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Abstract: - This study addresses the critical challenge of evaluating and mitigating risks associated with various teaching modalities in higher
education, particularly as institutions increasingly adopt Online and Hybrid Learning environments. Utilizing the Fuzzy Technique for Order
of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS), a robust multi-criteria decision-making (MCDM) method, the study
systematically assesses and ranks teaching modalities based on five key risk dimensions: technological, operational, pedagogical, compliance,
and reputational. Expert evaluations were converted into fuzzy numbers, and distances from the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy
Negative Ideal Solution (FNIS) were computed to determine each modality’s relative performance. The findings reveal that Online Learning is
the most effective modality for risk mitigation, particularly excelling in technological, operational, and reputational domains. Hybrid Learning
demonstrated balanced performance, ranking second overall, while Face-to-Face instruction was most effective in managing pedagogical and
compliance-related risks. These results offer data-driven insights that can guide higher education institutions in optimizing teaching evaluation
strategies, improving institutional resilience, and enhancing quality assurance processes. By adopting a structured, evidence-based approach,
institutions can better align their instructional delivery with risk management priorities. The study highlights the benefits of integrating Fuzzy
TOPSIS in educational decision-making, providing a scalable and transparent framework for continuous improvement
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I. INTRODUCTION

Teaching evaluation plays a vital role in assessing instructional effectiveness, ensuring quality learning experiences,
and driving continuous improvement within higher education institutions [1]. With the increasing integration of
various instructional modalities—namely Face-to-Face, Online, and Hybrid Learning—there is a growing need to
assess the specific risks associated with each approach. These risks encompass technological limitations,
operational inefficiencies, pedagogical shortcomings, regulatory compliance issues, and reputational vulnerabilities
[2], [3]. As institutions become more dependent on digital platforms for instruction and assessment, understanding
the influence of each modality on risk exposure has become critical [4]. While Online Learning offers enhanced
flexibility and broader accessibility, it presents challenges related to digital infrastructure, cybersecurity, and student
engagement [5]. Hybrid Learning combines traditional and digital approaches but necessitates efficient instructional
coordination and optimized resource management [6]. Conversely, Face-to-Face instruction, although conventional,
may encounter challenges in maintaining compliance standards and adapting to modern operational constraints [7].

In response to these complexities, this study proposes a systematic, data-driven framework for risk assessment using
the Fuzzy Technique for Order of Preference by Similarity to the Ideal Solution (Fuzzy TOPSIS), a recognized
multi-criteria decision-making (MCDM) approach [8], [9]. By computing the distances of each alternative from the
Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS), the study identifies the most
effective teaching modality for mitigating risk in teaching evaluation environments [10]. The primary objective is
to apply this model to evaluate and rank learning alternatives based on risk factors, thereby supporting evidence-
based decision-making. The findings contribute to institutional efforts in quality assurance and strategic risk
management. The remainder of this paper is structured as follows: Section Il reviews related work, Section Il
details the methodology, Section IV presents results and analysis, and Section V outlines conclusions and directions
for future research.
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Il. RELATED WORK
A Risk Management in Higher Education

Risk management in higher education institutions (HEIs) has become a critical element of institutional
governance, particularly in operationally sensitive domains such as the admissions process. The complexity and
high-stakes nature of admissions exposes institutions to a broad spectrum of risks, including data privacy
violations, IT system failures, cybersecurity threats, and administrative delays. Data breaches involving student
records can result in severe regulatory penalties and long-lasting reputational damage. Likewise, system outages
during high-demand admission cycles can significantly disrupt processing, undermining institutional credibility
and adversely affecting enrollment outcomes.

To mitigate these challenges, researchers have proposed structured risk assessment frameworks specifically
adapted to the needs of HEIs. These models incorporate cybersecurity principles and provide tools for
systematically identifying and evaluating risks, improving decision-making, and defining appropriate risk
acceptance thresholds [11]. Broader operational risks, such as staffing shortages, insufficient faculty training,
outdated infrastructure, and limited academic-industry collaboration, also pose significant threats to institutional
effectiveness. Addressing these requires comprehensive risk mitigation strategies that align with institutional
performance goals and ensure continuity of services [12].

Several studies have extended the discussion on HEI risk management into specific thematic domains. Narayan
& Kommunuri [13] explore psychological and socio-cultural factors that drive risk-taking behavior in academic
environments, highlighting the role of human vulnerabilities in institutional risk profiles. Odlin et al. [14] propose
a typology for internship-related risks, emphasizing the importance of institutional responsibility and operational
control in designing mitigation strategies based on frequency and severity. Syamsia et al. [15] analyze operational
risks arising from structural conflicts between universities and their governing foundations, recommending
context-specific mitigation frameworks. In the area of cybersecurity, Awang et al. [16] advocate for predictive
risk assessment methodologies to safeguard campus information systems, while Al-mudaires et al. [17] present an
ISO/IEC 27005-aligned framework tailored for governmental educational institutions in Saudi Arabia, addressing
gaps in information security compliance and readiness.

Beyond the educational context, Cornwell et al. [18] review the application of data analytics in operational risk
management across financial services and energy sectors. Their analysis identifies five core dimensions of risk
governance: identification, causal factor analysis, quantification, prediction, and decision-making. These
contributions collectively underscore the growing importance of robust, data-driven, and context-specific risk
management frameworks tailored to the evolving operational landscapes of higher education institutions.

B. Fuzzy TOPSIS Method

The Fuzzy Technique for Order Preference by Similarity to Ideal Solution (Fuzzy TOPSIS) has emerged as a
prominent tool in multi-criteria decision-making (MCDM), particularly suited for addressing uncertainty and
vagueness in complex decision environments. By integrating fuzzy set theory into the classical TOPSIS
framework, the method evaluates alternatives based on their relative closeness to the Fuzzy Positive Ideal Solution
(FP1S) and the Fuzzy Negative Ideal Solution (FNIS), providing a structured approach for ranking alternatives
across multiple, and often conflicting, criteria. The flexibility and robustness of Fuzzy TOPSIS have led to its
widespread application in diverse domains, reflecting its capacity to enhance decision-making accuracy and clarity
under uncertainty.

Fuzzy TOPSIS has been utilized in industrial and sustainability-focused applications to evaluate technological and
environmental challenges. Tanveer et al. [19] applied the method to assess the impact of digital technologies—
such as Cyber-Physical Systems (CPS), the Internet of Things (loT), Cloud Manufacturing (CM), and Big Data
Analytics (BDA)—on circular supply chains within small and medium-sized enterprises (SMEs). Hajiaghaei-
Keshteli et al. [20] introduced the Pythagorean Fuzzy TOPSIS to support green supplier selection in food
packaging operations by incorporating both environmental and traditional evaluation criteria. Similarly, Alavi et
al. [21] developed a dynamic decision support system (DSS) integrating fuzzy Best-Worst Method (BWM) and
fuzzy inference systems to optimize sustainable supplier selection in circular supply chains.
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In organizational and managerial decision-making, Fuzzy TOPSIS has been employed to support personnel
selection and process optimization. Baharin et al. [22] used the method to identify the most suitable managerial
candidate based on twelve performance criteria. Govil & Sharma, [23] applied Fuzzy TOPSIS to evaluate software
development life cycle (SDLC) models, validating Agile methodologies as the most optimal. Anbarkhan, [24]
explored the use of Fuzzy TOPSIS for sustainability evaluation within the context of Industry 5.0 and software
engineering practices. In educational and technological assessments, Singh et al. [25] used Fuzzy TOPSIS to rank
learning applications based on their effectiveness in promoting critical thinking among novice programming
students. Basaran & El Homsi, [26] evaluated six mathematics learning applications using ISO/IEC 25010
software quality standards and a fuzzy TOPSIS approach. Dymova et al. [27] extended the traditional model by
introducing an intuitionistic fuzzy TOPSIS integrated with Dempster-Shafer theory to enhance aggregation and
manage uncertainty in MCDM scenarios.

Finally, in safety and risk evaluation contexts, Unliikal & Yticel, [28] combined Intuitionistic Fuzzy TOPSIS with
Failure Mode and Effects Analysis (FMEA) to improve the prioritization of risks in aviation industry production
processes. These diverse applications collectively underscore the versatility, analytical depth, and sectoral
adaptability of Fuzzy TOPSIS in supporting robust, data-driven decision-making across industrial, organizational,
environmental, and educational domains.

C. Applications of Fuzzy TOPSIS in Risk Assessment

Fuzzy TOPSIS has demonstrated substantial applicability across various industries, supporting complex risk
assessments through its ability to handle uncertainty and multiple conflicting criteria. Its adoption provides
organizations with a structured and reliable framework for evaluating and ranking risks, thereby enhancing
decision-making, optimizing resource allocation, and promoting more robust risk mitigation strategies. The
versatility of Fuzzy TOPSIS is evidenced in its integration across industrial, educational, environmental, and
infrastructure sectors. In the industrial and infrastructure domains, several studies have leveraged Fuzzy TOPSIS
for advanced risk modelling. Ostadi & Harofteh, [29] developed the Co-Occurrence-based Risk Assessment
(CORA) method, which integrates Monte Carlo simulation and system dynamics to assess interconnected risks in
a petrochemical project. Similarly, Gu et al. [30] proposed an intuitionistic fuzzy TOPSIS model for assessing
rockburst intensity in hydraulic tunnels by analyzing membership degrees in a weighted decision matrix. Awodi
etal. [10] utilized fuzzy TOPSIS to evaluate and rank 18 critical risk factors in nuclear decommissioning projects
using FPIS, FNIS, and Closeness Coefficients. Cho & Chae, [31] introduced a hybrid decision-making model that
integrates TOPSIS with Quality Function Deployment-Failure Mode Effects Analysis (QFD-FMEA) to select
construction methods based on safety and environmental risk factors.

Fuzzy TOPSIS has also been effectively applied within educational and organisational management contexts.
Kurniawan et al. [32] presented a decision-support framework for evaluating academic department performance
based on research output, comparing fuzzy TOPSIS with fuzzy SAW and fuzzy EDAS methods using criteria
weighted via the Analytic Network Process (ANP). Xu et al. [33] employed a fuzzy TOPSIS model based on the
cloud model to assess student satisfaction with online education across four dimensions—technology, instructor,
learner, and environment—during the COVID-19 pandemic. In environmental and policy-focused applications,
Sadeghi et al. [34] applied fuzzy TOPSIS with verbal variables to assess industrial risk factors in advanced sectors,
offering a structured model for prioritization. Pérez-Pérez et al. [35] utilized a fuzzy logic-based MCDM approach
to evaluate climate transition risks within Colombia’s processed food industry, emphasizing the role of structured
fuzzy assessments in policy and sustainability-driven decision-making

I1l. METHOD
A Step 1: Identification of Criteria

The initial step in the Fuzzy TOPSIS methodology involves identifying critical criteria necessary for assessing
and prioritizing risks associated with teaching evaluation processes within higher education institutions. Effective
identification of relevant risk criteria, such as data privacy violations, IT system failures, and regulatory non-
compliance, allows for a comprehensive evaluation framework, enabling institutions to proactively manage
potential threats to their teaching evaluation practices. Five principal criteria were systematically selected based
on their significance to institutional risk management and their direct implications for ensuring quality and
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effectiveness in teaching evaluations. These criteria were organized into clearly defined categories, each
encompassing specific sub-criteria to address distinct risk dimensions comprehensively. The identified main
categories include Compliance and Regulatory Risks, Operational Risks, Pedagogical Risks, Reputational Risks,
and Technological Risks. Table 1 summarizes the selected main criteria along with their associated sub-criteria,
providing a structured approach that enhances clarity, consistency, and transparency in decision-making.

Table 1: Criteria for Risk Evaluation

Main Criteria ID Sub Criteria

Compliance & Regulatory Risks | C1 | Regulatory Non-Compliance

C2 | Policy Breaches

C3 | Data Privacy Violations

Operational Risks O1 | Process Delays

02 Resource Constraints

03 Errors in Assessment

Pedagogical Risks P1 | Teaching Quality Decline

P2 | Programme Irrelevance

P3 Student Misconduct

Reputational Risks R1 | Reputation Damage

R2 | CQI Failures

R3 Health Crises

Technological Risks T1 | System Failures

T2 | Cybersecurity Threats

T3 | Obsolete Technology

B. Step 2: Construct the Decision Matrix

In the second step, decision-makers assigned specific weights and fuzzy values to each identified sub-criterion
within the five principal risk categories: Compliance and Regulatory Risks, Operational Risks, Pedagogical Risks,
Reputational Risks, and Technological Risks. The fuzzy scale utilized for evaluating the importance of each risk
criterion included three defined levels: Low (0.2), Medium (0.4), and High (0.6). Crucial sub-criteria such as
Regulatory Non-Compliance, Data Privacy Violations, and Health Crises received ratings ranging from Medium
to High due to their substantial potential impact on institutional integrity, regulatory adherence, and stakeholder
trust. Conversely, sub-criteria like Process Delays, Errors in Assessment, and Obsolete Technology were
predominantly assessed as Low risk, reflecting their relatively minimal influence on institutional performance.

The structured assignment of weights and fuzzy values facilitates the creation of a comprehensive decision matrix,
which serves as an analytical foundation for systematically identifying, comparing, and prioritizing critical risks
across different learning environments. By clearly articulating the relative significance of each risk sub-criterion,
this approach enhances the precision and reliability of risk evaluations, thereby enabling institutions to allocate
resources more effectively, improve risk response strategies, and ultimately strengthen overall institutional
resilience and decision-making quality. Table 2 illustrates the assigned weights for each sub-criterion, providing
transparency and clarity in the analytical process.
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Table 2: Characteristics of Criteria

Main Criteria ID | Sub-Criteria Weight CZTSZ
Cl | Regulatory Non-Compliance | Medium | 0.4
gg&?gt?)?;emsks & C2 | Policy Breaches Low 0.2
C3 | Data Privacy Violations Medium | 0.4
01 | Process Delays Low 0.2
Operational Risks 02 | Resource Constraints High 0.6
O3 | Errors in Assessment Low 0.2
P1 | Teaching Quality Decline Medium | 0.4
Pedagogical Risks P2 Programme Irrelevance Low 0.2
P3 | Student Misconduct Low 0.2
R1 | Reputation Damage Medium | 0.4
Reputational Risks | R2 | CQI Failures Low 0.2
R3 | Health Crises High 0.6
T1 | System Failures Low 0.2
Technological Risks | T2 | Cybersecurity Threats Low 0.2
T3 | Obsolete Technology Low 0.2

The subsequent phase in the methodology involves assigning fuzzy ratings to each alternative, guided by expert
evaluations. Experts employed linguistic terms, specifically Very Low, Low, Medium, High, and Very High, to
assess each alternative systematically. These qualitative assessments were subsequently transformed into
quantitative fuzzy numbers, providing a structured numerical representation of expert judgments. Table 3 presents
the linguistic terms alongside their corresponding fuzzy triangular numbers, defined clearly by lower, middle, and
upper bound values. This structured approach enables nuanced capture of expert perceptions, facilitating more
precise and reliable comparative evaluations of risk across the learning alternatives.

Table 3: Fuzzy Scale

Code | Linguistic Terms | Lower (L) | Middle (M) | Upper (U)
1 Very Low (VL) 1 1 3
2 Low (L) 1 3
3 Medium (M) 3 5 7
4 High (H) 5 7 9
5 Very High (VH) 7 9 9
C. Step 3: Fuzzified Decision Matrix

The third step of the Fuzzy TOPSIS methodology involves constructing the fuzzified decision matrix by
converting expert-provided crisp evaluations into fuzzy numbers. Experts assign linguistic ratings—Very Low,
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Low, Medium, High, and Very High—to each main criterion and its corresponding sub-criteria. These qualitative
ratings are systematically transformed into quantitative fuzzy values, effectively representing uncertainty and
variability in expert assessments. Each linguistic term is associated with a triangular fuzzy number comprising a
lower bound (L), a middle or most likely value (M), and an upper bound (U). For example, the term High
corresponds to the fuzzy number (5, 7, 9), capturing a moderate-to-high intensity range of expert judgment. When
an expert rates a sub-criterion under a main criterion as High, it translates directly into the fuzzy triplet (5, 7, 9).
This fuzzification approach captures inherent imprecision and variability in human judgment, providing a more
nuanced and realistic representation of decision-making processes. The mathematical formula applied for
converting crisp expert ratings into fuzzy numbers is defined as follows:

Fuzzy Number = (L, M, U)
@)
Where:
L is the lower bound of the fuzzy number,
M is the middle value of the fuzzy number,
U is the upper bound of the fuzzy number.
D. Step 4: Normalized Matrix

Normalization of the decision matrix is essential to achieve consistency and comparability across different
evaluation criteria within the Fuzzy TOPSIS methodology. The normalization procedure adjusts the fuzzy
numbers assigned to each criterion to a uniform scale, facilitating meaningful comparisons and ensuring that no
single criterion disproportionately influences the analysis due to scale discrepancies. Specifically, each fuzzy
number is normalized by dividing its lower bound, middle value, and upper bound by the maximum upper bound
value identified within the respective criterion. This systematic normalization enhances analytical integrity,
reduces bias, and ensures equitable weighting across all evaluated sub-criteria. The mathematical expression for
computing the normalized fuzzy decision matrix is presented as follows:
7= (L M L) )

Umax Umax Umax
Where:

lij, m;j, u;; = The fuzzy number’s lower, middle, and upper bounds for alternative i under criterion j.

ij

Umax = The maximum upper bound within the respective criterion.

E. Step 5: Weighted Normalized Decision Matrix

Following normalization, each normalized fuzzy value is multiplied by the corresponding fuzzy weight assigned
to its respective sub-criterion. These weights, defined as Low (0.2), Medium (0.4), or High (0.6), systematically
integrate expert judgments regarding the relative importance of each risk factor into the analysis. Applying these
fuzzy weights ensures that sub-criteria deemed more impactful receive proportionally greater emphasis in the
overall evaluation. The mathematical expression for calculating the weighted normalized fuzzy values is provided
as follows:

@)
Where:
W; = The weighted normalized value for alternative i and criterion j,

Xi; = The normalized value for alternative i and criterion j,

W.

;= The fuzzy weight for criterion j.
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F. Step 6: Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS)

The determination of the Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy Negative ldeal Solution (FNIS)
constitutes a crucial step in the Fuzzy TOPSIS methodology. These solutions represent the optimal (best-case)
and least favourable (worst-case) scenarios, respectively, for each evaluated criterion, thus enabling an effective
comparative assessment of alternatives. Specifically, the FPIS is established by selecting the maximum fuzzy
values—considering the lower, middle, and upper bounds—for each criterion across all evaluated alternatives.
For example, when assessing a criterion such as Impact, the FPIS is computed by identifying the highest fuzzy
values from the normalized fuzzy evaluations across all alternatives. This approach facilitates a clear benchmark
against which each alternative's performance can be accurately measured. The use of FPIS and FNIS significantly
enhances the analytical precision of the decision-making process, providing clear insights into the relative
positioning of alternatives. The mathematical formulation for calculating the FPIS for each criterion j is expressed
as follows:

! ! !
FPISj = (m?XXij,Lower' mL.aXXij, middle » ml.aXXij,Upper)
(4)
Where:

max X/; 1 ower = Maximum of the lower bound values for criterion j,
; ,

max X;; migale = Maximum of the middle values for criterion j,

; ,

max X;j ypper = Maximum of the upper bound values for criterion j.
2

Conversely, the Fuzzy Negative Ideal Solution (FNIS) signifies the least favourable scenario for each sub-criterion
within the Fuzzy TOPSIS methodology. The FNIS is established by identifying the minimum fuzzy values—
encompassing the lower, middle, and upper bounds—for each sub-criterion across all evaluated alternatives. For
instance, when evaluating a particular sub-criterion under a main criterion, the FNIS is derived from selecting the
lowest fuzzy values observed across all alternatives. This process defines a clear negative benchmark, facilitating
an accurate assessment of how distant each alternative is from the least desirable scenario. Utilizing FNIS thus
provides critical insights into the potential vulnerabilities and weaknesses of each alternative, enabling institutions
to better prioritize interventions and effectively mitigate risks. The mathematical formulation for computing the
FNIS for each sub-criterion j is presented as follows:

! !

_ . ' . .
FN[Sj - (ml.ln Xij.Lower ’ ml.ln le, middle » mill’l le,Upper)
©)
Where:

ij,Lower

min X = Minimum of the lower bound values for criterion j,
1

min X;; niaqe = Minimum of the middle values for criterion j,
; )

miin Xij upper = Minimum of the upper bound values for criterion j.

G. Step 7: Distance Calculation Results

In Step 7 of the Fuzzy TOPSIS methodology, the distance calculation quantitatively evaluates the proximity of
each alternative to the Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy Negative Ideal Solution (FNIS). This
step provides a structured assessment of how closely each alternative aligns with both ideal and worst-case
scenarios across all sub-criteria. Specifically, the Euclidean distance between each alternative’s fuzzy ratings and
the respective FPIS and FNIS values is calculated. The computation of these distances yields precise numerical
indicators, effectively illustrating each alternative's relative strengths and weaknesses. The mathematical
expression used for calculating the distance of each alternative from the FPIS is represented as follows:
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FPIS __
DFPIS =

\/é Z?=1 ((Xi,j,Lower - FPISj.LOWET)Z + (Xi’j, middle FPISj.Middle)Z + (Xi’j,Upper - FPISj,UPpeT)Z) (6)

Similarly, the distance of each alternative from the FNIS is calculated using the following formula:

FNIS _

\E Sy (X7 ower = FNIS)ower)” + (X0 miaate = FNISjatiaaie)” + (X upper = FNIS;uper)” ) (7)

Where:
DFPIS = The distance of alternative i from the FPIS,

DFNIS = The distance of alternative i from the FNIS,

l i
ij,Lower’ “*ij, middle’

X = Normalized fuzzy values for alternative i and criterion j,

1
ij,Upper

FPIS; 1 owerr FPIS; mmigaier FPIS; = Fuzzy positive ideal values for criterion j,

,Upper

FNIS; 1 ower FNIS; igaier FNIS; = Fuzzy negative ideal values for criterion j.

,Upper
H. Step 8: Closeness Coefficients with Alternative Details

In Step 8, the calculation of the Closeness Coefficient (CC) quantitatively determines each alternative’s relative
proximity to the Fuzzy Positive Ideal Solution (FPIS) and its distance from the Fuzzy Negative Ideal Solution
(FNIS). This coefficient provides a clear numerical indicator reflecting each alternative's overall desirability, with
higher values signifying greater closeness to the ideal scenario and increased distance from the worst-case
scenario. The Closeness Coefficient serves as a critical analytical measure, enabling institutions to objectively
rank alternatives and thus enhance decision-making accuracy, transparency, and strategic alignment.
CC _ DiFNIS
i = pFPIS pFNTS

(8)
Where:

CC; = Closeness Coefficient for alternative I,

DfM'S — The distance of alternative i from the FNIS,
Df?'S _ The distance of alternative iii from the FPIS.

The Closeness Coefficient (CC) values range between 0 and 1, where values approaching 1 signify that the
alternative is substantially closer to the Fuzzy Positive Ideal Solution (FPIS) and more distant from the Fuzzy
Negative Ideal Solution (FNIS), indicating a highly favourable option. Conversely, values approaching 0 imply
that the alternative is closer to the FNIS and farther from the FPIS, denoting a less favourable choice. Each
alternative’s CC value is computed by evaluating the relative distances to both the FPIS and FNIS obtained in the
previous step. Following this calculation, the CC values for all alternatives are systematically compared, enabling
the identification of the optimal choice. The alternative possessing the highest CC is recognized as the best
solution, given its superior proximity to the ideal outcome and considerable distance from the least desirable
scenario.

I.  Step 9: Ranking of Alternatives Based on Closeness Coefficient

In Step 9 of the Fuzzy TOPSIS methodology, the alternatives are systematically ranked according to their calculated
CC values obtained in the previous step. These CC values quantitatively represent each alternative’s relative
proximity to the Fuzzy Positive Ideal Solution (FPIS) and its distance from the Fuzzy Negative Ideal Solution
(FNIS). Alternatives exhibiting higher CC values are considered more favourable due to their greater closeness to
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the ideal scenario and greater distance from the least desirable outcome. Consequently, all evaluated alternatives
are ordered in descending sequence based on their CC values. The alternative with the highest Closeness Coefficient
is ranked first, indicating its superior performance and suitability relative to other choices, while the alternative with
the lowest CC is ranked last, reflecting its lower desirability. This systematic ranking process significantly enhances
decision-making clarity, ensuring institutions effectively prioritize their options.

IVV. RESULT AND ANALYSIS

This section reports the results and subsequent analysis derived from applying the Fuzzy TOPSIS approach to the
teaching evaluation process. The assessment systematically evaluates multiple risk factors, specifically
technological, operational, pedagogical, compliance, and reputational risks, across three distinct instructional
modes: Face-to-Face, Online, and Hybrid Learning. The outcomes elucidate critical strengths and vulnerabilities
inherent to each teaching mode, thus providing essential empirical insights for informed decision-making aimed
at optimizing strategies in teaching evaluation.

A Expert in linguistics term

Experts assigned ratings to various risk sub-criteria across three learning environments: Face-to-Face, Online, and
Hybrid Learning. These ratings were expressed in linguistic terms and subsequently converted into fuzzy numbers
to facilitate systematic analysis. The assessment outcomes enabled the identification of critical risks associated
with distinct teaching and learning settings.

Results revealed that Errors in Assessment, Health Crises, and Data Privacy Violations consistently emerged as
high or very high risks in all evaluated learning environments. Additionally, System Failures and Policy Breaches
were identified as significant risks, especially within Online and Hybrid Learning contexts. Conversely, Process
Delays, Student Misconduct, and CQI Failures predominantly received low-risk ratings. Table 4 summarizes the
linguistic term ratings provided by the decision-makers.

Table 4: Experts in linguistic term

Sub-Criteria | Expertl Expert2 Expert3
Face | Onlin | Hybrid Face | Onlin | Hybrid Face | Onlin | Hybrid
-to- e Learnin | -to- e Learnin | -to- e Learnin
Face g Face g Face g
System VH M VH M H M L VH H
Failures
Cybersecurit | M VH H L M VH L H M
y Threats
Obsolete VH L M L VH L M H H
Technology
Process L H L L L H L L L
Delays
Resource M M VH L H M M VH M
Constraints
Errors in | H VH H H H VH VH VH VH
Assessment
Teaching VH M M M VH M M M M
Quality
Decline
Programme M L VH VH M L H H H
Irrelevance
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Sub-Criteria | Expertl Expert2 Expert3
Face | Onlin | Hybrid Face | Onlin | Hybrid Face | Onlin | Hybrid
-to- e Learnin | -to- e Learnin | -to- e Learnin
Face g Face g Face g
Student M H L L L H H L L
Misconduct
Regulatory H M M M H M H H H
Non-
Compliance
Policy M VH H H M VH VH H H
Breaches
Data Privacy | VH L VH VH VH L H VH VH
Violations
Reputation M H L L M H H H M
Damage
CQI Failures | L M M M L M H H H
Health Crises | H VH H H H VH VH H H
B. Step 1: Fuzzified Decision Matrix

The fuzzified decision matrix is established by transforming linguistic terms from Table 4 into corresponding
fuzzy numbers according to the fuzzy scale presented in Table 3. Each linguistic term—Very Low, Low, Medium,
High, and Very High—is represented by a triangular fuzzy number comprising lower, middle, and upper values
(L, M, U). For instance, an expert rating of Very High (VH) corresponds to the fuzzy number (7, 9, 9), while a
Medium (M) rating translates to (3, 5, 7), and a Low (L) rating converts to (1, 3, 5). This conversion procedure is
consistently applied across all sub-criteria and teaching environments (Face-to-Face, Online, and Hybrid
Learning) for each participating expert.

Table 5: Fuzzified Decision Matrix

Main Sub- Expertl Expert2 Expert3
Criteria Criteria Face | Onlin | Hybrid | Face | Onlin | Hybrid | Face | Onlin | Hybrid
-to- |e Learnin | -to- |e Learnin | -to- |e Learnin
Face g Face g Face g
Technologic | System (7,9, 13, 517,99 |@3,5 |6 7,|16,57 |13, 916,7,9)
al Risks Failures 9) 7) 7) 9) 4) 9)
Cybersecuri | (3,5, | (7, 9,((,7,9) | (1,3, [, 5 [(7,99 |13, |6 7,357
ty Threats 7) 9) 4) 7) 4) 9)
Obsolete (7,9, | @, 3, (3,57 | @3 | 9134 |B5 |6 7,](5,79
Technology | 9) 4) 4) 9) 7) 9)
Operational | Process 1,316, 7,1 (1,3,4 |13, ]@ 3,|6,7,9 (1,3, /(@1 3,|(1,3,49
Risks Delays 4) 9) 4) 4) 4) 4)
Resource (3,5, (3 5 (7,99 | (@3 |G, 7,163,557 |35 |7 93,57
Constraints | 7) 7) 4) 9) 7) 9)
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Main Sub- Expertl Expert2 Expert3
Criteria Criteria Face | Onlin | Hybrid | Face | Onlin | Hybrid | Face | Onlin | Hybrid
-to- |e Learnin | -to- |e Learnin | -to- |e Learnin
Face g Face g Face g
Errors  in | (5,7, |(7, 965,79 (6,7, |6, 7,10,99) (79 (7 97,99
Assessment | 9) 9) 9) 9) 9) 9)
Pedagogical | Teaching (7,9, 13, 5 (@B,57 |35 [ 9,57 |35 | 5]@B57)
Risks Quality 9) 7) 7) 9) 7) 7)
Decline
Programme | (3,5, | (1, 3, |(7,9,9) | (7,9, (3, 5 |(1,3,4) |5, 7,|(5, 7,](5,7,9)
Irrelevance | 7) 4) 9) 7 9) 9)
Student (3,5, |5, 7, (1, 3,4 | (14,3 |(@ 3, (6,79 |67,](@1 3,](13,49
Misconduct | 7) 9) 4) 4) 9) 4)
Compliance | Regulatory | (5,7, (3, 5, |(3,57) |(3,5 |5, 7,|1,57 |57,|6, 7,|65,7,9)
& Non- 9) 7) 7) 9) 9) 9)
Regulatory | Compliance
Risks Policy 357 9679 |67 |G 5799 |79 |G 7|79
Breaches 7) 9) 9) 7) 9) 9)
Data 79 1@ 3 (7,99 |79 | 9134 |67, 7 917,99
Privacy 9) 4) 9) 9) 9) 9)
Violations

Reputationa | Reputation | (3,5, | 5, 7, | (1,3,4) | (1,3,|(3, 5 |(5,7,9 |(56,7,|65, 7,[(3,57)

| Risks Damage 7) 9) 4) 7) 9) 9)
Ccal (1,3, (8, 5 (357 |35 @A 33,57 |67,|6 7,15,7,9
Failures 4) 7) 7) 4) 9) 9)
Health 6,7, (@ 916,79 |67, 16, 7,1(7,99 |79 |6 7,](5,7,9
Crises 9) 9) 9) 9) 9) 9)
C. Step 2:Normalized Matrix

Due to inherent digital vulnerabilities, Online Learning exhibits elevated technological risks, notably
Cybersecurity Threats and Obsolete Technology. Conversely, Face-to-Face Learning presents comparatively
lower technological risks but experiences heightened operational challenges, including Process Delays and
Resource Constraints. Hybrid Learning occupies an intermediate position, encompassing risks associated with
both traditional and digital environments. In the domain of Pedagogical Risks, Online and Hybrid Learning modes
highlight pronounced concerns such as Teaching Quality Decline and Programme Irrelevance, adversely affecting
learner engagement and instructional effectiveness. Compliance and Regulatory Risks, specifically Regulatory
Non-Compliance and Data Privacy Violations, are significantly intensified in digital learning contexts due to
challenges in policy enforcement. Furthermore, Reputational Risks, such as Reputation Damage and Continuous
Quality Improvement (CQI) Failures, emerge as more prominent in Online and Hybrid Learning, directly
impacting institutional credibility. Table 6 illustrates the Fuzzified Decision Matrix, summarizing expert
assessments of risks across Face-to-Face, Online, and Hybrid Learning modes. To illustrate the normalization
process, the fuzzy values assigned by Expertl, Expert2, and Expert3 for the System Failures sub-criterion within
the Technological Risks category are provided as follows:
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Expertl: Face-to-Face: (7,9,9), Online: (3,5,7), Hybrid Learning: (7,9,9)
Expert2: Face-to-Face: (3,5,7), Online: (5,7,9), Hybrid Learning: (3,5,7)
Expert3: Face-to-Face: (1,3,4), Online: (7,9,9), Hybrid Learning: (5,7,9)

Umax = Max(9,7,9,7,9,7,4,9,9)=9

System Failures for Face-to-Face for Expertl = 77; = (—

7 9

’

9’9

9

Table 6: Normalized Matrix

3) = (0.7778,1.0000,1.0000)
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tsgr'f] 07778, | 03333 | 07778, | @333 | (0556, | (0.3333, 3’3333 2’000 (0.5556,
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| Sub | Expertl Expert2 Expert3
Mai i
n . - i
.. | Cri | Face-to- . Hybrid Face- . Hybrid Face Onlin Hybr".j
Crit . Online . Online . to- Learnin
. ter1 | Face Learning | to-Face Learning e
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I\;:) 1.0000) 0.444) 1.0000) 1.0000) 1.0000) |0.4444) |’ oo |1 000 | 1:0000)
ons ) 0)
Rep [ Rep | (0.3333, (0.1111, (0.3333, [ (0.5556, | (0.555 | (0.555 | (0.3333,
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| Sub | Expertl Expert2 Expert3
Mai i
n . . - . i
.. | Cri | Face-to- . Hybrid Face- . Hybrid Face Onlin Hybr".j
Crit . Online . Online . to- Learnin
. ter1 | Face Learning | to-Face Learning e
eria a Face g
Risk | Da 0.7778, 0.3333, , 8,
S ma 1.0000) 0.4444) 1.0000 | 1.000
ge ) 0)
(0.555 | (0.555
ICQ (0.1111, (0-3333 (0.3333, (0-3333 (0.1111, | (0.3333, 2’7778 2’777 (0.5556,
Fail 0.3333, 0 5556 0.5556, 0 5556 0.3333, [ 0.5556, ' 8. 0.7778,
ures 0.4444) 0.7778) 0.7778) 0.7778) 0.4444) | 0.7778) 1.0000 | 1.000 1.0000)
) 0)
(0.777 | (0.555
E'sa 05556, | 7778 | (05556, | @95 | (05856, | (0.7778, 2’0000 3’777 (0.5556,
Cris 0.7778, 1 0000 0.7778, 0 7778 0.7778, | 1.0000, ' 8. 0.7778,
o 1.0000) 1.0000) 1.0000) 1.0000) 1.0000) | 1.0000) 1.0000 | 1.000 1.0000)
) 0)
D. Step 3: Weighted Normalized Matrix

In Step 3, the weighted normalized matrix is derived by multiplying the normalized fuzzy values of each sub-
criterion by their respective weights. For instance, the sub-criterion Health Crises within the Face-to-Face
Learning environment initially has a fuzzified value of (5,7,9) from the fuzzified decision matrix. Upon
normalization, these values become (0.556,0.778,1). Utilizing the assigned weight of 0.6 from Table 2, the
weighted normalized fuzzy values are computed using the following calculation:

W/, = (0.556,0.778,1) x 0.6
W, = (0.333,0.467,0.6)

Therefore, the final weighted normalized fuzzy value obtained for the Health Crises sub-criterion within the Face-
to-Face Learning environment is (0.333, 0.467, 0.6). This procedure is systematically applied to each sub-criterion,
resulting in the construction of a comprehensive Weighted Normalized Matrix. Table 7 summarizes the completed
Weighted Normalized Matrix derived from expert evaluations across all learning modes and sub-criteria.

Table 7: Weighted Normalized Matrix

Expertl Expert2 Expert3
Main Sub- Face- .| Hybrid | Face- .| Hybrid | Face- .| Hybrid
Criteria | Criteria | ¢o. Onlin | | carni | to- onlin-1, carni | to- onlin ) carni
Face ¢ ng Face ¢ ng Face ¢ ng
(0.155 | (0.066 (0.066 | (0.111 (0.022 | (0.155
6, 7, (0.1556 | 7, 1, (0.0667 | 2, 6, (0.1111
Technolog | System 0.200 |0.111 |, 0.111 [0.155 |, 0.066 | 0.200 |,
ical Risks | Failures 0, 1, 0.2000, |1, 6, 0.1111, |7, 0, 0.1556,
0.200 | 0.155 | 0.2000) | 0.155 | 0.200 | 0.1556) | 0.088 | 0.200 | 0.2000)
0) 6) 6) 0) 9) 0)
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Expertl Expert2 Expert3
Main Sub- Face- .| Hybrid | Face- .| Hybrid | Face- .| Hybrid
Criteria | Criteria | . Onlin Lgarni to- Onlin Lg/arni to- Onlin Lélarni
Face ¢ ng Face ¢ ng Face € ng
(0.066 | (0.155 (0.022 | (0.066 (0.022 | (0.111
Cybersecy | 7 6, (0.1111 | 2, 7, (0.1556 | 2, 1, (0.0667
rity 0.111 | 0.200 |, 0.066 |0.111 |, 0.066 | 0.155 |,
Threats 1, 0, 0.1556, |7, 1, 0.2000, |7, 6, 0.1111,
0.155 | 0.200 | 0.2000) | 0.088 | 0.155 | 0.2000) | 0.088 | 0.200 | 0.1556)
6) 0) 9) 6) 9) 0)
(0.155 | (0.022 (0.022 [ (0.155 (0.066 | (0.111
6, 2, (0.0667 | 2, 6, (0.0222 | 7, 1, (0.1111
?:sﬁr'gfog 0.200 | 0.066 |, 0.066 |0.200 |, 0111 |0.155 |,
0, 7, 0.1111, |7, 0, 0.0667, |1, 6, 0.1556,
y 0.200 | 0.088 | 0.1556) | 0.088 | 0.200 | 0.0889) | 0.155 | 0.200 | 0.2000)
0) 9) 9) 0) 6) 0)
(0.022 | (0.111 (0.022 | (0.022 (0.022 | (0.022
2, 1, (0.0222 | 2, 2, (0.1111 | 2, 2, (0.0222
Process 0.066 | 0.155 |, 0.066 | 0.066 |, 0.066 | 0.066 |,
Delays 7, 6, 0.0667, |7, 7, 0.1556, |7, 7, 0.0667,
0.088 | 0.200 | 0.0889) | 0.088 | 0.088 | 0.2000) | 0.088 | 0.088 [ 0.0889)
9) 0) 9) 9) 9) 9)
(0.200 | (0.200 (0.066 | (0.333 (0.200 | (0.466
0, 0, (0.4667 | 7, 4, (0.2000 | 0, 7, (0.2000
. Resource
Operation Constraint 0.333 |0.333 |, 0.200 | 0.466 |, 0.333 | 0.600 |,
al Risks s 4, 4, 0.6000, | O, 7, 0.3334, | 4, 0, 0.3334,
0.466 | 0.466 | 0.6000) | 0.266 | 0.600 | 0.4667) | 0.466 | 0.600 | 0.4667)
7) 7) 6) 0) 7) 0)
(0.111 [ (0.155 (0.111 | (0.111 (0.155 | (0.155
1 6, 0.1111 |1, 1, (0.1556 | 6, 6, (0.1556
Errors in
Assessme 0.155 | 0.200 |, 0.155 | 0.155 |, 0.200 | 0.200 |,
it 6, 0, 0.1556, | 6, 6, 0.2000, | O, 0, 0.2000,
0.200 | 0.200 | 0.2000) | 0.200 | 0.200 | 0.2000) | 0.200 | 0.200 | 0.2000)
0) 0) 0) 0) 0) 0)
(0.311 | (0.133 (0.133 [ (0.311 (0.133 | (0.133
Teaching 1, 3, (0.1333 | 3, 1, (0.1333 | 3, 3, (0.1333
Quality 0.400 [ 0.222 |, 0.222 | 0.400 |, 0.222 (0.222 |,
Decline 0, 2, 0.2222, | 2, 0, 0.2222, | 2, 2, 0.2222,
0.400 |0.311 |0.3111) {0.311 | 0.400 |0.3111) |0.311 |0.311 |0.3111)
Pedagogic 0) 1) 1) 0) 1) 1)
al Risks (0.066 | (0.022 (0.155 | (0.066 (0.111 | (0.111
Programm | 7, 2, (0.1556 | 6, 7, 0.0222 |1, 1, (0.1111
e 0.111 | 0.066 |, 0.200 |0.111 |, 0.155 [ 0.155 |,
Irrelevanc | 1, 7, 0.2000, | O, 1, 0.0667, | 6, 6, 0.1556,
e 0.155 | 0.088 | 0.2000) | 0.200 | 0.155 | 0.0889) | 0.200 | 0.200 | 0.2000)
6) 9) 0) 6) 0) 0)
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Expertl Expert2 Expert3
Main Sub- Face- .| Hybrid | Face- .| Hybrid | Face- .| Hybrid
Criteria | Criteria | . Onlin Lgarni to- Onlin Lg/arni to- Onlin Lélarni
Face ¢ ng Face ¢ ng Face € ng
(0.066 | (0.111 (0.022 | (0.022 (0.111 | (0.022
Student 7, 1, (0.0222 | 2, 2, (0.1111 | 1, 2, (0.0222
Miscondu 0.111 ]0.155 |, 0.066 | 0.066 |, 0.155 | 0.066 |,
ot 1, 6, 0.0667, |7, 7, 0.1556, | 6, 7, 0.0667,
0.155 | 0.200 | 0.0889) [ 0.088 | 0.088 | 0.2000) | 0.200 | 0.088 | 0.0889)
6) 0) 9) 9) 0) 9)
(0.222 | (0.133 (0.133 | (0.222 (0.222 | (0.222
Regulator | 2, 3, (0.1333 | 3, 2, (0.1333 | 2, 2, (0.2222
y Non- | 0.311 |0.222 |, 0.222 |0.311 |, 0.311 |0.311 |,
Complianc | 1, 2, 0.2222, | 2, 1, 0.2222, |1, 1, 0.3111,
e 0.400 |0.311 |0.3111) {0.311 | 0.400 | 0.3111) | 0.400 | 0.400 | 0.4000)
0) 1) 1) 0) 0) 0)
(0.066 | (0.155 (0.111 | (0.066 (0.155 | (0.111
Complianc 7, 6, (0.1111 | 1, 7, (0.1556 | 6, 1, (0.1111
e & | Policy 0.111 | 0.200 |, 0.155 | 0.111 |, 0.200 |0.155 |,
Regulator | Breaches 1, 0, 0.1556, | 6, 1, 0.2000, | O, 6, 0.1556,
y Risks 0.155 | 0.200 | 0.2000) | 0.200 | 0.155 | 0.2000) | 0.200 | 0.200 | 0.2000)
6) 0) 0) 6) 0) 0)
(0.311 | (0.044 (0.311 | (0.311 (0.222 | (0.311
Data 1, 4, (0.3111 |1, 1, (0.0444 | 2, 1, (0.3111
Privacy 0.400 |0.133 |, 0.400 | 0.400 |, 0.311 | 0.400 |,
Violations 0, 3, 0.4000, | o0, 0, 0.1333, | 1, 0, 0.4000,
0.400 | 0.177 | 0.4000) | 0.400 | 0.400 |0.1778) | 0.400 | 0.400 | 0.4000)
0) 8) 0) 0) 0) 0)
(0.133 | (0.222 (0.044 | (0.133 (0.222 | (0.222
3, 2, (0.0444 | 4, 3, (0.2222 | 2, 2, (0.1333
Reputation | 0.222 | 0.311 |, 0.133 | 0.222 |, 0.311 |0.311 |,
Damage 2, 1, 0.1333, | 3, 2, 0.3111, |1, 1, 0.2222,
0.311 | 0.400 |0.1778) | 0.177 | 0.311 | 0.4000) | 0.400 | 0.400 | 0.3111)
1) 0) 8) 1) 0) 0)
(0.022 | (0.066 (0.066 | (0.022 (0.111 | (0.111
2, 7, (0.0667 | 7, 2, (0.0667 | 1, 1, (0.1111
Reputation | CQI 0.066 |0.111 |, 0.111 | 0.066 |, 0.155 | 0.155 |,
al Risks Failures 7, 1, 0.1111, |1, 7, 0.1111, |6, 6, 0.1556,
0.088 | 0.155 | 0.1556) | 0.155 | 0.088 | 0.1556) | 0.200 | 0.200 | 0.2000)
9) 6) 6) 9) 0) 0)
(0.333 | (0.466 (0.333 | (0.333 (0.466 | (0.333
4, 7, (0.3334 | 4, 4, (0.4667 | 7, 4, (0.3334
Health 0.466 | 0.600 |, 0.466 | 0.466 |, 0.600 | 0.466 |,
Crises 7, 0, 0.4667, |7, 7, 0.6000, |0, 7, 0.4667,
0.600 [ 0.600 | 0.6000) | 0.600 | 0.600 | 0.6000) | 0.600 [ 0.600 | 0.6000)
0) 0) 0) 0) 0) 0)
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E. Step 4: FPIS (Fuzzy Positive Ideal Solution) and FNIS (Fuzzy Negative Ideal Solution)

Table 8 displays the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) for each sub-
criterion across the five primary risk categories: Technological Risks, Operational Risks, Pedagogical Risks,
Compliance and Regulatory Risks, and Reputational Risks. These values are computed based on expert
evaluations across Face-to-Face, Online, and Hybrid Learning environments. To establish the FPIS for Health
Crises under Face-to-Face Learning, maximum fuzzy values for the lower, middle, and upper bounds are identified
from expert assessments. The FPIS denotes the most favourable scenario for this sub-criterion. According to the
Weighted Normalized Matrix, Expertl, Expert2, and Expert3 consistently assigned identical fuzzy values of
(0.4667, 0.6000, 0.6000) to Health Crises. Consequently, the FPIS for this sub-criterion is defined as (0.4667,
0.6000, 0.6000). Conversely, the FNIS is determined by selecting the minimum fuzzy values for the lower, middle,
and upper bounds across all experts, representing the least favourable scenario. A similar consistency in expert
evaluations results in uniform fuzzy values of (0.3334, 0.4667, 0.6000). Therefore, the FNIS for Health Crises
under Face-to-Face Learning is established as (0.3334, 0.4667, 0.6000).

Table 8: FPIS (Fuzzy Positive Ideal Solution) and FNIS (Fuzzy Negative Ideal Solution)

Main | Expertl Expert2 Expert3
N Sub-Criteria
Criteria FPIS FNIS FPIS FNIS FPIS FNIS
Svstem (0.1556, | (0.0667, | (0.1111, | (0.0667, | (0.1556, | (0.0222,
FZiIures 0.2000, |0.1111, |0.1556, |0.1111, |0.2000, | 0.0667,

0.2000) | 0.1556) | 0.2000) | 0.1556) | 0.2000) ( 0.0889)

(0.1556, | (0.0667, | (0.1556, | (0.0222, | (0.1111, | (0.0222,

Technological '
echnological | Cybersecurity | 5,000 " | 51111, | 0.2000, | 0.0667, | 0.1556. | 0.0667,

Risks Threats 0.2000) | 0.1556) | 0.2000) | 0.0889) |0.2000) |0.0889)
. (0.1556, | (0.0222, | (0.1556, | (0.0222, | (0.1111, | (0.0667,

T 0.2000, | 0.0667, | 0.2000, | 0.0667, |0.1556, |0.1111,

9" 10.2000) | 0.0889) | 0.2000) | 0.0889) | 0.2000) | 0.1556)

rocecs (0.1111, | (0.0222, | (0.111L, | (0.0222, [ (0.0222, | (0.0222,

e 0.1556, | 0.0667, | 0.1556, | 0.0667, | 0.0667, | 0.0667,

y 0.2000) | 0.0889) | 0.2000) | 0.0889) | 0.0889) | 0.0889)

ooerational | Resource (0.4667, | (0.2000, | (0.3334, | (0.0667, | (0.4667, | (0.2000,
Rips o e 06000, |0.3334, | 0.4667, |0.2000, | 06000, [0.3334
0.6000) | 0.4667) | 0.6000) | 0.2666) | 0.6000) | 0.4667)

oo o] (01556, [ (01111, [ (0.1556, | (0.111L, | (0.1556, [ (01556,

o " 0.2000, | 0.1556, | 0.2000, |0.1556, | 0.2000, | 0.2000,

0.2000) | 0.2000) | 0.2000) | 0.2000) | 0.2000) | 0.2000)

Teaching (03111, | (0.1333, | (0.3L1L, | (0.1333, | (0.1333, | (0.1333,

Quality 04000, | 0.2222, | 0.4000, | 0.2222, | 0.2222, |0.2222,

Decline 0.4000) |0.3111) | 0.4000) |0.3111) |0.3111) |0.3111)

(0.1556, | (0.0222, | (0.1556, | (0.0222, | (0.1111, | (0.1111,

Pedagogical | Programme | o 000" | 5 0667, | 0.2000, | 0.0667, | 0.1556, | 0.1556,

Risk Irrel

1SS IEIEVANce 1 9.2000) | 0.0889) |0.2000) | 0.0889) | 0.2000) | 0.2000)
sudent (0.1111, | (0.0222, | (0.111L, | (0.0222, | (0.111L, | (0.0222,
: 0.1556, | 0.0667, | 0.1556, | 0.0667, |0.1556, |0.0667,
Misconduct

0.2000) [ 0.0889) | 0.2000) [ 0.0889) | 0.2000) | 0.0889)
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Main Expertl Expert2 Expert3
L. Sub-Criteria
Criteria FPIS FNIS FPIS FNIS FPIS FNIS

Regulatory | (0.2222, | (0.1333, | (0.2222, [ (0.1333, | (0.2222, | (0.2222,
Non- 03111, |0.2222, |0.3111, |0.2222, |0.3111, |0.3111,
Compliance | 0.4000) |0.3111) | 0.4000) |0.3111) | 0.4000) | 0.4000)

Compliance [ . (0.1556, | (0.0667, | (0.1556, | (0.0667, | (0.1556, | (0.1111,
& Regulatory Breacyhes 0.2000, |0.1111, |0.2000, |0.1111, |0.2000, |0.1556,
Risks 0.2000) | 0.1556) | 0.2000) | 0.1556) | 0.2000) | 0.2000)

(0.3111, | (0.0444, | (0.3111, | (0.0444, | (0.3111, | (0.2222,

Data Pri
aa TIvacy 1 4 4000, |0.1333, |0.4000, |0.1333, |0.4000, |0.3111,

Violations | ) 1000y | 0.1778) | 0.4000) |0.1778) | 0.4000) | 0.4000)
_ (0.2222, | (0.0444, | (0.2222, | (0.0444, | (0.2222, | (0.1333,
Reputation
0.3111, |0.1333, | 03111, |0.1333, |0.3111, |0.2222,
Damage

0.4000) |0.1778) | 0.4000) |0.1778) |0.4000) |0.3111)

(0.0667, | (0.0222, | (0.0667, | (0.0222, | (0.1111, | (0.1111,

Reputational | o) coilures | 01111, | 0.0667, | 01111, | 00667, |0.1556, | 0.1556,

Risks 0.1556) | 0.0889) | 0.1556) | 0.0889) |0.2000) |0.2000)
(0.4667, | (0.3334, | (0.4667, | (0.3334, | (0.4667, | (0.3334,
Health Crises | 0.6000, |0.4667, |0.6000, |0.4667, |0.6000, |0.4667,
0.6000) |0.6000) | 0.6000) |0.6000) |0.6000) | 0.6000)
F. Step 5: Distance from FPIS and FNIS

Table 9 presents the computed distances of each alternative from the Fuzzy Positive Ideal Solution (FPIS) and
Fuzzy Negative Ideal Solution (FNIS). For the Face-to-Face alternative, the distance from the FPIS is 1.652, while
the distance from the FNIS is 0.992. The Online alternative exhibits a D+ value of 1.160 and a D- value of 1.483,
whereas Hybrid Learning has corresponding distances of 1.440 (D+) and 1.210 (D-). These metrics quantify each
alternative’s proximity to ideal and worst-case scenarios, thereby facilitating comparative risk assessment.

Table 10 provides detailed distance calculations across each primary risk category. Under Technological Risks,
Face-to-Face learning displays a D+ value of 0.371 and a D- value of 0.117, whereas Online and Hybrid Learning
alternatives present D+ values of 0.162 and 0.211, respectively. Regarding Operational Risks, the Face-to-Face
alternative shows the highest D+ value of 0.588 and lacks a corresponding D- value, indicating pronounced
vulnerability. In contrast, Online and Hybrid Learning modes report D+ values of 0.210 and 0.287, respectively.

In Pedagogical Risks, Face-to-Face learning registers a D+ value of 0.215 and a D- value of 0.279, whereas the
Online mode reveals higher vulnerability with a D+ value of 0.318 and a lower D- of 0.175. Hybrid Learning
exhibits the highest D+ value in this category at 0.363, alongside a comparatively low D- value of 0.129. Under
Compliance and Regulatory Risks, Face-to-Face learning demonstrates a D+ value of 0.159 and a relatively high
D- value of 0.390. The Online and Hybrid alternatives report D+ values of 0.263 and 0.290, respectively. Lastly,
within Reputational Risks, Face-to-Face learning records a D+ value of 0.319 and a D- value of 0.206, while the
Online and Hybrid modes yield D+ values of 0.208 and 0.289, respectively.

Table 9: Distance from FPIS and FNIS for Overall

Alternative | D+ (Best) D- (Worst)
Overall Face-to- | 4 g5p 0.992

Face

Online 1.160 1.483
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Hybrid

Learning 1.440

1.210 ‘

Table 10: Distance from FPIS and FNIS for Main Criteria

Main Criteria Alternative D+ (Best) | D- (Worst)
Face-to-Face 0.371 0.117
Technological Risks Online 0.162 0.328
Hybrid Learning | 0.211 0.286
Face-to-Face 0.588 0.000
Operational Risks Online 0.210 0.378
Hybrid Learning | 0.287 0.302
Face-to-Face 0.215 0.279
Pedagogical Risks Online 0.318 0.175
Hybrid Learning | 0.363 0.129
Face-to-Face 0.159 0.390
Compliance & Regulatory Risks | Online 0.263 0.284
Hybrid Learning | 0.290 0.258
Face-to-Face 0.319 0.206
Reputational Risks Online 0.208 0.318
Hybrid Learning | 0.289 0.236
G. Step 6:Closeness Coefficient (CC)

Table 11 presents the calculated CC values for each learning alternative within the Overall category. The Face-to-
Face alternative obtained a CC value of 0.3752, indicating relatively lower closeness to the ideal solution
compared to the other alternatives. Online Learning achieved the highest CC value (0.5611), signifying its greater
proximity to the ideal scenario and, therefore, suggesting its potential suitability based on the assessed risk factors.
Hybrid Learning holds an intermediate position with a CC value of 0.4566, reflecting moderate performance
relative to the other two alternatives.

Table 12 elaborates further by detailing Closeness Coefficients across each primary risk category, including
Technological, Operational, Pedagogical, Compliance and Regulatory, and Reputational Risks. Under
Technological Risks, Online Learning exhibits the highest CC value (0.6694), indicating the lowest relative risk,
followed by Hybrid Learning (0.5755), and Face-to-Face (0.2398). Within Operational Risks, Online Learning
again demonstrates the most favourable outcome (CC = 0.6429), whereas Hybrid Learning is moderately
favourable (CC = 0.5127), and Face-to-Face Learning reveals significant vulnerability, reflected in its lowest CC
value (0.0000).

In the context of Pedagogical Risks, the Face-to-Face alternative exhibits superior performance, reflected by the
highest CC value (0.5648), suggesting stronger pedagogical effectiveness compared to Online Learning (CC =
0.3550) and Hybrid Learning (CC = 0.2622). Within Compliance and Regulatory Risks, Face-to-Face Learning
again emerges as the most advantageous alternative (CC = 0.7104), surpassing Online Learning (CC = 0.5192)
and Hybrid Learning (CC = 0.4708). Lastly, in terms of Reputational Risks, Online Learning leads with a CC
value of 0.6046, followed by Hybrid Learning (0.4495), and Face-to-Face Learning demonstrating the lowest
closeness coefficient (0.3924).
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Example: Calculating CC for Face-to-Face (Overall)

Using values:
D =0.3324
D = 0.1996
D~ 0.1996 _ 0.1996

cc = 0.3752

DY+ D- 03324+0.1996 0532

Table 11: Closeness Coefficient (CC) for Overall

Alternative CC Value

Face-to-Face 0.3752

Overall "Online 0.5611
Hybrid
Learning 0.4566

Table 12: Closeness Coefficient (CC) for Main Criteria

Main Criteria Alternative CC Value

Face-to-Face 0.2398

Technological Risks Online 0.6694
Hyb“q 0.5755
Learning

Face-to-Face 0.0000

Operational Risks Online 0.6429
Hyb”q 0.5127
Learning

Face-to-Face 0.5648

Pedagogical Risks Online 0.3550
Hyb“q 0.2622
Learning

Face-to-Face 0.7104

Compliance & Regulatory | Online 0.5192
Risks -
Hybrid 0.4708
Learning

Face-to-Face 0.3924

Reputational Risks Online 0.6046
Hybrlq 0.4495
Learning
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H. Step 7: Ranking

Table 13 provides the ranking of alternatives based on the calculated CC values. In the overall evaluation, the
Online alternative attained the highest CC value (0.5611), thus achieving the first rank. Hybrid Learning secured
the second position with a CC value of 0.4566, while Face-to-Face Learning ranked third, having a CC value of
0.3752. Table 14 offers a detailed breakdown of rankings across each primary risk category. Under Technological
Risks, the Online alternative demonstrated superior performance, ranking first with a CC value of 0.6694. Hybrid
Learning followed in second place (CC = 0.5755), with Face-to-Face positioned third (CC = 0.2398). In
Operational Risks, Online Learning again secured the first rank (CC = 0.6429), Hybrid Learning occupied the
second position (CC = 0.5127), and Face-to-Face ranked third, reflecting notable vulnerability (CC = 0.0000).

In the Pedagogical Risks category, Face-to-Face Learning achieved the highest CC value (0.5648), ranking first
and indicating strong pedagogical effectiveness, whereas Online (CC = 0.3550) and Hybrid Learning (CC =
0.2622) were ranked second and third, respectively. Concerning Compliance and Regulatory Risks, Face-to-Face
Learning maintained the top position (CC = 0.7104), with Online Learning ranked second (CC = 0.5192) and
Hybrid Learning third (CC = 0.4708). Lastly, under Reputational Risks, Online Learning ranked first (CC =
0.6046), followed by Hybrid Learning in second place (CC = 0.4495), and Face-to-Face Learning ranked third
(CC =0.3924). These rankings underscore the comparative strengths and limitations of each alternative across
various risk dimensions, revealing that Online Learning generally emerged as the most favourable overall, while
Face-to-Face Learning excelled specifically in Pedagogical and Compliance and Regulatory aspects.

Table 13: Ranking of Overall

Alternative CC Value | Rank
Online 0.5611 1
Overall
Hybrid Learning 0.4566 2
Face-to-Face 0.3752 3
Table 14: Ranking for Main Criteria
Main Criteria Alternative CC Value | Rank
Online 0.6694 1
Technological Risks Hybrid Learning 0.5755 2
Face-to-Face 0.2398 3
Online 0.6429 1
Operational Risks Hybrid Learning 0.5127 2
Face-to-Face 0.0000 3
Face-to-Face 0.5648 1
Pedagogical Risks Online 0.3550 2
Hybrid Learning 0.2622 3
Face-to-Face 0.7104 1
gz;ﬁ;';?;emsks & Online 05192 |2
Hybrid Learning 0.4708 3
Online 0.6046 1
Reputational Risks
Hybrid Learning 0.4495 2
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Main Criteria Alternative CC Value | Rank

Face-to-Face 0.3924 3

V. CONCLUSIONS AND FUTURE WORK

The findings of this study underscore the relative effectiveness of different learning modes in addressing and
mitigating risks associated with teaching evaluation processes. According to the overall rankings derived from CC
analysis, the Online learning alternative emerged as the most favourable option with a CC value of 0.5611,
outperforming Hybrid Learning (0.4566) and Face-to-Face Learning (0.3752). These outcomes emphasize the
superior capability of Online learning environments in managing risks, particularly in technological, operational,
and reputational domains, thereby benefiting educational institutions through enhanced digital resilience,
streamlined operational procedures, and improved institutional image.

A detailed assessment of each primary risk criterion further reveals that Online learning achieved the highest
rankings in Technological Risks (CC=0.6694), Operational Risks (CC=0.6429), and Reputational Risks
(CC=0.6046). This suggests significant advantages for institutions adopting online learning, as they are better
equipped to address digital infrastructure vulnerabilities, optimize workflow efficiency, and safeguard their
reputation. Conversely, Face-to-Face Learning exhibited notable strengths in Pedagogical Risks (CC=0.5648) and
Compliance and Regulatory Risks (CC=0.7104), highlighting its efficacy in promoting instructional quality, learner
engagement, and effective compliance with educational policies and regulatory frameworks.

Hybrid Learning consistently positioned itself between the two alternatives across most criteria, reflecting its
balanced but moderate risk management performance. Although it did not exhibit dominance in any single category,
its integrated approach presents institutions with a strategic advantage through flexibility, allowing tailored
responses to diverse educational challenges. These results offer practical benefits for educational institutions,
providing a structured basis to inform strategic decisions concerning teaching methodologies, resource allocation,
and risk management practices. By clearly identifying strengths and vulnerabilities within each instructional mode,
institutions can better tailor their approaches to align with specific organizational priorities and stakeholder
expectations.

Future research directions may involve extending the evaluation framework by incorporating additional learning
alternatives, refining the weighting of evaluation criteria through expert consensus methods, and integrating real-
time data analytics for more dynamic and responsive decision-making. Furthermore, investigating the potential
impact of emerging technologies, such as artificial intelligence and adaptive learning systems, on risk mitigation
processes could facilitate substantial advancements in teaching evaluation practices, ultimately enhancing
institutional resilience and educational quality.
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