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Abstract: - Action recognition in videos has become crucial in computer vision because of its diverse applications, such as multimedia
indexing and surveillance in public environments. The incorporation of attention mechanisms into deep learning has gained considerable
attention. This approach aims to emulate the human visual processing system by enabling models to focus on pertinent aspects of a scene
and derive significant insights. This study introduces an advanced soft attention mechanism designed to enhance the CNN-sLSTM
architecture for recognizing human actions in videos. We used the VGG19 convolutional neural network to extract spatial features from
the video frames, whereas the sSLSTM network models the temporal relationships between frames. The performance of our model was
assessed using two widely used datasets, HMDB-51 and UCF-101, with precision as the key evaluation metric. Our results indicate
substantial improvements, achieving accuracy scores of 53.12% (base approach) and 67.18% (with attention) for HMDB-51 and 83.98%
(base approach) and 94.15% (with attention) for UCF-101. These results underscore the effectiveness of the proposed soft attention
mechanism in improving the performance of video action recognition models.

Keywords: Action recognition, Soft Attention Mechanism (SAM), Convolutional Neural Network (CNN), Scalar Long Short-Term
Memory Neural Networks (sSLSTM), VGG19.

I. INTRODUCTION

In human action recognition (HAR) systems, the a posteriori probability P(Y]X) is usually modelled to build a
relationship between a sequence of observations X and a specific Y, therefore tying the inputs X to their
corresponding class labels Y. The objective was to identify the action being performed from a set of potential actions
depicted in the video of an individual. While humans can effortlessly recognize specific actions using visual cues
alone, developing an automated solution poses significant challenges owing to various factors. These factors include
substantial variability among individuals regarding physical appearance, such as body structure and clothing, and
differences in how actions are performed. Furthermore, the environment where the action occurs often involves
complex conditions, including crowded settings, shadows, lighting changes, occlusions, and other variables, such
as the angle of view and the subject's distance from the camera. Human actions encompass both spatial and temporal
dimensions that are highly variable, resulting in the same action never being performed identically. The work of
Dutta et al. is highly recommended for a comprehensive examination of the current challenges in this domain [1].

Human Activity Recognition (HAR) is a subject of significant importance in the fields of computer vision and
pattern recognition, as the ability to automatically detect actions performed in a recording can serve as a valuable
resource for various applications:

. Evaluating surveillance video footage [2] is a common scenario. Numerous security systems rely on the
data collected from an extensive array of cameras. When the number of cameras is substantial, manual detection of
critical events within the videos becomes challenging or even impractical.

. A practical application discussed in the previous section is the deployment of video comprehension
techniques to supervise and care for elderly individuals and children in confined settings such as private residences
and intelligent healthcare facilities.

. The monitoring and automatic recognition of daily activities can significantly aid residents and facilitate
the generation of reports regarding their functional capacities and health status [3].
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. Another application generates concise video summaries by selecting significant scenes from original
content. This process entails a content-based search within the video databases. The ability to automatically generate
textual descriptions of a given video obviates the need for manual annotations, and is crucial for developing more
valuable and informative databases.

. Human-computer interaction [4] represents another domain that significantly benefits from advancements
in action recognition techniques. These techniques can be employed to develop interfaces for individuals with
reduced mobility, enhance their interactions with computers, and facilitate communication with others.

. Another example is the progression of video games [5], which permit users to engage with a console or
computer without needing a physical device.

o Behavior-based biometrics has recently garnered significant attention. In contrast to traditional biometric
methods, such as fingerprint analysis, behavior-based techniques collect identification data without disrupting an
individual's activity. A notable example of this approach is the identification of individuals based on their gait.

) A related application is the development of tools that automatically guide patients in rehabilitation with
motor problems.

In summary, emerging advancements in video action recognition techniques are expected to capture significant
interest in various applications.

This study aimed to establish a system for identifying actions in video sequences. To accomplish this objective, the
following approach is recommended:

(1) The CNN-sLSTM model uses a convolutional neural network (CNN) to extract video features, whereas an
sLSTM neural network categorizes videos into specific classes. (2) An attention mechanism was included in this
study. The remainder of this paper is organized as follows: Section Il presents a summary of the state of the art of
the problem in question; Section 111 describes the overall basic architecture of the model; and Section 1V presents
the attention mechanism of the model. Section V explains the datasets used, the evaluation approach, the
experiments conducted, and the results obtained. Section VI concludes the study by summarizing the results and
proposing directions for future research.

Il. LITERATURE REVIEW

The approaches applied in the literature to address the challenge of recognizing human actions can be classified
into three groups:

A. Classical Approaches
Traditional methodologies focus on extracting descriptors that encapsulate video frames' visual features and motion.

. Methods utilizing spatio-temporal points of interest (STIP) effectively capture video points within the
spatio-temporal domain. A point of interest can be reliably identified by an STIP-based detector, such as a corner
point or an isolated point where the intensity reaches a maximum or minimum, the endpoint of a line, or the point
on a curve where the curvature is at its peak. Liu et al. [6] extend the Harris edge detector [7] to develop a 3D-
Harris detector. STIPs are invariant to translation and scale but not to rotation.

. Trajectory-based methods utilize the paths of tracked feature points to represent the actions. Labana et al.
[8] introduced a dense trajectory approach. Initially, clouds of characteristic points are sampled from each video
frame, and the movement data is determined by tracking these features across frames applying an optical flow
method. The resulting trajectories were used to represent the videos. In this research domain, compensating for
camera movement by aligning characteristic points between frames using accelerated robust function descriptors
(SURF [9]) and integrating them with other local descriptors, such as the histogram of oriented gradients (HOG
[10]), histogram of optical flow (HOF [11]), and motion boundary histogram (MBH [12]), has yielded highly
favorable results [13] in controlled environments.
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B. Deep Approaches

Applying deep learning to computer vision challenges has yielded remarkable outcomes in recent years. The
primary achievement of neural networks (ANNS) is their capacity to approximate any continuous function, given a
sufficient number of neurons [14]. Multilayered neural networks must integrate an adequate number of layers and
neurons to learn meaningful input-output mappings efficiently. They obtain hierarchical features from unprocessed
information with ascending complexity levels before the classification stage.

Convolutional Neural Networks (CNNs) were created to handle spatial data. Although they succeeded in image
classification, they overlooked the temporal aspects of spatiotemporal data, such as videos. In particular, 3D CNNs
are an extension of CNNs in the time domain that can capture features in a frame and the temporal evolution between
consecutive frames. Vrskova et al. [15] propose a 3D-CNN approach, extracting data characteristics in spatial and
temporal dimensions, thus capturing motion information in video transmissions. This architecture generates
different feature maps from the features obtained through convolution and downsampling from each channel of
successive video frames independently, with the final feature being formed from all channels. Experimental results
show a considerable increase in performance from the modified models over the 2D-CNN architecture and other
classic methods. However, it's important to acknowledge that the expectation of a universal feature map is
problematic since each convolution is dependent upon a predetermined number of successive frames captured.

Recurrent Neural Networks (RNN) are typically trained to understand complex temporal dynamics, meaning RNN
architectures excel at tasks involving sequential data, such as word generation, speech recognition, and human
action recognition. Human actions are a series of complex movements and motor acts which, at their core, can be
considered temporal dynamics. Thus, it's logical to develop a way through RNN architectures capable of
understanding such sequential data. Moreover, specific scalar versions can prove even more valuable. For example,
the Scalar Long Short-Term Memory Neural Networks (SLSTM) [16], [17] was designed to combat some inherent
problems with basic RNNSs, such as the vanishing gradient. The SLSTM is a memory cell that learns internal states
through the storage, adjustment, and retrieval of information over time; thus, it excels at retaining and predicting
information over long time dependencies. Therefore, using the sSLSTM would be beneficial in any scenario where
long-term temporal dynamics need to be understood and predicted, like with human action recognition.

Ye et al. [18] implement a hybrid model combining 3D convolutional networks to extract spatiotemporal
characteristics from recording content with an Long short-term memory network that simplifies the temporal
sequence into the video's ultimate feature vector.

Zhang et al. [19] use the recording sequence's velocity vector rather than the optical flow stream for online human
action recognition to reduce processing time for faster, real-time results.

Sharma et al. [20] propose an LSTM neural network with an attention mechanism that allows each video frame to
focus on a region most distinctive for the task. Learning such weights is a part of model training.

C. Dual-Flow Approaches

Ibrayev et al. [21] propose the dual-stream hypothesis, which posits that the human visual cortex comprises two
distinct pathways: the ventral stream, responsible for object recognition, and the dorsal stream, which is involved
in the perception of movement.

Simonyan et al. [22] present a network of two flows containing a spatial and temporal network, exploiting the
ImageNet dataset for pre-training and optical flow calculation to capture motion information explicitly.

Feichtenhofer et al. [23] implement a two-stream network with ResNet architecture [24] and additional connections
between streams [25]. The additional two-stream approaches include Time Segment Networks [26], Action
Transformations [27], and Convolutional Fusion [28].

I1l. CNN -SsLSTM BASE APPROACH

Consider v = {x, x5, ..., X, } represent a video consisting of a sequence of frames x; with i = 1,...,n,. Fig. 1
illustrates a foundational Human Activity Recognition (HAR) system, which begins with the input phase, during
which the video is normalized to 40 frames. In the Convolutional Neural Network (CNN) phase, a pre-trained
VGG19 model was employed to extract the video features, resulting in feature dimensions of 40 x 25088.
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Subsequently, the Scalar Long Short-Term Memory (SLSTM) phase is implemented, accompanied by a dense layer
containing one node per class for the final classification.

X,
Sequence Input »  Encoder 3x3x7 Flatten
xf
MILP, units sLSTM sLSTM 25088
Numbers Softmax Classification Output
classes

Figure 1. Proposed CNN-sLSTM Base Architecture.

The color blocks that make up the CNN-sLSTM base architecture, shown in Fig. 1, are as follows:

Encoder: We used the VGG19 convolutional architecture proposed by [22]. For each x; € v, we encode the frame
in a cuboid X, of size 7 x 7 x 512, resulting from the subsampling layer of VGG19, as shown in Fig. 2.

SLSTM: As proposed by [16], SLSTM is the natural behavior of remembering information over long periods. The
inputs for a specific time t are frame x,, previous state h,_,, and prior memory c;_;. The outputs are the present
state h, and memory c;.

MLP1: The multilayer perception comprises three or more layers: an input layer, an output layer, and the remaining
intermediate layers, called hidden layers. The details of the classification stage are presented in Table 2 (first row
of the table).

. Indicates output dimension.

It should be noted that the weights associated with the SLSTM, such as the MLP, are part of the architecture training.

Figure 2. lllustration of the VGG19 Architecture.

A. Extraction of Features

CNNs are constructed from a sequential set of layers that process input data. Each comprises computational modules
that function based on the results of the previous layer. The most commonly applied layers are as follows: (a)
convolutional layers, which employ k filters (or kernels) to generate k activation maps. (b) Subsampling layer: In
most cases, a max-pooling operation is applied to each feature map, which systematically decreases the spatial
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dimensions of the representation and the number of weights that require training. (c) Dense layer: This layer consists
of fully connected neurons. The features derived from the training dataset were used to classify the input image into
one of the predefined categories. The VGG19 convolutional architecture, as introduced by [22], achieved
outstanding performance in classification and localization tasks during the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC-2014). Table 1 lists the layers comprising this architecture. The first column
specifies the layer number and type of operation, such as 2 x Conv for Convolution, Max Pool for Max Pooling,
and FC for Fully Connected. The second column denotes the number of the feature maps. The third column presents
the sizes of the output features of each layer. The fourth column lists the kernel and stride architecture parameters.

Table 1. Implementation of VGG using the pre-trained model.

Layer Feature Size Kernel Stride Activation
map
Input Image 1 224 X 224 X 3 - - -
1 2 x Conv2D 64 224 X 224 X 64 3x3 1 ReLU
MaxPooling2D 64 112 x 112 X 64 2%X2 2 -
2 2 x Conv2D 128 112 x 112 x 128 3x3 1 ReLU
MaxPooling2D 128 56 X 56 x 128 3x3 2 -
3 4 x Conv2D 256 56 X 56 x 256 3x3 1 ReLU
MaxPooling2D 256 28 X 28 x 256 3x3 2 -
4 4 x Conv2D 512 28 x 28 x 512 3x3 1 ReLU
MaxPooling2D 512 14 x 14 x 512 3x3 2 -
5 4 x Conv2D 512 14 X 14 x 512 3x3 1 ReLU
MaxPooling2D 512 7 X7 %512 3x3 2 -
6 Flatten - 25088 - - -
7 FC - 4096 - - ReLU
8 FC - 4096 - - ReLU
Output FC - 1000 - - Softmax

For each x; € v, we encode the frame to a cuboid of shape X; of 7 X 7 x 512, resulting in the subsampling layer
of the VGG19.

B. Classification

The sLSTM networks introduced by [16], [17] are characterized by their ability to retain information over long
periods. Fig. 3 shows the fundamental configuration of the SLSTM unit. At any given time t, the inputs consist of
the frame x;, the preceding output h,_,, and the preceding memory c;_,. The results produced are the present
output h, and the memory c;.
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The Scalar Long Short-Term Memory (SLSTM) network can add or remove information from its memory cell using
gates. These gates enable the system to selectively transmit information, update the memory cells, or release
information.

The first step in the SLSTM is to decide what information will be retained in the memaory cell. This decision is made
by the forgetting gate, which at time t looks at the output of the memory block at time t — 1, ht, in the input
sequence at time t, x,, and in the state of the memory cell, c,_,. Equation (1) shows how the gate of oblivion
calculates its value:

fr = c(Wypxe + Wirhi_q + by) ¢S]

The following step involves selecting the information to be integrated into memory cells. This is accomplished
through a two-step process: initially, the input to the neural network and the output from the SLSTM block at time
t — 1 are analyzed to determine the vector that refreshes the memory cell. Subsequently, the input gate is
computed, which functions similarly to the forget gate; however, in this context, it regulates the volume of new
information permitted to enter the memory cells. These computations are detailed in (2) and (3), respectively.

ze = ¢(Wyzxe + Wiyzhe 4 + by) (2)
iy = exp(Wyxy + Wihihe_1 + by) 3)
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Figure 3. The structure of the 2 deep learning models:

(a) The basic unit of LSTM. (b) The basic unit of SLSTM.
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After computing all the required values, the components necessary for updating the memory cell were ready,
enabling the process to continue. Initially, the forget gate multiplies the existing value of the memory cell,
effectively discarding information that the forget gate determines to be redundant. Subsequently, the integration of
newly scaled information, as the input gate dictates, allows the memory cell to be updated. These processes were
conducted simultaneously, as shown in (4).

et = ft @ croq D iy @ dp(Wyexy + Wychey + be) )]

It is essential to determine the specific information that must be generated. The output from the sLSTM block
corresponds to the value of the memory cells, albeit with some modifications. Initially, a sigmoidal activation
referred to as the exit gate was applied. This gate functions similarly to oblivion or entry gates, determining which
memory cell components are generated. Subsequently, the memory cell values were processed using a hyperbolic
tangent (tanh) function, which confines the output to a range between —1 and 1. This outcome is then multiplied
by the output gate value that was previously computed, ensuring that only selected components are generated. These
procedures are elaborated in (5) and (6), respectively.

0 = 0(Wyoxe + Wiohe—q + b,) 5)
he =0 ® Flt (6)
fo= 2t 7

= @
ne ="fneq +i 38

In this context, o represents the sigmoidal function, while the symbol @ denotes the multiplication of gate values
with the matrix weights, indicated by W;;.

IV. CNN-SLSTM APPROACH WITH ATTENTION

Following the base architecture described in Section 111, we include the attention mechanism proposed by [20]. Fig.
6 shows a general schematic of the architecture. To generate an attention map:

. The cuboid x; is transformed into a vector representation by averaging the feature map, which is input
into an mlp4.

. The context vector h,_, is used as the input for mip2.

. The weighting vector is formulated based on the output from mlp3, thereby resizing the vector to

dimensions of F x F, which encapsulates the probability distribution across all pixels within each feature map. In
the attention map, a higher pixel value indicates a more critical image region influencing the decision-making
process during the classification phase.

Table 2 presents the MLP configurations.
Table 2. Configuration of the MLP.

MLP Layer Parameter
MLP, Fully Connected (FC) #classes (neurons)
Dropout 0.5
MLP,, MLP; and MLP, Fully Connected (FC) 128 units (neurons)
Dropout 0.5
MLP;, and MLP, Fully Connected (FC) 256 units (neurons)
Dropout 0.5
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To initialize hy and ¢y, Xu et al. [29] compressed all video details v to achieve faster convergence, which is
determined as (9) and (10):

T F?
1 1
ho=mipn| =) )Xo ©
t=1 i=1
T F?
1 1
co=mipe| 2D 75 Xui (10)
t=1 i=1

Where T = 40 indicates the number of frames in the videos, and F = 7 specifies the dimension of the VGG19
feature map. All frames x; € v through VGG19 produce T cuboids. To compress this information, we first
averaged the number of cuboids and the overall pixel values in each map of the characteristics. The resulting vector
feeds one mlp, to obtain the initial state h, and one mlp, to obtain the initial memory c, . Table 2 shows the
configuration of the MLP, for initialization.

V. EXPERIMENTS AND RESULTS
A. Evaluation Metrics

To evaluate the performance of the system, we used the following evaluation methods compatible with multi-class
classifications:

Accuracy is defined as the ratio of correctly identified samples to the overall number of samples and is expressed
as follows:

TP +TN
TP +TN + FP + FN

Accuracy =

(D

Precision is the number of samples correctly classified as class i divided by the total number of samples classified
as class i.

TP

Precision ; = TP+ FP (12)
Recall is the portion of class i samples that are correctly classified.
Recall; = L (13)
TP+ FN
Where, TP: True Positives, TN: True Negatives, FP: False Positives and FN: False Negatives.
B. Database
. HMDB-51 Human Motion dataset [30] comprises a collection of action categories derived from videos

sourced from various platforms, such as films, the Prelinger archive repository, YouTube, and Google. The actions
were categorized into five distinct types: general facial actions, facial actions involving object handling, holistic
corporeal activities, body movements involving object interaction, and body movements intended for human
interaction. The dataset provides information for creating three splits, comprising 5,100 videos, with 3,570 allocated
for training and 1,530 designated for testing. This allocation corresponded to a 70/30 split per class. Fig. 4 shows
samples from the HMDB-51 dataset.
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Figure 4. Samples from the HMDB-51 Dataset.

o UCF-101 dataset proposed by [31] contains 101 categories that can be classified into 5 types (human-
object interaction, body movement only, human-human interaction, playing musical instruments, and sports). The
total duration of these videos was over 27 hours. All videos were collected from YouTube with a frame rate of
25 FPS and a resolution of 320 x 240. The dataset also provides information for creating 3 splits, with the videos
of a class divided into 25 groups. Seven clusters were designated for the test set, and the other 18 clusters were
reserved for training. Fig. 5 shows the samples from the UFC-101 dataset.

‘. é\}iul:g
"{ml!;@!

Figure 5. Samples from the UCF-101 Dataset.

C. Results

Our architecture was developed in Python, employing the TensorFlow framework as the core library [32] on an
Intel(R) Core (TM) i7 —12800H CPU @ 5.0 GHz computer with 32GB of DDR5 memory and Windows
11 Pro 64 — bit (x64) System Software (OS). The experiments were conducted on an NVIDIA
Quadro RTX A2000 GPU 8 GB up to 24 GB.

The tuning of the network hyperparameters was achieved by reducing the cross-entropy loss function and
employing stochastic gradient descent in combination with the RMSProp optimization algorithm [33].

Table 3 shows the results achieved by our model applying k — fold cross-validation with k = 4, using 3 folds for
training and 1 fold for testing. The algorithm's average accuracy (Precitsion) and average recall (Recall ) are the
averages of the k iterations.
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Figure 6. Architecture with Attention Mechanism.

Table 3. Results for the Precision metrics (average precision) and Recall (average

Precision Recall

Base Approach 52,56 % 53,67 %
HMDB-51
Approach with Attention 66.14 % 68.21 %
Base Approach 83.94 % 84.02 %
UCF-101

Approach with Attention 93.33 % 94.97 %

recall).

In Table 3, an increase in Precision and Recall can be observed when attention is applied to both databases. During
the experiment, it was observed that discrimination became difficult for some pairs of classes consisting of similar
actions or actions with similar backgrounds. For example, in the HMDB-51 dataset, the classes 'drink' and 'eat’
tended to be confused more. The same occurred with the classes’ 'smile' and 'smoke," also from the HMDB-51
data set. In the UCF-101 data set, the classes 'brushing teeth' and 'apply lipstick' tended to be confused. The
same happened with 'field hockey penalty' and 'golf swing'.
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Figure 7. Comparison of Precision and Recall for HMDB-51 and UCF-101 Datasets (Base vs.
Attention) Approaches.

Figure 7 compares the model performance using the "Base™ and "Attention™” approaches across the two datasets,
HMDB-51 and UCF-101, regarding Precision and Recall. The data reveal that the Attention approach consistently
outperforms the Base approach in both metrics for both datasets. Notably, the performance improvement is more
substantial for the UCF-101 dataset, where the attention model achieves a precision of 87.33% and a recall of
89.97%, compared to the base model's precision of 71.94% and recall of 72.02%. In contrast, for HMDB-51, the
Attention model achieved an accuracy of 47.14% and a recall of 48.21%, a minor improvement compared to the

UCF-101 dataset.

Furthermore, UCF-101 outperformed HMDB-51 under all conditions, suggesting that it may be a more suitable
dataset for this model or is better tuned to its characteristics. The improvements observed with the attention

approach were apparent.

Table 4 summarizes our system's accuracy (ACC) after applying the original evaluation protocol for the HMDB-
51 and UCF-101 datasets, alongside the results obtained with other approaches cited in the literature. The column
'Type' describes the general approach following the classification described in Section Il (where CA: Classical
Approach, DL: Deep Learning, and DF: Double-Flow Networks).

Table 4. Accuracy comparison of the proposed methods and state-of-the-art approaches on the UCF-101
and HMDB-51 databases.

. UCF-101 HMDB-
References Type Model Backbone Modality (%) 51(%)
Wane et al Dense Trajectories + Dense Optical Optical
& : CA Motion Boundary Flow Flow - 46.6
[13] Descri
ptors
Spatiotemporal-LSTM LSTM RGB,
Ye[fg]al' DL Optical 85.4 55.2
Flow
Two-Stream CNN Motion Vector RGB,
Zhang et al. CNN Motion
[19] DL Vector 86.4 .
mMV)
Sharma et al. Soft Attention Model RNN, LSTM RGB
DL - 41.3
[20]
Simovan et al Two-stream ConvNet ConvNet RGB,
Y : DF Optical 88.0 59.4
[22]
Flow
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Feichtenhofer RGB,
et al. DF Two- Stream fusion VGG-16 Optical 92.5 65.4
[23] flow
Kuehne et al. HOG/HOF Harris3D detector Optical
CA - 23.0
[30] Flow
Jiang et al. CA Trajectory-Based Dense Trajectories Optical B 40.7
[34] Motion Modeling Flow
Gaidon et al Hierarchical Motion Dense Tracklets Optical
[35] ’ CA Decomposition with Flow - 41.3
35 BOF-Tree
Meng et al. DL ConvLSTM-based ResNet50/ResNet1 RGB 8711 53.07
[36] attention o1
Lietal. DF DANet ResNet-50 RGB 86.7 543
[37]
Dona[};‘ga etal. | DL LRCN LSTM RGB 87.6 -
Kaf’;;t] al. DL CNN-LSTM ResNet-50, LSTM RGB 84.3 43.9
Hara et al. DL R3D ResNet-101 RGB 88.9 61.7
[40] DL ResNeXt-101 ResNet-101 RGB 00.7 63.8
Zha[‘j‘f]t al. DL Bi-LSTM LSTM RGB - 50.1
H‘[l:zt]al' DL ST-D LSTM LSTM RGB 75.70 44.11
mG‘[)lvsa] etal. | DL 3D-CNN 3D-CNN RGB 79.9 -
DL Video-based (R3D) ResNet-101 RGB 77.0 50.0
Yosry et al.
[43] DL Image-based
ge-based (R2D- 2D ResNet-101,
LSTM) LSTM RGB 93.0 65.0
Zhou et al. DL CoCo Framework TSM, BERT RGB 57.6 34.6
[44]
DL CNN-sLSTM VGG19 RGB 83.98 53.12
Pro‘zzzezd §"°rk DL CNN-sLSTM
5 + VGG19 RGB 94.15 67.18
Soft Attention

As shown in Table 4 and Figure 8, our proposed CNN-sLSTM-based model demonstrated strong performance in
action recognition on the UCF-101 and HMDB-51 datasets. The model leverages the VGG19 convolutional neural
network (CNN) for feature extraction, which has been fine-tuned for a large-scale image classification task with
1000 classes. An attention mechanism was incorporated into the architecture to enhance its performance further,
allowing the model better to capture the videos' relevant spatial and temporal dependencies. This is a lightweight
architecture that achieves a tradeoff between accuracy and computational efficiency, making it optimal for extensive
video action-recognition operations.

Our model demonstrates competitive and, in some cases, superior performance compared to state-of-the-art
approaches. For example, Feichtenhofer et al. [23] developed a double-flow network (DF) with a VGG-16 backbone
that achieved 92.5% on UCF-101 and 65.4% on HMDB-51. Our results exceed theirs on HMDB-51 at 67.18%,
using VGG19 as the backbone and attention mechanism. Thus, this further recognition stems from VGG19's more
intricate features for trained results and the attention mechanism's capability of honing in on critical aspects of short
video frames.
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In addition to outperforming DF approaches in certain areas, our proposed model also surpasses the performance
of other deep learning (DL) methods, such as Sharma et al. [20], who used a GoogleNet feature extractor with an
attention mechanism, achieving 41.3% accuracy on the HMDB-51. Our model achieved significantly better
accuracy on HMDB-51 and UCF-101 datasets, with 67.18% and 94.15%, respectively. This highlights the strength
of incorporating a CNN-sLSTM architecture combined with attention compared to previous attention-based
models.

Another major advantage of our approach is the application of static CNN features from VGG19 rather than
employing a specialized feature extraction process as in Wang et al. [13]. To illustrate, Wang et al. [13] implemented
Dense Trajectories + Motion Boundary Descriptors for feature extraction—a much more processor-intensive
approach that needs much more feature engineering. We, however, implemented VGG19, which is a model trained
with image classification, to provide high-level representations and avoid any type of manual feature extraction.

Incorporating the attention mechanism within our model also played a pivotal role in improving its performance,
especially when compared with previous models, such as Sharma et al. [20]. By using RNNs and LSTMs with
GoogleNet, Sharma's method had limited accuracy on both datasets, surpassing our method's ability to dynamically
focus on the most relevant portions of the input video frames. This focus on critical features enabled our model to
achieve a substantial performance boost, particularly in UCF-101, where it outperformed several other models,
including those of Ye et al. [18] and Meng et al. [36], whose results were also based on spatiotemporal and LSTM
methods.

Our approach also offers a more efficient alternative to double-flow networks, such as those proposed by Zhang et
al. [19], where two separate CNNs process RGB and optical flow data, increasing computational costs. Our model,
with a single-stream architecture and an attention mechanism, offers competitive performance with 93.6% accuracy
on UCF-101 and 67.18% on HMDB-51 while requiring less computational overhead and shorter training time. This
balance between accuracy and efficiency underscores the versatility of the CNN-sLSTM model for real-time video-
action recognition tasks.

In conclusion, the proposed CNN-sLSTM-based model achieved state-of-the-art performance on the UCF-101 and
HMDB-51 datasets, surpassing several existing methods. Integrating a pre-trained VGG19 backbone, CNN-sLSTM
architecture, and attention mechanism resulted in superior performance compared with previous models, such as
those by Sharma et al. [20], Feichtenhofer et al. [23], and others. Furthermore, our model achieves these results
with a lower computational cost than double-flow models, making it a high-performance and efficient solution for
action recognition.

Accuracy (%)
8

Accuracy (%)

Figure 8. Comparison of Accuracy for HMDB-51 (Top) and UCF-101 (Bottom) Datasets.
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VI. CONCLUSIONS AND FUTURE WORK

This study introduced an efficacious video action recognition framework based on a CNN-sLSTM neural network
enhanced with an adapted attention mechanism. We studied improving and enhancing action recognition
performance by leveraging spatial features extracted from video frames using the VGG19 model, followed by
temporal feature modeling using an sLSTM network. The proposed framework incorporates an attention
mechanism to focus on salient spatiotemporal features, thereby improving the model's ability to classify actions
accurately. The model was developed in Python using the TensorFlow framework and evaluated on the HMDB-51
[30] and UCF-101 [31] datasets. The evaluations were performed using an NVIDIA Quadro RTX A2000 GPU to
ensure computational efficiency.

The proposed framework demonstrates the effectiveness of combining spatial feature extraction, temporal
modeling, and attention mechanisms for action recognition. The base architecture achieved competitive results,
with accuracies of 53.12% on HMDB-51 and 83.98% on UCF-101. Including the attention mechanism significantly
enhanced the performance, yielding accuracies of 67.18% on HMDB-51 and 94.15% on UCF-101 datasets. These
results are comparable to state-of-the-art methods despite our approach's simplicity and resource efficiency. The
attention mechanism was critical in improving the model's ability to capture discriminative spatiotemporal features,
leading to superior classification performance.

The key contribution of this study is the presentation of a resource-efficient solution that achieves competitive
results without the computational overhead associated with more complex architectures. By integrating an attention
mechanism into the CNN-sLSTM framework, we demonstrated that even relatively simple models can achieve
high performance when augmented with specific enhancements. This study highlights the potential of attention
mechanisms for improving action recognition tasks, particularly with constrained computational resources.

In our future work, we will explore additional evaluation metrics to assess the proposed system's performance
further and ensure a comprehensive understanding of its strengths and limitations. We will also consider using other
datasets, such as Hollywood?2 [45] and UCF-50 [46], to enhance the system’s robustness and investigate techniques
for mitigating overfitting. We propose experimenting with other convolutional neural networks for feature
extraction, such as ResNet [24], to improve spatial feature representation further. Further exploration of advanced
attention mechanisms [37], [47] will be conducted to refine the model's ability to focus on relevant spatiotemporal
features. Another promising research direction is the application of transformer-based approaches [48] to video
action recognition, which can potentially capture long-range dependencies more effectively than traditional
recurrent architectures. These efforts contribute to developing more robust, scalable, and efficient action recognition
systems suitable for real-world applications.
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