed, which functions similarly to the forget gate; however, in this context, it regulates the volume of new 

information permitted to enter the memory cells. These computations are detailed in (2) and (3), respectively. 

𝑧𝑡 = 𝜙(𝑊𝑥𝑧𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧)                                                                 (2) 

𝑖𝑡 = 𝑒𝑥𝑝(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                                               (3) 

  

(a) 

 

(b) 

 

Figure 3. The structure of the 2 deep learning models: 

 (a) The basic unit of LSTM. (b) The basic unit of sLSTM. 
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After computing all the required values, the components necessary for updating the memory cell were ready, 

enabling the process to continue. Initially, the forget gate multiplies the existing value of the memory cell, 

effectively discarding information that the forget gate determines to be redundant. Subsequently, the integration of 

newly scaled information, as the input gate dictates, allows the memory cell to be updated. These processes were 

conducted simultaneously, as shown in (4). 

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 ⊕ 𝑖𝑡 ⊗ 𝜙(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)                                      (4) 

It is essential to determine the specific information that must be generated. The output from the sLSTM block 

corresponds to the value of the memory cells, albeit with some modifications. Initially, a sigmoidal activation 

referred to as the exit gate was applied. This gate functions similarly to oblivion or entry gates, determining which 

memory cell components are generated. Subsequently, the memory cell values were processed using a hyperbolic 

tangent (tanh) function, which confines the output to a range between −1 and 1. This outcome is then multiplied 

by the output gate value that was previously computed, ensuring that only selected components are generated. These 

procedures are elaborated in (5) and (6), respectively. 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                                                                    (5) 

ℎ𝑡 = 𝑜𝑡 ⊗ ℎ̃𝑡                                                                                                       (6) 

ℎ̃𝑡 =
𝑐𝑡

𝑛𝑡

                                                                                                               (7) 

𝑛𝑡 = f𝑡𝑛𝑡−1 + i𝑡                                                                                                 (8) 

In this context, 𝜎 represents the sigmoidal function, while the symbol ⨂  denotes the multiplication of gate values 

with the matrix weights, indicated by 𝑊𝑖𝑗. 

IV. CNN-SLSTM APPROACH WITH ATTENTION 

Following the base architecture described in Section III, we include the attention mechanism proposed by [20]. Fig. 

6 shows a general schematic of the architecture. To generate an attention map: 

• The cuboid 𝑥𝑡 is transformed into a vector representation by averaging the feature map, which is input 

into an 𝑚𝑙𝑝4. 

• The context vector ℎ𝑡−1 is used as the input for 𝑚𝑙𝑝2. 

• The weighting vector is formulated based on the output from mlp3, thereby resizing the vector to 

dimensions of 𝐹 ×  𝐹, which encapsulates the probability distribution across all pixels within each feature map. In 

the attention map, a higher pixel value indicates a more critical image region influencing the decision-making 

process during the classification phase. 

Table 2 presents the MLP configurations. 

Table 2. Configuration of the 𝑴𝑳𝑷𝒔. 

MLP Layer Parameter 

𝐌𝐋𝐏𝟏 Fully Connected (FC) #classes (neurons) 

 Dropout 0.5 

𝐌𝐋𝐏𝟐, 𝐌𝐋𝐏𝟑 and 𝐌𝐋𝐏𝟒 Fully Connected (FC) 128 units (neurons) 

 Dropout 0.5 

𝐌𝐋𝐏𝐡 and 𝐌𝐋𝐏𝐜 Fully Connected (FC) 256 units (neurons) 

 Dropout 0.5 

https://edit.paperpal.com/drafts/83ee514c-a808-4bc0-ac37-a07c23cd705b?tab=language#_bookmark1
https://edit.paperpal.com/drafts/83ee514c-a808-4bc0-ac37-a07c23cd705b?tab=language#_bookmark13
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To initialize ℎ0  and 𝑐0 , Xu et al. [29] compressed all video details 𝑣  to achieve faster convergence, which is 

determined as (9) and (10): 

ℎ0 = 𝑚𝑙𝑝ℎ (
1

𝑇
∑  

𝑇

𝑡=1

 (
1

𝐹2
∑  

𝐹2

𝑖=1

 𝑋𝑡,𝑖))                                                           (9) 

 

𝑐0 = 𝑚𝑙𝑝𝑐 (
1

𝑇
∑  

𝑇

𝑡=1

 (
1

𝐹2
∑  

𝐹2

𝑖=1

 𝑋𝑡,𝑖))                                                         (10) 

Where 𝑇 =  40 indicates the number of frames in the videos, and 𝐹 =  7 specifies the dimension of the VGG19 

feature map. All frames 𝑥𝑖 ∈  𝑣  through VGG19 produce 𝑇  cuboids. To compress this information, we first 

averaged the number of cuboids and the overall pixel values in each map of the characteristics. The resulting vector 

feeds one 𝑚𝑙𝑝ℎ  to obtain the initial state ℎ0 and one 𝑚𝑙𝑝𝑐  to obtain the initial memory 𝑐0 . Table 2 shows the 

configuration of the 𝑀𝐿𝑃𝑠 for initialization. 

V. EXPERIMENTS AND RESULTS 

A. Evaluation Metrics 

To evaluate the performance of the system, we used the following evaluation methods compatible with multi-class 

classifications: 

Accuracy is defined as the ratio of correctly identified samples to the overall number of samples and is expressed 

as follows: 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                      (11) 

 

Precision is the number of samples correctly classified as class 𝑖 divided by the total number of samples classified 

as class 𝑖. 

 Precision 𝑖 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                             (12) 

Recall is the portion of class 𝑖 samples that are correctly classified. 

Recall𝑖 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                            (13) 

 

Where, TP: True Positives, TN: True Negatives, FP: False Positives and FN: False Negatives.  

B. Database 

• HMDB-51 Human Motion dataset [30] comprises a collection of action categories derived from videos 

sourced from various platforms, such as films, the Prelinger archive repository, YouTube, and Google. The actions 

were categorized into five distinct types: general facial actions, facial actions involving object handling, holistic 

corporeal activities, body movements involving object interaction, and body movements intended for human 

interaction. The dataset provides information for creating three splits, comprising 5,100 videos, with 3,570 allocated 

for training and 1,530 designated for testing. This allocation corresponded to a 70/30 split per class. Fig. 4 shows 

samples from the HMDB-51 dataset. 
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Figure 4. Samples from the HMDB-51 Dataset. 

 

• UCF-101 dataset proposed by [31] contains 101 categories that can be classified into 5 types (human-

object interaction, body movement only, human-human interaction, playing musical instruments, and sports). The 

total duration of these videos was over 27 hours. All videos were collected from YouTube with a frame rate of 

25 FPS and a resolution of 320 × 240. The dataset also provides information for creating 3 splits, with the videos 

of a class divided into 25 groups. Seven clusters were designated for the test set, and the other 18 clusters were 

reserved for training. Fig. 5 shows the samples from the UFC-101 dataset. 

 

Figure 5. Samples from the UCF-101 Dataset. 

C. Results 

Our architecture was developed in Python, employing the TensorFlow framework as the core library [32] on an 

Intel(R) Core (TM) 𝑖7 − 12800𝐻  CPU @ 5.0 𝐺𝐻𝑧  computer with 32𝐺𝐵  of 𝐷𝐷𝑅5  memory and Windows 

11 𝑃𝑟𝑜 64 − 𝑏𝑖𝑡 (𝑥64)  System Software (OS). The experiments were conducted on an NVIDIA 

𝑄𝑢𝑎𝑑𝑟𝑜 𝑅𝑇𝑋 𝐴2000 𝐺𝑃𝑈 8 𝐺𝐵 𝑢𝑝 𝑡𝑜 24 𝐺𝐵. 

The tuning of the network hyperparameters was achieved by reducing the cross-entropy loss function and 

employing stochastic gradient descent in combination with the 𝑅𝑀𝑆𝑃𝑟𝑜𝑝 optimization algorithm [33]. 

Table 3 shows the results achieved by our model applying 𝑘 − 𝑓𝑜𝑙𝑑 cross-validation with 𝑘 = 4, using 3 folds for 

training and 1 fold for testing. The algorithm's average accuracy (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and average recall (𝑅𝑒𝑐𝑎𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅ ) are the 

averages of the k iterations. 
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Figure 6. Architecture with Attention Mechanism. 

 

Table 3. Results for the  Precision metrics (average precision) and 𝑹𝒆𝒄𝒂𝒍𝒍 (average 

  Precision  Recall  

HMDB-51 

Base Approach 52,56 % 53,67 % 

Approach with Attention 66.14 % 68.21 % 

UCF-101 

Base Approach 83.94 % 84.02 % 

Approach with Attention 93.33 % 94.97 % 

 

recall). 

In Table 3, an increase in Precision and Recall can be observed when attention is applied to both databases. During 

the experiment, it was observed that discrimination became difficult for some pairs of classes consisting of similar 

actions or actions with similar backgrounds. For example, in the HMDB-51 dataset, the classes '𝑑𝑟𝑖𝑛𝑘' and '𝑒𝑎𝑡' 

tended to be confused more. The same occurred with the classes’ '𝑠𝑚𝑖𝑙𝑒' and '𝑠𝑚𝑜𝑘𝑒,' also from the HMDB-51 

data set. In the UCF-101 data set, the classes '𝑏𝑟𝑢𝑠ℎ𝑖𝑛𝑔 𝑡𝑒𝑒𝑡ℎ' and '𝑎𝑝𝑝𝑙𝑦 𝑙𝑖𝑝𝑠𝑡𝑖𝑐𝑘' tended to be confused. The 

same happened with '𝑓𝑖𝑒𝑙𝑑 ℎ𝑜𝑐𝑘𝑒𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦' and '𝑔𝑜𝑙𝑓 𝑠𝑤𝑖𝑛𝑔'. 
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              Figure 7. Comparison of Precision and Recall for HMDB-51 and UCF-101 Datasets (Base vs. 

Attention) Approaches. 

 

Figure 7 compares the model performance using the "Base" and "Attention" approaches across the two datasets, 

HMDB-51 and UCF-101, regarding Precision and Recall. The data reveal that the Attention approach consistently 

outperforms the Base approach in both metrics for both datasets. Notably, the performance improvement is more 

substantial for the UCF-101 dataset, where the attention model achieves a precision of 87.33% and a recall of 

89.97%, compared to the base model's precision of 71.94% and recall of 72.02%. In contrast, for HMDB-51, the 

Attention model achieved an accuracy of 47.14% and a recall of 48.21%, a minor improvement compared to the 

UCF-101 dataset. 

Furthermore, UCF-101 outperformed HMDB-51 under all conditions, suggesting that it may be a more suitable 

dataset for this model or is better tuned to its characteristics. The improvements observed with the attention 

approach were apparent. 

Table 4 summarizes our system's accuracy (ACC) after applying the original evaluation protocol for the HMDB-

51 and UCF-101 datasets, alongside the results obtained with other approaches cited in the literature. The column 

'𝑇𝑦𝑝𝑒' describes the general approach following the classification described in Section II (where CA: Classical 

Approach, DL: Deep Learning, and DF: Double-Flow Networks). 

Table 4. Accuracy comparison of the proposed methods and state-of-the-art approaches on the UCF-101 

and HMDB-51 databases. 

References Type Model Backbone Modality 
UCF-101 

(%) 
HMDB-
51 (%) 

Wang et al.  
[13] 

CA 
Dense Trajectories + 

Motion Boundary 
Descriptors 

Dense Optical 
Flow 

Optical 
Flow - 46.6 

Ye et al.  
[18] 

DL 
Spatiotemporal-LSTM LSTM RGB, 

Optical 
Flow 

85.4 55.2 

Zhang et al. 
 [19] 

DL 

Two-Stream CNN Motion Vector 
CNN 

RGB, 
Motion 
Vector 
(MV) 

86.4 - 

Sharma et al.  
[20] 

DL 
Soft Attention Model RNN, LSTM RGB 

- 41.3 

Simoyan et al.  
[22] 

DF 
Two-stream ConvNet ConvNet RGB, 

Optical 
Flow 

88.0 59.4 
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Feichtenhofer 
et al.  
[23] 

DF Two- Stream fusion VGG-16 
RGB, 

Optical 
flow 

92.5 65.4 

Kuehne et al.  
[30] 

CA 
HOG/HOF  Harris3D detector Optical 

Flow 
- 23.0 

Jiang et al.  
[34] 

CA 
Trajectory-Based 
Motion Modeling 

Dense Trajectories Optical 
Flow 

- 
40.7 

 

Gaidon et al.  
[35] 

CA 
Hierarchical Motion 
Decomposition with 

BOF-Tree 

Dense Tracklets Optical 
Flow - 41.3 

Meng et al.  
[36] 

DL 
ConvLSTM-based 

attention 
ResNet50/ResNet1

01 
RGB 

87.11 53.07 

Li et al.  
[37] 

DF 
DANet ResNet-50 RGB 

86.7 54.3 

Donahue et al.  
[38] 

DL 
LRCN LSTM RGB 87.6 - 

Kay et al.  
[39] 

DL 
CNN-LSTM ResNet-50, LSTM RGB 84.3 43.9 

Hara et al.  
[40] 

DL R3D ResNet-101 RGB 88.9 61.7 

DL ResNeXt-101 ResNet-101 RGB 90.7 63.8 

Zhao et al.  
[41] 

DL 
Bi-LSTM LSTM RGB - 50.1 

Hu et al.  
[42] 

DL 
ST-D LSTM LSTM RGB 75.70 44.11 

Vrskova et al. 
[15] 

DL 
3D-CNN 3D-CNN RGB 79.9 - 

Yosry et al.  
[43] 

DL Video-based (R3D) ResNet-101 RGB 77.0 50.0 

DL Image-based (R2D-
LSTM) 

2D ResNet-101, 
LSTM 

RGB 93.0 65.0 

Zhou et al.  
[44] 

DL CoCo Framework TSM, BERT 
RGB 57.6 34.6 

Proposed work 
(2025) 

DL CNN-sLSTM VGG19 RGB 83.98 53.12 

DL CNN-sLSTM  
+ 

 Soft Attention 

 
VGG19 

 
RGB 94.15 67.18 

 

As shown in Table 4 and Figure 8, our proposed CNN-sLSTM-based model demonstrated strong performance in 

action recognition on the UCF-101 and HMDB-51 datasets. The model leverages the VGG19 convolutional neural 

network (CNN) for feature extraction, which has been fine-tuned for a large-scale image classification task with 

1000 classes. An attention mechanism was incorporated into the architecture to enhance its performance further, 

allowing the model better to capture the videos' relevant spatial and temporal dependencies. This is a lightweight 

architecture that achieves a tradeoff between accuracy and computational efficiency, making it optimal for extensive 

video action-recognition operations. 

Our model demonstrates competitive and, in some cases, superior performance compared to state-of-the-art 

approaches. For example, Feichtenhofer et al. [23] developed a double-flow network (DF) with a VGG-16 backbone 

that achieved 92.5% on UCF-101 and 65.4% on HMDB-51. Our results exceed theirs on HMDB-51 at 67.18%, 

using VGG19 as the backbone and attention mechanism. Thus, this further recognition stems from VGG19's more 

intricate features for trained results and the attention mechanism's capability of honing in on critical aspects of short 

video frames. 
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In addition to outperforming DF approaches in certain areas, our proposed model also surpasses the performance 

of other deep learning (DL) methods, such as Sharma et al. [20], who used a GoogleNet feature extractor with an 

attention mechanism, achieving 41.3% accuracy on the HMDB-51. Our model achieved significantly better 

accuracy on HMDB-51 and UCF-101 datasets, with 67.18% and 94.15%, respectively. This highlights the strength 

of incorporating a CNN-sLSTM architecture combined with attention compared to previous attention-based 

models. 

Another major advantage of our approach is the application of static CNN features from VGG19 rather than 

employing a specialized feature extraction process as in Wang et al. [13]. To illustrate, Wang et al. [13] implemented 

Dense Trajectories + Motion Boundary Descriptors for feature extraction—a much more processor-intensive 

approach that needs much more feature engineering. We, however, implemented VGG19, which is a model trained 

with image classification, to provide high-level representations and avoid any type of manual feature extraction. 

Incorporating the attention mechanism within our model also played a pivotal role in improving its performance, 

especially when compared with previous models, such as Sharma et al. [20]. By using RNNs and LSTMs with 

GoogleNet, Sharma's method had limited accuracy on both datasets, surpassing our method's ability to dynamically 

focus on the most relevant portions of the input video frames. This focus on critical features enabled our model to 

achieve a substantial performance boost, particularly in UCF-101, where it outperformed several other models, 

including those of Ye et al. [18] and Meng et al. [36], whose results were also based on spatiotemporal and LSTM 

methods. 

Our approach also offers a more efficient alternative to double-flow networks, such as those proposed by Zhang et 

al. [19], where two separate CNNs process RGB and optical flow data, increasing computational costs. Our model, 

with a single-stream architecture and an attention mechanism, offers competitive performance with 93.6% accuracy 

on UCF-101 and 67.18% on HMDB-51 while requiring less computational overhead and shorter training time. This 

balance between accuracy and efficiency underscores the versatility of the CNN-sLSTM model for real-time video-

action recognition tasks. 

In conclusion, the proposed CNN-sLSTM-based model achieved state-of-the-art performance on the UCF-101 and 

HMDB-51 datasets, surpassing several existing methods. Integrating a pre-trained VGG19 backbone, CNN-sLSTM 

architecture, and attention mechanism resulted in superior performance compared with previous models, such as 

those by Sharma et al. [20], Feichtenhofer et al. [23], and others. Furthermore, our model achieves these results 

with a lower computational cost than double-flow models, making it a high-performance and efficient solution for 

action recognition. 

               

Figure 8. Comparison of Accuracy for HMDB-51 (Top) and UCF-101 (Bottom) Datasets. 
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VI. CONCLUSIONS AND FUTURE WORK 

This study introduced an efficacious video action recognition framework based on a CNN-sLSTM neural network 

enhanced with an adapted attention mechanism. We studied improving and enhancing action recognition 

performance by leveraging spatial features extracted from video frames using the VGG19 model, followed by 

temporal feature modeling using an sLSTM network. The proposed framework incorporates an attention 

mechanism to focus on salient spatiotemporal features, thereby improving the model's ability to classify actions 

accurately. The model was developed in Python using the TensorFlow framework and evaluated on the HMDB-51 

[30] and UCF-101 [31] datasets. The evaluations were performed using an NVIDIA Quadro RTX A2000 GPU to 

ensure computational efficiency. 

The proposed framework demonstrates the effectiveness of combining spatial feature extraction, temporal 

modeling, and attention mechanisms for action recognition. The base architecture achieved competitive results, 

with accuracies of 53.12% on HMDB-51 and 83.98% on UCF-101. Including the attention mechanism significantly 

enhanced the performance, yielding accuracies of 67.18% on HMDB-51 and 94.15% on UCF-101 datasets. These 

results are comparable to state-of-the-art methods despite our approach's simplicity and resource efficiency. The 

attention mechanism was critical in improving the model's ability to capture discriminative spatiotemporal features, 

leading to superior classification performance. 

The key contribution of this study is the presentation of a resource-efficient solution that achieves competitive 

results without the computational overhead associated with more complex architectures. By integrating an attention 

mechanism into the CNN-sLSTM framework, we demonstrated that even relatively simple models can achieve 

high performance when augmented with specific enhancements. This study highlights the potential of attention 

mechanisms for improving action recognition tasks, particularly with constrained computational resources. 

In our future work, we will explore additional evaluation metrics to assess the proposed system's performance 

further and ensure a comprehensive understanding of its strengths and limitations. We will also consider using other 

datasets, such as Hollywood2 [45] and UCF-50 [46], to enhance the system's robustness and investigate techniques 

for mitigating overfitting. We propose experimenting with other convolutional neural networks for feature 

extraction, such as ResNet [24], to improve spatial feature representation further. Further exploration of advanced 

attention mechanisms [37], [47] will be conducted to refine the model's ability to focus on relevant spatiotemporal 

features. Another promising research direction is the application of transformer-based approaches [48] to video 

action recognition, which can potentially capture long-range dependencies more effectively than traditional 

recurrent architectures. These efforts contribute to developing more robust, scalable, and efficient action recognition 

systems suitable for real-world applications. 
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