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Abstract: - This study addresses the critical challenge of evaluating and mitigating risks associated with various teaching modalities in higher 

education, particularly as institutions increasingly adopt Online and Hybrid Learning environments. Utilizing the Fuzzy Technique for Order 

of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS), a robust multi-criteria decision-making (MCDM) method, the study 

systematically assesses and ranks teaching modalities based on five key risk dimensions: technological, operational, pedagogical, compliance, 

and reputational. Expert evaluations were converted into fuzzy numbers, and distances from the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy 

Negative Ideal Solution (FNIS) were computed to determine each modality’s relative performance. The findings reveal that Online Learning is 

the most effective modality for risk mitigation, particularly excelling in technological, operational, and reputational domains. Hybrid Learning 

demonstrated balanced performance, ranking second overall, while Face-to-Face instruction was most effective in managing pedagogical and 

compliance-related risks. These results offer data-driven insights that can guide higher education institutions in optimizing teaching evaluation 

strategies, improving institutional resilience, and enhancing quality assurance processes. By adopting a structured, evidence-based approach, 

institutions can better align their instructional delivery with risk management priorities. The study highlights the benefits of integrating Fuzzy 

TOPSIS in educational decision-making, providing a scalable and transparent framework for continuous improvement 
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I. INTRODUCTION 

Teaching evaluation plays a vital role in assessing instructional effectiveness, ensuring quality learning experiences, 

and driving continuous improvement within higher education institutions [1]. With the increasing integration of 

various instructional modalities—namely Face-to-Face, Online, and Hybrid Learning—there is a growing need to 

assess the specific risks associated with each approach. These risks encompass technological limitations, 

operational inefficiencies, pedagogical shortcomings, regulatory compliance issues, and reputational vulnerabilities 

[2], [3]. As institutions become more dependent on digital platforms for instruction and assessment, understanding 

the influence of each modality on risk exposure has become critical [4]. While Online Learning offers enhanced 

flexibility and broader accessibility, it presents challenges related to digital infrastructure, cybersecurity, and student 

engagement [5]. Hybrid Learning combines traditional and digital approaches but necessitates efficient instructional 

coordination and optimized resource management [6]. Conversely, Face-to-Face instruction, although conventional, 

may encounter challenges in maintaining compliance standards and adapting to modern operational constraints [7]. 

In response to these complexities, this study proposes a systematic, data-driven framework for risk assessment using 

the Fuzzy Technique for Order of Preference by Similarity to the Ideal Solution (Fuzzy TOPSIS), a recognized 

multi-criteria decision-making (MCDM) approach [8], [9]. By computing the distances of each alternative from the 

Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS), the study identifies the most 

effective teaching modality for mitigating risk in teaching evaluation environments [10]. The primary objective is 

to apply this model to evaluate and rank learning alternatives based on risk factors, thereby supporting evidence-

based decision-making. The findings contribute to institutional efforts in quality assurance and strategic risk 

management. The remainder of this paper is structured as follows: Section II reviews related work, Section III 

details the methodology, Section IV presents results and analysis, and Section V outlines conclusions and directions 

for future research. 
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II. RELATED WORK 

A. Risk Management in Higher Education 

Risk management in higher education institutions (HEIs) has become a critical element of institutional 

governance, particularly in operationally sensitive domains such as the admissions process. The complexity and 

high-stakes nature of admissions exposes institutions to a broad spectrum of risks, including data privacy 

violations, IT system failures, cybersecurity threats, and administrative delays. Data breaches involving student 

records can result in severe regulatory penalties and long-lasting reputational damage. Likewise, system outages 

during high-demand admission cycles can significantly disrupt processing, undermining institutional credibility 

and adversely affecting enrollment outcomes. 

To mitigate these challenges, researchers have proposed structured risk assessment frameworks specifically 

adapted to the needs of HEIs. These models incorporate cybersecurity principles and provide tools for 

systematically identifying and evaluating risks, improving decision-making, and defining appropriate risk 

acceptance thresholds [11]. Broader operational risks, such as staffing shortages, insufficient faculty training, 

outdated infrastructure, and limited academic-industry collaboration, also pose significant threats to institutional 

effectiveness. Addressing these requires comprehensive risk mitigation strategies that align with institutional 

performance goals and ensure continuity of services [12]. 

Several studies have extended the discussion on HEI risk management into specific thematic domains. Narayan 

& Kommunuri [13] explore psychological and socio-cultural factors that drive risk-taking behavior in academic 

environments, highlighting the role of human vulnerabilities in institutional risk profiles. Odlin et al. [14] propose 

a typology for internship-related risks, emphasizing the importance of institutional responsibility and operational 

control in designing mitigation strategies based on frequency and severity. Syamsia et al. [15] analyze operational 

risks arising from structural conflicts between universities and their governing foundations, recommending 

context-specific mitigation frameworks. In the area of cybersecurity, Awang et al. [16] advocate for predictive 

risk assessment methodologies to safeguard campus information systems, while Al-mudaires et al. [17] present an 

ISO/IEC 27005-aligned framework tailored for governmental educational institutions in Saudi Arabia, addressing 

gaps in information security compliance and readiness. 

Beyond the educational context, Cornwell et al. [18] review the application of data analytics in operational risk 

management across financial services and energy sectors. Their analysis identifies five core dimensions of risk 

governance: identification, causal factor analysis, quantification, prediction, and decision-making. These 

contributions collectively underscore the growing importance of robust, data-driven, and context-specific risk 

management frameworks tailored to the evolving operational landscapes of higher education institutions. 

B. Fuzzy TOPSIS Method 

The Fuzzy Technique for Order Preference by Similarity to Ideal Solution (Fuzzy TOPSIS) has emerged as a 

prominent tool in multi-criteria decision-making (MCDM), particularly suited for addressing uncertainty and 

vagueness in complex decision environments. By integrating fuzzy set theory into the classical TOPSIS 

framework, the method evaluates alternatives based on their relative closeness to the Fuzzy Positive Ideal Solution 

(FPIS) and the Fuzzy Negative Ideal Solution (FNIS), providing a structured approach for ranking alternatives 

across multiple, and often conflicting, criteria. The flexibility and robustness of Fuzzy TOPSIS have led to its 

widespread application in diverse domains, reflecting its capacity to enhance decision-making accuracy and clarity 

under uncertainty. 

Fuzzy TOPSIS has been utilized in industrial and sustainability-focused applications to evaluate technological and 

environmental challenges. Tanveer et al. [19] applied the method to assess the impact of digital technologies—

such as Cyber-Physical Systems (CPS), the Internet of Things (IoT), Cloud Manufacturing (CM), and Big Data 

Analytics (BDA)—on circular supply chains within small and medium-sized enterprises (SMEs). Hajiaghaei-

Keshteli et al. [20] introduced the Pythagorean Fuzzy TOPSIS to support green supplier selection in food 

packaging operations by incorporating both environmental and traditional evaluation criteria. Similarly, Alavi et 

al. [21] developed a dynamic decision support system (DSS) integrating fuzzy Best-Worst Method (BWM) and 

fuzzy inference systems to optimize sustainable supplier selection in circular supply chains. 
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In organizational and managerial decision-making, Fuzzy TOPSIS has been employed to support personnel 

selection and process optimization. Baharin et al. [22] used the method to identify the most suitable managerial 

candidate based on twelve performance criteria. Govil & Sharma, [23] applied Fuzzy TOPSIS to evaluate software 

development life cycle (SDLC) models, validating Agile methodologies as the most optimal. Anbarkhan, [24] 

explored the use of Fuzzy TOPSIS for sustainability evaluation within the context of Industry 5.0 and software 

engineering practices. In educational and technological assessments, Singh et al. [25] used Fuzzy TOPSIS to rank 

learning applications based on their effectiveness in promoting critical thinking among novice programming 

students. Başaran & El Homsi, [26] evaluated six mathematics learning applications using ISO/IEC 25010 

software quality standards and a fuzzy TOPSIS approach. Dymova et al. [27] extended the traditional model by 

introducing an intuitionistic fuzzy TOPSIS integrated with Dempster-Shafer theory to enhance aggregation and 

manage uncertainty in MCDM scenarios. 

Finally, in safety and risk evaluation contexts, Ünlükal & Yücel, [28] combined Intuitionistic Fuzzy TOPSIS with 

Failure Mode and Effects Analysis (FMEA) to improve the prioritization of risks in aviation industry production 

processes. These diverse applications collectively underscore the versatility, analytical depth, and sectoral 

adaptability of Fuzzy TOPSIS in supporting robust, data-driven decision-making across industrial, organizational, 

environmental, and educational domains. 

C. Applications of Fuzzy TOPSIS in Risk Assessment 

 Fuzzy TOPSIS has demonstrated substantial applicability across various industries, supporting complex risk 

assessments through its ability to handle uncertainty and multiple conflicting criteria. Its adoption provides 

organizations with a structured and reliable framework for evaluating and ranking risks, thereby enhancing 

decision-making, optimizing resource allocation, and promoting more robust risk mitigation strategies. The 

versatility of Fuzzy TOPSIS is evidenced in its integration across industrial, educational, environmental, and 

infrastructure sectors. In the industrial and infrastructure domains, several studies have leveraged Fuzzy TOPSIS 

for advanced risk modelling. Ostadi & Harofteh, [29] developed the Co-Occurrence-based Risk Assessment 

(CORA) method, which integrates Monte Carlo simulation and system dynamics to assess interconnected risks in 

a petrochemical project. Similarly, Gu et al. [30] proposed an intuitionistic fuzzy TOPSIS model for assessing 

rockburst intensity in hydraulic tunnels by analyzing membership degrees in a weighted decision matrix. Awodi 

et al. [10] utilized fuzzy TOPSIS to evaluate and rank 18 critical risk factors in nuclear decommissioning projects 

using FPIS, FNIS, and Closeness Coefficients. Cho & Chae, [31] introduced a hybrid decision-making model that 

integrates TOPSIS with Quality Function Deployment-Failure Mode Effects Analysis (QFD-FMEA) to select 

construction methods based on safety and environmental risk factors. 

Fuzzy TOPSIS has also been effectively applied within educational and organisational management contexts. 

Kurniawan et al. [32] presented a decision-support framework for evaluating academic department performance 

based on research output, comparing fuzzy TOPSIS with fuzzy SAW and fuzzy EDAS methods using criteria 

weighted via the Analytic Network Process (ANP). Xu et al. [33] employed a fuzzy TOPSIS model based on the 

cloud model to assess student satisfaction with online education across four dimensions—technology, instructor, 

learner, and environment—during the COVID-19 pandemic. In environmental and policy-focused applications, 

Sadeghi et al. [34] applied fuzzy TOPSIS with verbal variables to assess industrial risk factors in advanced sectors, 

offering a structured model for prioritization. Pérez-Pérez et al. [35] utilized a fuzzy logic-based MCDM approach 

to evaluate climate transition risks within Colombia’s processed food industry, emphasizing the role of structured 

fuzzy assessments in policy and sustainability-driven decision-making 

III. METHOD 

A. Step 1: Identification of Criteria  

The initial step in the Fuzzy TOPSIS methodology involves identifying critical criteria necessary for assessing 

and prioritizing risks associated with teaching evaluation processes within higher education institutions. Effective 

identification of relevant risk criteria, such as data privacy violations, IT system failures, and regulatory non-

compliance, allows for a comprehensive evaluation framework, enabling institutions to proactively manage 

potential threats to their teaching evaluation practices. Five principal criteria were systematically selected based 

on their significance to institutional risk management and their direct implications for ensuring quality and 
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effectiveness in teaching evaluations. These criteria were organized into clearly defined categories, each 

encompassing specific sub-criteria to address distinct risk dimensions comprehensively. The identified main 

categories include Compliance and Regulatory Risks, Operational Risks, Pedagogical Risks, Reputational Risks, 

and Technological Risks. Table 1 summarizes the selected main criteria along with their associated sub-criteria, 

providing a structured approach that enhances clarity, consistency, and transparency in decision-making.  

Table 1: Criteria for Risk Evaluation 

Main Criteria ID Sub Criteria 

Compliance & Regulatory Risks C1 Regulatory Non-Compliance 

C2 Policy Breaches 

C3 Data Privacy Violations 

Operational Risks O1 Process Delays 

O2 Resource Constraints 

O3 Errors in Assessment 

Pedagogical Risks P1 Teaching Quality Decline 

P2 Programme Irrelevance 

P3 Student Misconduct 

Reputational Risks R1 Reputation Damage 

R2 CQI Failures 

R3 Health Crises 

Technological Risks T1 System Failures 

T2 Cybersecurity Threats 

T3 Obsolete Technology 

 

B. Step 2: Construct the Decision Matrix 

In the second step, decision-makers assigned specific weights and fuzzy values to each identified sub-criterion 

within the five principal risk categories: Compliance and Regulatory Risks, Operational Risks, Pedagogical Risks, 

Reputational Risks, and Technological Risks. The fuzzy scale utilized for evaluating the importance of each risk 

criterion included three defined levels: Low (0.2), Medium (0.4), and High (0.6). Crucial sub-criteria such as 

Regulatory Non-Compliance, Data Privacy Violations, and Health Crises received ratings ranging from Medium 

to High due to their substantial potential impact on institutional integrity, regulatory adherence, and stakeholder 

trust. Conversely, sub-criteria like Process Delays, Errors in Assessment, and Obsolete Technology were 

predominantly assessed as Low risk, reflecting their relatively minimal influence on institutional performance. 

The structured assignment of weights and fuzzy values facilitates the creation of a comprehensive decision matrix, 

which serves as an analytical foundation for systematically identifying, comparing, and prioritizing critical risks 

across different learning environments. By clearly articulating the relative significance of each risk sub-criterion, 

this approach enhances the precision and reliability of risk evaluations, thereby enabling institutions to allocate 

resources more effectively, improve risk response strategies, and ultimately strengthen overall institutional 

resilience and decision-making quality. Table 2 illustrates the assigned weights for each sub-criterion, providing 

transparency and clarity in the analytical process. 
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Table 2: Characteristics of Criteria 

Main Criteria ID Sub-Criteria Weight 
Fuzzy 

Value 

Compliance & 

Regulatory Risks 

C1 Regulatory Non-Compliance Medium 0.4 

C2 Policy Breaches Low 0.2 

C3 Data Privacy Violations Medium 0.4 

Operational Risks 

O1 Process Delays Low 0.2 

O2 Resource Constraints High 0.6 

O3 Errors in Assessment Low 0.2 

Pedagogical Risks 

P1 Teaching Quality Decline Medium 0.4 

P2 Programme Irrelevance Low 0.2 

P3 Student Misconduct Low 0.2 

Reputational Risks 

R1 Reputation Damage Medium 0.4 

R2 CQI Failures Low 0.2 

R3 Health Crises High 0.6 

Technological Risks 

T1 System Failures Low 0.2 

T2 Cybersecurity Threats Low 0.2 

T3 Obsolete Technology Low 0.2 

 

The subsequent phase in the methodology involves assigning fuzzy ratings to each alternative, guided by expert 

evaluations. Experts employed linguistic terms, specifically Very Low, Low, Medium, High, and Very High, to 

assess each alternative systematically. These qualitative assessments were subsequently transformed into 

quantitative fuzzy numbers, providing a structured numerical representation of expert judgments. Table 3 presents 

the linguistic terms alongside their corresponding fuzzy triangular numbers, defined clearly by lower, middle, and 

upper bound values. This structured approach enables nuanced capture of expert perceptions, facilitating more 

precise and reliable comparative evaluations of risk across the learning alternatives.  

 

Table 3: Fuzzy Scale 

Code Linguistic Terms Lower (L) Middle (M) Upper (U) 

1 Very Low (VL) 1 1 3 

2 Low (L) 1 3 5 

3 Medium (M) 3 5 7 

4 High (H) 5 7 9 

5 Very High (VH) 7 9 9 

 

C. Step 3: Fuzzified Decision Matrix 

The third step of the Fuzzy TOPSIS methodology involves constructing the fuzzified decision matrix by 

converting expert-provided crisp evaluations into fuzzy numbers. Experts assign linguistic ratings—Very Low, 
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Low, Medium, High, and Very High—to each main criterion and its corresponding sub-criteria. These qualitative 

ratings are systematically transformed into quantitative fuzzy values, effectively representing uncertainty and 

variability in expert assessments. Each linguistic term is associated with a triangular fuzzy number comprising a 

lower bound (L), a middle or most likely value (M), and an upper bound (U). For example, the term High 

corresponds to the fuzzy number (5, 7, 9), capturing a moderate-to-high intensity range of expert judgment. When 

an expert rates a sub-criterion under a main criterion as High, it translates directly into the fuzzy triplet (5, 7, 9). 

This fuzzification approach captures inherent imprecision and variability in human judgment, providing a more 

nuanced and realistic representation of decision-making processes. The mathematical formula applied for 

converting crisp expert ratings into fuzzy numbers is defined as follows: 

  Fuzzy Number = (L, M, U)    

 (1) 

Where: 

L is the lower bound of the fuzzy number, 

M is the middle value of the fuzzy number, 

U is the upper bound of the fuzzy number. 

D. Step 4: Normalized Matrix 

Normalization of the decision matrix is essential to achieve consistency and comparability across different 

evaluation criteria within the Fuzzy TOPSIS methodology. The normalization procedure adjusts the fuzzy 

numbers assigned to each criterion to a uniform scale, facilitating meaningful comparisons and ensuring that no 

single criterion disproportionately influences the analysis due to scale discrepancies. Specifically, each fuzzy 

number is normalized by dividing its lower bound, middle value, and upper bound by the maximum upper bound 

value identified within the respective criterion. This systematic normalization enhances analytical integrity, 

reduces bias, and ensures equitable weighting across all evaluated sub-criteria. The mathematical expression for 

computing the normalized fuzzy decision matrix is presented as follows:  

 𝑟𝑖𝑗̃ = (
𝑙𝑖𝑗

𝑢𝑚𝑎𝑥
,

𝑚𝑖𝑗

𝑢𝑚𝑎𝑥
,

𝑢𝑖𝑗

𝑢𝑚𝑎𝑥
)     (2) 

Where: 

𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑢𝑖𝑗  = The fuzzy number’s lower, middle, and upper bounds for alternative i under criterion j. 

𝑢𝑚𝑎𝑥  = The maximum upper bound within the respective criterion. 

 

E. Step 5: Weighted Normalized Decision Matrix  

Following normalization, each normalized fuzzy value is multiplied by the corresponding fuzzy weight assigned 

to its respective sub-criterion. These weights, defined as Low (0.2), Medium (0.4), or High (0.6), systematically 

integrate expert judgments regarding the relative importance of each risk factor into the analysis. Applying these 

fuzzy weights ensures that sub-criteria deemed more impactful receive proportionally greater emphasis in the 

overall evaluation. The mathematical expression for calculating the weighted normalized fuzzy values is provided 

as follows: 

  𝑊𝑖𝑗
′ = 𝑋𝑖𝑗

′ × 𝑤𝑗     

 (3) 

Where: 

 𝑊𝑖𝑗
′  = The weighted normalized value for alternative i and criterion j, 

 𝑋𝑖𝑗
′   = The normalized value for alternative i and criterion j, 

 𝑊𝑗 = The fuzzy weight for criterion j. 
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F. Step 6: Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) 

The determination of the Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy Negative Ideal Solution (FNIS) 

constitutes a crucial step in the Fuzzy TOPSIS methodology. These solutions represent the optimal (best-case) 

and least favourable (worst-case) scenarios, respectively, for each evaluated criterion, thus enabling an effective 

comparative assessment of alternatives. Specifically, the FPIS is established by selecting the maximum fuzzy 

values—considering the lower, middle, and upper bounds—for each criterion across all evaluated alternatives. 

For example, when assessing a criterion such as Impact, the FPIS is computed by identifying the highest fuzzy 

values from the normalized fuzzy evaluations across all alternatives. This approach facilitates a clear benchmark 

against which each alternative's performance can be accurately measured. The use of FPIS and FNIS significantly 

enhances the analytical precision of the decision-making process, providing clear insights into the relative 

positioning of alternatives. The mathematical formulation for calculating the FPIS for each criterion j is expressed 

as follows: 

  𝐹𝑃𝐼𝑆𝑗 = (max
𝑖

𝑋𝑖𝑗,Lower
′ ,  max

𝑖
𝑋𝑖𝑗, middle

′ ,  max
𝑖

𝑋𝑖𝑗,Upper
′ )  

 (4) 

Where: 

max
𝑖

𝑋𝑖𝑗,Lower
′   = Maximum of the lower bound values for criterion j, 

max
𝑖

𝑋𝑖𝑗, middle
′  = Maximum of the middle values for criterion j, 

max
𝑖

𝑋𝑖𝑗,Upper
′   = Maximum of the upper bound values for criterion j. 

Conversely, the Fuzzy Negative Ideal Solution (FNIS) signifies the least favourable scenario for each sub-criterion 

within the Fuzzy TOPSIS methodology. The FNIS is established by identifying the minimum fuzzy values—

encompassing the lower, middle, and upper bounds—for each sub-criterion across all evaluated alternatives. For 

instance, when evaluating a particular sub-criterion under a main criterion, the FNIS is derived from selecting the 

lowest fuzzy values observed across all alternatives. This process defines a clear negative benchmark, facilitating 

an accurate assessment of how distant each alternative is from the least desirable scenario. Utilizing FNIS thus 

provides critical insights into the potential vulnerabilities and weaknesses of each alternative, enabling institutions 

to better prioritize interventions and effectively mitigate risks. The mathematical formulation for computing the 

FNIS for each sub-criterion j is presented as follows: 

  𝐹𝑁𝐼𝑆𝑗 = (min
𝑖

𝑋𝑖𝑗,Lower
′ ,  min

𝑖
𝑋𝑖𝑗, middle

′ ,  min
𝑖

𝑋𝑖𝑗,Upper
′ )  

 (5) 

Where: 

min
i

Xij,Lower
‘    = Minimum of the lower bound values for criterion j, 

min
𝑖

𝑋𝑖𝑗, middle
′  = Minimum of the middle values for criterion j, 

min
𝑖

𝑋𝑖𝑗,Upper
′   = Minimum of the upper bound values for criterion j. 

G. Step 7: Distance Calculation Results 

In Step 7 of the Fuzzy TOPSIS methodology, the distance calculation quantitatively evaluates the proximity of 

each alternative to the Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy Negative Ideal Solution (FNIS). This 

step provides a structured assessment of how closely each alternative aligns with both ideal and worst-case 

scenarios across all sub-criteria. Specifically, the Euclidean distance between each alternative’s fuzzy ratings and 

the respective FPIS and FNIS values is calculated. The computation of these distances yields precise numerical 

indicators, effectively illustrating each alternative's relative strengths and weaknesses. The mathematical 

expression used for calculating the distance of each alternative from the FPIS is represented as follows: 
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    𝐷𝑖
𝐹𝑃𝐼𝑆 =

√
1

3
∑ ((𝑋𝑖𝑗,Lower

′ − 𝐹𝑃𝐼𝑆𝑗,Lower)
2

+ (𝑋𝑖𝑗, middle
′ − 𝐹𝑃𝐼𝑆𝑗,Middle)

2
+ (𝑋𝑖𝑗,Upper

′ − 𝐹𝑃𝐼𝑆𝑗,Upper)
2

)𝑛
𝑗=1                     (6) 

 

Similarly, the distance of each alternative from the FNIS is calculated using the following formula: 

 

 𝐷𝑖
𝐹𝑁𝐼𝑆 =

√
1

3
∑ ((𝑋𝑖𝑗,Lower

′ − 𝐹𝑁𝐼𝑆𝑗,Lower)
2

+ (𝑋𝑖𝑗, middle
′ − 𝐹𝑁𝐼𝑆𝑗,Middle)

2
+ (𝑋𝑖𝑗,Upper

′ − 𝐹𝑁𝐼𝑆𝑗,Upper)
2

)𝑛
𝑗=1  (7) 

Where: 

Di
FPIS = The distance of alternative i from the FPIS, 

𝐷𝑖
𝐹𝑁𝐼𝑆 = The distance of alternative i from the FNIS, 

𝑋𝑖𝑗,Lower
′ , 𝑋𝑖𝑗, middle

′ , 𝑋𝑖𝑗,Upper
′  = Normalized fuzzy values for alternative i and criterion j, 

𝐹𝑃𝐼𝑆𝑗,Lower, 𝐹𝑃𝐼𝑆𝑗, middle, 𝐹𝑃𝐼𝑆𝑗,Upper = Fuzzy positive ideal values for criterion j, 

𝐹𝑁𝐼𝑆𝑗,Lower, 𝐹𝑁𝐼𝑆𝑗, middle, 𝐹𝑁𝐼𝑆𝑗,Upper = Fuzzy negative ideal values for criterion j. 

H. Step 8: Closeness Coefficients with Alternative Details 

In Step 8, the calculation of the Closeness Coefficient (CC) quantitatively determines each alternative’s relative 

proximity to the Fuzzy Positive Ideal Solution (FPIS) and its distance from the Fuzzy Negative Ideal Solution 

(FNIS). This coefficient provides a clear numerical indicator reflecting each alternative's overall desirability, with 

higher values signifying greater closeness to the ideal scenario and increased distance from the worst-case 

scenario. The Closeness Coefficient serves as a critical analytical measure, enabling institutions to objectively 

rank alternatives and thus enhance decision-making accuracy, transparency, and strategic alignment.  

  
𝐶𝐶𝑖 =

𝐷𝑖
𝐹𝑁𝐼𝑆

𝐷𝑖
𝐹𝑃𝐼𝑆+𝐷𝑖

𝐹𝑁𝐼𝑆
    

 
(8) 

Where: 

𝐶𝐶𝑖 = Closeness Coefficient for alternative I, 

𝐷𝑖
𝐹𝑁𝐼𝑆

 = The distance of alternative i from the FNIS, 

𝐷𝑖
𝐹𝑃𝐼𝑆

 = The distance of alternative iii from the FPIS. 

The Closeness Coefficient (CC) values range between 0 and 1, where values approaching 1 signify that the 

alternative is substantially closer to the Fuzzy Positive Ideal Solution (FPIS) and more distant from the Fuzzy 

Negative Ideal Solution (FNIS), indicating a highly favourable option. Conversely, values approaching 0 imply 

that the alternative is closer to the FNIS and farther from the FPIS, denoting a less favourable choice. Each 

alternative’s CC value is computed by evaluating the relative distances to both the FPIS and FNIS obtained in the 

previous step. Following this calculation, the CC values for all alternatives are systematically compared, enabling 

the identification of the optimal choice. The alternative possessing the highest CC is recognized as the best 

solution, given its superior proximity to the ideal outcome and considerable distance from the least desirable 

scenario.  

I. Step 9: Ranking of Alternatives Based on Closeness Coefficient 

In Step 9 of the Fuzzy TOPSIS methodology, the alternatives are systematically ranked according to their calculated 

CC values obtained in the previous step. These CC values quantitatively represent each alternative’s relative 

proximity to the Fuzzy Positive Ideal Solution (FPIS) and its distance from the Fuzzy Negative Ideal Solution 

(FNIS). Alternatives exhibiting higher CC values are considered more favourable due to their greater closeness to 
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the ideal scenario and greater distance from the least desirable outcome. Consequently, all evaluated alternatives 

are ordered in descending sequence based on their CC values. The alternative with the highest Closeness Coefficient 

is ranked first, indicating its superior performance and suitability relative to other choices, while the alternative with 

the lowest CC is ranked last, reflecting its lower desirability. This systematic ranking process significantly enhances 

decision-making clarity, ensuring institutions effectively prioritize their options. 

IV. RESULT AND ANALYSIS 

This section reports the results and subsequent analysis derived from applying the Fuzzy TOPSIS approach to the 

teaching evaluation process. The assessment systematically evaluates multiple risk factors, specifically 

technological, operational, pedagogical, compliance, and reputational risks, across three distinct instructional 

modes: Face-to-Face, Online, and Hybrid Learning. The outcomes elucidate critical strengths and vulnerabilities 

inherent to each teaching mode, thus providing essential empirical insights for informed decision-making aimed 

at optimizing strategies in teaching evaluation. 

A. Expert in linguistics term 

Experts assigned ratings to various risk sub-criteria across three learning environments: Face-to-Face, Online, and 

Hybrid Learning. These ratings were expressed in linguistic terms and subsequently converted into fuzzy numbers 

to facilitate systematic analysis. The assessment outcomes enabled the identification of critical risks associated 

with distinct teaching and learning settings. 

Results revealed that Errors in Assessment, Health Crises, and Data Privacy Violations consistently emerged as 

high or very high risks in all evaluated learning environments. Additionally, System Failures and Policy Breaches 

were identified as significant risks, especially within Online and Hybrid Learning contexts. Conversely, Process 

Delays, Student Misconduct, and CQI Failures predominantly received low-risk ratings. Table 4 summarizes the 

linguistic term ratings provided by the decision-makers. 

Table 4: Experts in linguistic term 

Sub-Criteria Expert1 Expert2 Expert3 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

System 

Failures 

VH M VH M H M L VH H 

Cybersecurit

y Threats 

M VH H L M VH L H M 

Obsolete 

Technology 

VH L M L VH L M H H 

Process 

Delays 

L H L L L H L L L 

Resource 

Constraints 

M M VH L H M M VH M 

Errors in 

Assessment 

H VH H H H VH VH VH VH 

Teaching 

Quality 

Decline 

VH M M M VH M M M M 

Programme 

Irrelevance 

M L VH VH M L H H H 
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Sub-Criteria Expert1 Expert2 Expert3 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Student 

Misconduct 

M H L L L H H L L 

Regulatory 

Non-

Compliance 

H M M M H M H H H 

Policy 

Breaches 

M VH H H M VH VH H H 

Data Privacy 

Violations 

VH L VH VH VH L H VH VH 

Reputation 

Damage 

M H L L M H H H M 

CQI Failures L M M M L M H H H 

Health Crises H VH H H H VH VH H H 

 

B. Step 1: Fuzzified Decision Matrix 

The fuzzified decision matrix is established by transforming linguistic terms from Table 4 into corresponding 

fuzzy numbers according to the fuzzy scale presented in Table 3. Each linguistic term—Very Low, Low, Medium, 

High, and Very High—is represented by a triangular fuzzy number comprising lower, middle, and upper values 

(L, M, U). For instance, an expert rating of Very High (VH) corresponds to the fuzzy number (7, 9, 9), while a 

Medium (M) rating translates to (3, 5, 7), and a Low (L) rating converts to (1, 3, 5). This conversion procedure is 

consistently applied across all sub-criteria and teaching environments (Face-to-Face, Online, and Hybrid 

Learning) for each participating expert. 

Table 5:  Fuzzified Decision Matrix 

Main 

Criteria 

Sub-

Criteria 

Expert1 Expert2 Expert3 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Technologic

al Risks 

System 

Failures 

(7, 9, 

9) 

(3, 5, 

7) 

(7, 9, 9) (3, 5, 

7) 

(5, 7, 

9) 

(3, 5, 7) (1, 3, 

4) 

(7, 9, 

9) 

(5, 7, 9) 

Cybersecuri

ty Threats 

(3, 5, 

7) 

(7, 9, 

9) 

(5, 7, 9) (1, 3, 

4) 

(3, 5, 

7) 

(7, 9, 9) (1, 3, 

4) 

(5, 7, 

9) 

(3, 5, 7) 

Obsolete 

Technology 

(7, 9, 

9) 

(1, 3, 

4) 

(3, 5, 7) (1, 3, 

4) 

(7, 9, 

9) 

(1, 3, 4) (3, 5, 

7) 

(5, 7, 

9) 

(5, 7, 9) 

Operational 

Risks 

Process 

Delays 

(1, 3, 

4) 

(5, 7, 

9) 

(1, 3, 4) (1, 3, 

4) 

(1, 3, 

4) 

(5, 7, 9) (1, 3, 

4) 

(1, 3, 

4) 

(1, 3, 4) 

Resource 

Constraints 

(3, 5, 

7) 

(3, 5, 

7) 

(7, 9, 9) (1, 3, 

4) 

(5, 7, 

9) 

(3, 5, 7) (3, 5, 

7) 

(7, 9, 

9) 

(3, 5, 7) 
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Main 

Criteria 

Sub-

Criteria 

Expert1 Expert2 Expert3 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Face

-to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Errors in 

Assessment 

(5, 7, 

9) 

(7, 9, 

9) 

(5, 7, 9) (5, 7, 

9) 

(5, 7, 

9) 

(7, 9, 9) (7, 9, 

9) 

(7, 9, 

9) 

(7, 9, 9) 

Pedagogical 

Risks 

Teaching 

Quality 

Decline 

(7, 9, 

9) 

(3, 5, 

7) 

(3, 5, 7) (3, 5, 

7) 

(7, 9, 

9) 

(3, 5, 7) (3, 5, 

7) 

(3, 5, 

7) 

(3, 5, 7) 

Programme 

Irrelevance 

(3, 5, 

7) 

(1, 3, 

4) 

(7, 9, 9) (7, 9, 

9) 

(3, 5, 

7) 

(1, 3, 4) (5, 7, 

9) 

(5, 7, 

9) 

(5, 7, 9) 

Student 

Misconduct 

(3, 5, 

7) 

(5, 7, 

9) 

(1, 3, 4) (1, 3, 

4) 

(1, 3, 

4) 

(5, 7, 9) (5, 7, 

9) 

(1, 3, 

4) 

(1, 3, 4) 

Compliance 

& 

Regulatory 

Risks 

Regulatory 

Non-

Compliance 

(5, 7, 

9) 

(3, 5, 

7) 

(3, 5, 7) (3, 5, 

7) 

(5, 7, 

9) 

(3, 5, 7) (5, 7, 

9) 

(5, 7, 

9) 

(5, 7, 9) 

Policy 

Breaches 

(3, 5, 

7) 

(7, 9, 

9) 

(5, 7, 9) (5, 7, 

9) 

(3, 5, 

7) 

(7, 9, 9) (7, 9, 

9) 

(5, 7, 

9) 

(5, 7, 9) 

Data 

Privacy 

Violations 

(7, 9, 

9) 

(1, 3, 

4) 

(7, 9, 9) (7, 9, 

9) 

(7, 9, 

9) 

(1, 3, 4) (5, 7, 

9) 

(7, 9, 

9) 

(7, 9, 9) 

Reputationa

l Risks 

Reputation 

Damage 

(3, 5, 

7) 

(5, 7, 

9) 

(1, 3, 4) (1, 3, 

4) 

(3, 5, 

7) 

(5, 7, 9) (5, 7, 

9) 

(5, 7, 

9) 

(3, 5, 7) 

CQI 

Failures 

(1, 3, 

4) 

(3, 5, 

7) 

(3, 5, 7) (3, 5, 

7) 

(1, 3, 

4) 

(3, 5, 7) (5, 7, 

9) 

(5, 7, 

9) 

(5, 7, 9) 

Health 

Crises 

(5, 7, 

9) 

(7, 9, 

9) 

(5, 7, 9) (5, 7, 

9) 

(5, 7, 

9) 

(7, 9, 9) (7, 9, 

9) 

(5, 7, 

9) 

(5, 7, 9) 

 

C. Step 2:Normalized Matrix 

Due to inherent digital vulnerabilities, Online Learning exhibits elevated technological risks, notably 

Cybersecurity Threats and Obsolete Technology. Conversely, Face-to-Face Learning presents comparatively 

lower technological risks but experiences heightened operational challenges, including Process Delays and 

Resource Constraints. Hybrid Learning occupies an intermediate position, encompassing risks associated with 

both traditional and digital environments. In the domain of Pedagogical Risks, Online and Hybrid Learning modes 

highlight pronounced concerns such as Teaching Quality Decline and Programme Irrelevance, adversely affecting 

learner engagement and instructional effectiveness. Compliance and Regulatory Risks, specifically Regulatory 

Non-Compliance and Data Privacy Violations, are significantly intensified in digital learning contexts due to 

challenges in policy enforcement. Furthermore, Reputational Risks, such as Reputation Damage and Continuous 

Quality Improvement (CQI) Failures, emerge as more prominent in Online and Hybrid Learning, directly 

impacting institutional credibility. Table 6 illustrates the Fuzzified Decision Matrix, summarizing expert 

assessments of risks across Face-to-Face, Online, and Hybrid Learning modes. To illustrate the normalization 

process, the fuzzy values assigned by Expert1, Expert2, and Expert3 for the System Failures sub-criterion within 

the Technological Risks category are provided as follows: 
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• Expert1: Face-to-Face: (7,9,9), Online: (3,5,7), Hybrid Learning: (7,9,9) 

• Expert2: Face-to-Face: (3,5,7), Online: (5,7,9), Hybrid Learning: (3,5,7) 

• Expert3: Face-to-Face: (1,3,4), Online: (7,9,9), Hybrid Learning: (5,7,9) 

𝑢𝑚𝑎𝑥 = max(9,7,9,7,9,7,4,9,9)=9 

System Failures for Face-to-Face for Expert1 = 𝑟11̃ = (
7

9
,

9

9
,

9

9
) = (0.7778,1.0000,1.0000) 

Table 6:  Normalized Matrix 

Mai

n 

Crit

eria 

Sub

-

Cri

teri

a 

Expert1 Expert2 Expert3 

Face-to-

Face 
Online 

Hybrid 

Learning 

Face-

to-Face 
Online 

Hybrid 

Learning 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Tech

nolo

gical 

Risk

s 

Sys

tem 

Fail

ures 

(0.7778, 

1.0000, 

1.0000) 

(0.3333

, 

0.5556, 

0.7778) 

(0.7778, 

1.0000, 

1.0000) 

(0.3333

, 

0.5556, 

0.7778) 

(0.5556, 

0.7778, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.111

1, 

0.3333

, 

0.4444

) 

(0.777

8, 

1.000

0, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Cyb

erse

curi

ty 

Thr

eats 

(0.3333, 

0.5556, 

0.7778) 

(0.7778

, 

1.0000, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.1111

, 

0.3333, 

0.4444) 

(0.3333, 

0.5556, 

0.7778) 

(0.7778, 

1.0000, 

1.0000) 

(0.111

1, 

0.3333

, 

0.4444

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.3333, 

0.5556, 

0.7778) 

Obs

olet

e 

Tec

hno

log

y 

(0.7778, 

1.0000, 

1.0000) 

(0.1111

, 

0.3333, 

0.4444) 

(0.3333, 

0.5556, 

0.7778) 

(0.1111

, 

0.3333, 

0.4444) 

(0.7778, 

1.0000, 

1.0000) 

(0.1111, 

0.3333, 

0.4444) 

(0.333

3, 

0.5556

, 

0.7778

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Oper

ation

al 

Risk

s 

Pro

cess 

Del

ays 

(0.1111, 

0.3333, 

0.4444) 

(0.5556

, 

0.7778, 

1.0000) 

(0.1111, 

0.3333, 

0.4444) 

(0.1111

, 

0.3333, 

0.4444) 

(0.1111, 

0.3333, 

0.4444) 

(0.5556, 

0.7778, 

1.0000) 

(0.111

1, 

0.3333

, 

0.4444

) 

(0.111

1, 

0.333

3, 

0.444

4) 

(0.1111, 

0.3333, 

0.4444) 

Res

our

ce 

Con

stra

ints 

(0.3333, 

0.5556, 

0.7778) 

(0.3333

, 

0.5556, 

0.7778) 

(0.7778, 

1.0000, 

1.0000) 

(0.1111

, 

0.3333, 

0.4444) 

(0.5556, 

0.7778, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.333

3, 

0.5556

, 

0.7778

) 

(0.777

8, 

1.000

0, 

1.000

0) 

(0.3333, 

0.5556, 

0.7778) 

Err

ors 

in 

Ass

ess

me

nt 

(0.5556, 

0.7778, 

1.0000) 

(0.7778

, 

1.0000, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.5556

, 

0.7778, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.7778, 

1.0000, 

1.0000) 

(0.777

8, 

1.0000

, 

1.0000

) 

(0.777

8, 

1.000

0, 

1.000

0) 

(0.7778, 

1.0000, 

1.0000) 
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Mai

n 

Crit

eria 

Sub

-

Cri

teri

a 

Expert1 Expert2 Expert3 

Face-to-

Face 
Online 

Hybrid 

Learning 

Face-

to-Face 
Online 

Hybrid 

Learning 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Peda

gogi

cal 

Risk

s 

Tea

chi

ng 

Qua

lity 

Dec

line 

(0.7778, 

1.0000, 

1.0000) 

(0.3333

, 

0.5556, 

0.7778) 

(0.3333, 

0.5556, 

0.7778) 

(0.3333

, 

0.5556, 

0.7778) 

(0.7778, 

1.0000, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.333

3, 

0.5556

, 

0.7778

) 

(0.333

3, 

0.555

6, 

0.777

8) 

(0.3333, 

0.5556, 

0.7778) 

Pro

gra

mm

e 

Irre

leva

nce 

(0.3333, 

0.5556, 

0.7778) 

(0.1111

, 

0.3333, 

0.4444) 

(0.7778, 

1.0000, 

1.0000) 

(0.7778

, 

1.0000, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.1111, 

0.3333, 

0.4444) 

(0.555

6, 

0.7778

, 

1.0000

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Stu

den

t 

Mis

con

duc

t 

(0.3333, 

0.5556, 

0.7778) 

(0.5556

, 

0.7778, 

1.0000) 

(0.1111, 

0.3333, 

0.4444) 

(0.1111

, 

0.3333, 

0.4444) 

(0.1111, 

0.3333, 

0.4444) 

(0.5556, 

0.7778, 

1.0000) 

(0.555

6, 

0.7778

, 

1.0000

) 

(0.111

1, 

0.333

3, 

0.444

4) 

(0.1111, 

0.3333, 

0.4444) 

Com

plian

ce & 

Reg

ulato

ry 

Risk

s 

Reg

ulat

ory 

No

n-

Co

mpl

ianc

e 

(0.5556, 

0.7778, 

1.0000) 

(0.3333

, 

0.5556, 

0.7778) 

(0.3333, 

0.5556, 

0.7778) 

(0.3333

, 

0.5556, 

0.7778) 

(0.5556, 

0.7778, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.555

6, 

0.7778

, 

1.0000

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Poli

cy 

Bre

ach

es 

(0.3333, 

0.5556, 

0.7778) 

(0.7778

, 

1.0000, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.5556

, 

0.7778, 

1.0000) 

(0.3333, 

0.5556, 

0.7778) 

(0.7778, 

1.0000, 

1.0000) 

(0.777

8, 

1.0000

, 

1.0000

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Dat

a 

Priv

acy 

Vio

lati

ons 

(0.7778, 

1.0000, 

1.0000) 

(0.1111

, 

0.3333, 

0.4444) 

(0.7778, 

1.0000, 

1.0000) 

(0.7778

, 

1.0000, 

1.0000) 

(0.7778, 

1.0000, 

1.0000) 

(0.1111, 

0.3333, 

0.4444) 

(0.555

6, 

0.7778

, 

1.0000

) 

(0.777

8, 

1.000

0, 

1.000

0) 

(0.7778, 

1.0000, 

1.0000) 

Rep

utati

onal 

Rep

utat

ion 

(0.3333, 

0.5556, 

0.7778) 

(0.5556

, 

(0.1111, 

0.3333, 

0.4444) 

(0.1111

, 

(0.3333, 

0.5556, 

0.7778) 

(0.5556, 

0.7778, 

1.0000) 

(0.555

6, 

0.7778

(0.555

6, 

0.777

(0.3333, 

0.5556, 

0.7778) 
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Mai

n 

Crit

eria 

Sub

-

Cri

teri

a 

Expert1 Expert2 Expert3 

Face-to-

Face 
Online 

Hybrid 

Learning 

Face-

to-Face 
Online 

Hybrid 

Learning 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learnin

g 

Risk

s 

Da

ma

ge 

0.7778, 

1.0000) 

0.3333, 

0.4444) 

, 

1.0000

) 

8, 

1.000

0) 

CQ

I 

Fail

ures 

(0.1111, 

0.3333, 

0.4444) 

(0.3333

, 

0.5556, 

0.7778) 

(0.3333, 

0.5556, 

0.7778) 

(0.3333

, 

0.5556, 

0.7778) 

(0.1111, 

0.3333, 

0.4444) 

(0.3333, 

0.5556, 

0.7778) 

(0.555

6, 

0.7778

, 

1.0000

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

Hea

lth 

Cris

es 

(0.5556, 

0.7778, 

1.0000) 

(0.7778

, 

1.0000, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.5556

, 

0.7778, 

1.0000) 

(0.5556, 

0.7778, 

1.0000) 

(0.7778, 

1.0000, 

1.0000) 

(0.777

8, 

1.0000

, 

1.0000

) 

(0.555

6, 

0.777

8, 

1.000

0) 

(0.5556, 

0.7778, 

1.0000) 

 

D. Step 3: Weighted Normalized Matrix 

In Step 3, the weighted normalized matrix is derived by multiplying the normalized fuzzy values of each sub-

criterion by their respective weights. For instance, the sub-criterion Health Crises within the Face-to-Face 

Learning environment initially has a fuzzified value of (5,7,9) from the fuzzified decision matrix. Upon 

normalization, these values become (0.556,0.778,1). Utilizing the assigned weight of 0.6 from Table 2, the 

weighted normalized fuzzy values are computed using the following calculation: 

𝑊𝑖𝑗
′ = (0.556,0.778,1) × 0.6 

𝑊𝑖𝑗
′ = (0.333,0.467,0.6) 

Therefore, the final weighted normalized fuzzy value obtained for the Health Crises sub-criterion within the Face-

to-Face Learning environment is (0.333, 0.467, 0.6). This procedure is systematically applied to each sub-criterion, 

resulting in the construction of a comprehensive Weighted Normalized Matrix. Table 7 summarizes the completed 

Weighted Normalized Matrix derived from expert evaluations across all learning modes and sub-criteria. 

Table 7:  Weighted Normalized Matrix 

Main 

Criteria 

Sub-

Criteria 

Expert1 Expert2 Expert3 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Technolog

ical Risks 

System 

Failures 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.1556

, 

0.2000, 

0.2000) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.0667

, 

0.1111, 

0.1556) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 
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Main 

Criteria 

Sub-

Criteria 

Expert1 Expert2 Expert3 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Cybersecu

rity 

Threats 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.1556

, 

0.2000, 

0.2000) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.0667

, 

0.1111, 

0.1556) 

Obsolete 

Technolog

y 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.0667

, 

0.1111, 

0.1556) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.0222

, 

0.0667, 

0.0889) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

Operation

al Risks 

Process 

Delays 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.0222

, 

0.0667, 

0.0889) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.1111

, 

0.1556, 

0.2000) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.0222

, 

0.0667, 

0.0889) 

Resource 

Constraint

s 

(0.200

0, 

0.333

4, 

0.466

7) 

(0.200

0, 

0.333

4, 

0.466

7) 

(0.4667

, 

0.6000, 

0.6000) 

(0.066

7, 

0.200

0, 

0.266

6) 

(0.333

4, 

0.466

7, 

0.600

0) 

(0.2000

, 

0.3334, 

0.4667) 

(0.200

0, 

0.333

4, 

0.466

7) 

(0.466

7, 

0.600

0, 

0.600

0) 

(0.2000

, 

0.3334, 

0.4667) 

Errors in 

Assessme

nt 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.1556

, 

0.2000, 

0.2000) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.1556

, 

0.2000, 

0.2000) 

Pedagogic

al Risks 

Teaching 

Quality 

Decline 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.1333

, 

0.2222, 

0.3111) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.1333

, 

0.2222, 

0.3111) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.1333

, 

0.2222, 

0.3111) 

Programm

e 

Irrelevanc

e 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.1556

, 

0.2000, 

0.2000) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.0222

, 

0.0667, 

0.0889) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 
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Main 

Criteria 

Sub-

Criteria 

Expert1 Expert2 Expert3 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Face-

to-

Face 

Onlin

e 

Hybrid 

Learni

ng 

Student 

Miscondu

ct 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.0222

, 

0.0667, 

0.0889) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.1111

, 

0.1556, 

0.2000) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.0222

, 

0.0667, 

0.0889) 

Complianc

e & 

Regulator

y Risks 

Regulator

y Non-

Complianc

e 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.1333

, 

0.2222, 

0.3111) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.1333

, 

0.2222, 

0.3111) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.2222

, 

0.3111, 

0.4000) 

Policy 

Breaches 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.1556

, 

0.2000, 

0.2000) 

(0.155

6, 

0.200

0, 

0.200

0) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

Data 

Privacy 

Violations 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.044

4, 

0.133

3, 

0.177

8) 

(0.3111

, 

0.4000, 

0.4000) 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.0444

, 

0.1333, 

0.1778) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.311

1, 

0.400

0, 

0.400

0) 

(0.3111

, 

0.4000, 

0.4000) 

Reputation

al Risks 

Reputation 

Damage 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.0444

, 

0.1333, 

0.1778) 

(0.044

4, 

0.133

3, 

0.177

8) 

(0.133

3, 

0.222

2, 

0.311

1) 

(0.2222

, 

0.3111, 

0.4000) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.222

2, 

0.311

1, 

0.400

0) 

(0.1333

, 

0.2222, 

0.3111) 

CQI 

Failures 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.0667

, 

0.1111, 

0.1556) 

(0.066

7, 

0.111

1, 

0.155

6) 

(0.022

2, 

0.066

7, 

0.088

9) 

(0.0667

, 

0.1111, 

0.1556) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.111

1, 

0.155

6, 

0.200

0) 

(0.1111

, 

0.1556, 

0.2000) 

Health 

Crises 

(0.333

4, 

0.466

7, 

0.600

0) 

(0.466

7, 

0.600

0, 

0.600

0) 

(0.3334

, 

0.4667, 

0.6000) 

(0.333

4, 

0.466

7, 

0.600

0) 

(0.333

4, 

0.466

7, 

0.600

0) 

(0.4667

, 

0.6000, 

0.6000) 

(0.466

7, 

0.600

0, 

0.600

0) 

(0.333

4, 

0.466

7, 

0.600

0) 

(0.3334

, 

0.4667, 

0.6000) 
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E. Step 4: FPIS (Fuzzy Positive Ideal Solution) and FNIS (Fuzzy Negative Ideal Solution) 

Table 8 displays the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) for each sub-

criterion across the five primary risk categories: Technological Risks, Operational Risks, Pedagogical Risks, 

Compliance and Regulatory Risks, and Reputational Risks. These values are computed based on expert 

evaluations across Face-to-Face, Online, and Hybrid Learning environments. To establish the FPIS for Health 

Crises under Face-to-Face Learning, maximum fuzzy values for the lower, middle, and upper bounds are identified 

from expert assessments. The FPIS denotes the most favourable scenario for this sub-criterion. According to the 

Weighted Normalized Matrix, Expert1, Expert2, and Expert3 consistently assigned identical fuzzy values of 

(0.4667, 0.6000, 0.6000) to Health Crises. Consequently, the FPIS for this sub-criterion is defined as (0.4667, 

0.6000, 0.6000). Conversely, the FNIS is determined by selecting the minimum fuzzy values for the lower, middle, 

and upper bounds across all experts, representing the least favourable scenario. A similar consistency in expert 

evaluations results in uniform fuzzy values of (0.3334, 0.4667, 0.6000). Therefore, the FNIS for Health Crises 

under Face-to-Face Learning is established as (0.3334, 0.4667, 0.6000). 

Table 8:  FPIS (Fuzzy Positive Ideal Solution) and FNIS (Fuzzy Negative Ideal Solution) 

Main 

Criteria 
Sub-Criteria 

Expert1 Expert2 Expert3 

FPIS FNIS FPIS FNIS FPIS FNIS 

Technological 

Risks 

System 

Failures 

(0.1556, 

0.2000, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

(0.1111, 

0.1556, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

Cybersecurity 

Threats 

(0.1556, 

0.2000, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

Obsolete 

Technology 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

Operational 

Risks 

Process 

Delays 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.0222, 

0.0667, 

0.0889) 

(0.0222, 

0.0667, 

0.0889) 

Resource 

Constraints 

(0.4667, 

0.6000, 

0.6000) 

(0.2000, 

0.3334, 

0.4667) 

(0.3334, 

0.4667, 

0.6000) 

(0.0667, 

0.2000, 

0.2666) 

(0.4667, 

0.6000, 

0.6000) 

(0.2000, 

0.3334, 

0.4667) 

Errors in 

Assessment 

(0.1556, 

0.2000, 

0.2000) 

(0.1111, 

0.1556, 

0.2000) 

(0.1556, 

0.2000, 

0.2000) 

(0.1111, 

0.1556, 

0.2000) 

(0.1556, 

0.2000, 

0.2000) 

(0.1556, 

0.2000, 

0.2000) 

Pedagogical 

Risks 

Teaching 

Quality 

Decline 

(0.3111, 

0.4000, 

0.4000) 

(0.1333, 

0.2222, 

0.3111) 

(0.3111, 

0.4000, 

0.4000) 

(0.1333, 

0.2222, 

0.3111) 

(0.1333, 

0.2222, 

0.3111) 

(0.1333, 

0.2222, 

0.3111) 

Programme 

Irrelevance 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1556, 

0.2000, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.1111, 

0.1556, 

0.2000) 

Student 

Misconduct 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.0222, 

0.0667, 

0.0889) 
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Main 

Criteria 
Sub-Criteria 

Expert1 Expert2 Expert3 

FPIS FNIS FPIS FNIS FPIS FNIS 

Compliance 

& Regulatory 

Risks 

Regulatory 

Non-

Compliance 

(0.2222, 

0.3111, 

0.4000) 

(0.1333, 

0.2222, 

0.3111) 

(0.2222, 

0.3111, 

0.4000) 

(0.1333, 

0.2222, 

0.3111) 

(0.2222, 

0.3111, 

0.4000) 

(0.2222, 

0.3111, 

0.4000) 

Policy 

Breaches 

(0.1556, 

0.2000, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

(0.1556, 

0.2000, 

0.2000) 

(0.0667, 

0.1111, 

0.1556) 

(0.1556, 

0.2000, 

0.2000) 

(0.1111, 

0.1556, 

0.2000) 

Data Privacy 

Violations 

(0.3111, 

0.4000, 

0.4000) 

(0.0444, 

0.1333, 

0.1778) 

(0.3111, 

0.4000, 

0.4000) 

(0.0444, 

0.1333, 

0.1778) 

(0.3111, 

0.4000, 

0.4000) 

(0.2222, 

0.3111, 

0.4000) 

Reputational 

Risks 

Reputation 

Damage 

(0.2222, 

0.3111, 

0.4000) 

(0.0444, 

0.1333, 

0.1778) 

(0.2222, 

0.3111, 

0.4000) 

(0.0444, 

0.1333, 

0.1778) 

(0.2222, 

0.3111, 

0.4000) 

(0.1333, 

0.2222, 

0.3111) 

CQI Failures 

(0.0667, 

0.1111, 

0.1556) 

(0.0222, 

0.0667, 

0.0889) 

(0.0667, 

0.1111, 

0.1556) 

(0.0222, 

0.0667, 

0.0889) 

(0.1111, 

0.1556, 

0.2000) 

(0.1111, 

0.1556, 

0.2000) 

Health Crises 

(0.4667, 

0.6000, 

0.6000) 

(0.3334, 

0.4667, 

0.6000) 

(0.4667, 

0.6000, 

0.6000) 

(0.3334, 

0.4667, 

0.6000) 

(0.4667, 

0.6000, 

0.6000) 

(0.3334, 

0.4667, 

0.6000) 

 

F. Step 5: Distance from FPIS and FNIS 

Table 9 presents the computed distances of each alternative from the Fuzzy Positive Ideal Solution (FPIS) and 

Fuzzy Negative Ideal Solution (FNIS). For the Face-to-Face alternative, the distance from the FPIS is 1.652, while 

the distance from the FNIS is 0.992. The Online alternative exhibits a D+ value of 1.160 and a D- value of 1.483, 

whereas Hybrid Learning has corresponding distances of 1.440 (D+) and 1.210 (D-). These metrics quantify each 

alternative’s proximity to ideal and worst-case scenarios, thereby facilitating comparative risk assessment. 

Table 10 provides detailed distance calculations across each primary risk category. Under Technological Risks, 

Face-to-Face learning displays a D+ value of 0.371 and a D- value of 0.117, whereas Online and Hybrid Learning 

alternatives present D+ values of 0.162 and 0.211, respectively. Regarding Operational Risks, the Face-to-Face 

alternative shows the highest D+ value of 0.588 and lacks a corresponding D- value, indicating pronounced 

vulnerability. In contrast, Online and Hybrid Learning modes report D+ values of 0.210 and 0.287, respectively. 

In Pedagogical Risks, Face-to-Face learning registers a D+ value of 0.215 and a D- value of 0.279, whereas the 

Online mode reveals higher vulnerability with a D+ value of 0.318 and a lower D- of 0.175. Hybrid Learning 

exhibits the highest D+ value in this category at 0.363, alongside a comparatively low D- value of 0.129. Under 

Compliance and Regulatory Risks, Face-to-Face learning demonstrates a D+ value of 0.159 and a relatively high 

D- value of 0.390. The Online and Hybrid alternatives report D+ values of 0.263 and 0.290, respectively. Lastly, 

within Reputational Risks, Face-to-Face learning records a D+ value of 0.319 and a D- value of 0.206, while the 

Online and Hybrid modes yield D+ values of 0.208 and 0.289, respectively. 

Table 9:  Distance from FPIS and FNIS for Overall 

Overall 

Alternative D+ (Best) D- (Worst) 

Face-to-

Face 
1.652 0.992 

Online 1.160 1.483 



J. Electrical Systems 21-01 (2025): 73-96 

 

91 

Hybrid 

Learning 
1.440 1.210 

 

Table 10:  Distance from FPIS and FNIS for Main Criteria 

Main Criteria Alternative D+ (Best) D- (Worst) 

Technological Risks 

Face-to-Face 0.371 0.117 

Online 0.162 0.328 

Hybrid Learning 0.211 0.286 

Operational Risks 

Face-to-Face 0.588 0.000 

Online 0.210 0.378 

Hybrid Learning 0.287 0.302 

Pedagogical Risks 

Face-to-Face 0.215 0.279 

Online 0.318 0.175 

Hybrid Learning 0.363 0.129 

Compliance & Regulatory Risks 

Face-to-Face 0.159 0.390 

Online 0.263 0.284 

Hybrid Learning 0.290 0.258 

Reputational Risks 

Face-to-Face 0.319 0.206 

Online 0.208 0.318 

Hybrid Learning 0.289 0.236 

 

G. Step 6:Closeness Coefficient (CC) 

Table 11 presents the calculated CC values for each learning alternative within the Overall category. The Face-to-

Face alternative obtained a CC value of 0.3752, indicating relatively lower closeness to the ideal solution 

compared to the other alternatives. Online Learning achieved the highest CC value (0.5611), signifying its greater 

proximity to the ideal scenario and, therefore, suggesting its potential suitability based on the assessed risk factors. 

Hybrid Learning holds an intermediate position with a CC value of 0.4566, reflecting moderate performance 

relative to the other two alternatives. 

Table 12 elaborates further by detailing Closeness Coefficients across each primary risk category, including 

Technological, Operational, Pedagogical, Compliance and Regulatory, and Reputational Risks. Under 

Technological Risks, Online Learning exhibits the highest CC value (0.6694), indicating the lowest relative risk, 

followed by Hybrid Learning (0.5755), and Face-to-Face (0.2398). Within Operational Risks, Online Learning 

again demonstrates the most favourable outcome (CC = 0.6429), whereas Hybrid Learning is moderately 

favourable (CC = 0.5127), and Face-to-Face Learning reveals significant vulnerability, reflected in its lowest CC 

value (0.0000). 

In the context of Pedagogical Risks, the Face-to-Face alternative exhibits superior performance, reflected by the 

highest CC value (0.5648), suggesting stronger pedagogical effectiveness compared to Online Learning (CC = 

0.3550) and Hybrid Learning (CC = 0.2622). Within Compliance and Regulatory Risks, Face-to-Face Learning 

again emerges as the most advantageous alternative (CC = 0.7104), surpassing Online Learning (CC = 0.5192) 

and Hybrid Learning (CC = 0.4708). Lastly, in terms of Reputational Risks, Online Learning leads with a CC 

value of 0.6046, followed by Hybrid Learning (0.4495), and Face-to-Face Learning demonstrating the lowest 

closeness coefficient (0.3924). 
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Example: Calculating CC for Face-to-Face (Overall) 

Using values: 

𝐷𝑖
+ = 0.3324 

𝐷𝑖
− = 0.1996 

 

𝐶𝐶 =
𝐷−

𝐷+ + 𝐷−
=

0.1996

0.3324 + 0.1996
=

0.1996

0.532
= 0.3752 

 

Table 11:  Closeness Coefficient (CC) for Overall 

Overall 

Alternative CC Value 

Face-to-Face 0.3752 

Online 0.5611 

Hybrid 

Learning 0.4566 

 

Table 12:  Closeness Coefficient (CC) for Main Criteria 

Main Criteria Alternative CC Value 

Technological Risks 

Face-to-Face 0.2398 

Online 0.6694 

Hybrid 

Learning 
0.5755 

Operational Risks 

Face-to-Face 0.0000 

Online 0.6429 

Hybrid 

Learning 
0.5127 

Pedagogical Risks 

Face-to-Face 0.5648 

Online 0.3550 

Hybrid 

Learning 
0.2622 

Compliance & Regulatory 

Risks 

Face-to-Face 0.7104 

Online 0.5192 

Hybrid 

Learning 
0.4708 

Reputational Risks 

Face-to-Face 0.3924 

Online 0.6046 

Hybrid 

Learning 
0.4495 
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H. Step 7: Ranking 

Table 13 provides the ranking of alternatives based on the calculated CC values. In the overall evaluation, the 

Online alternative attained the highest CC value (0.5611), thus achieving the first rank. Hybrid Learning secured 

the second position with a CC value of 0.4566, while Face-to-Face Learning ranked third, having a CC value of 

0.3752. Table 14 offers a detailed breakdown of rankings across each primary risk category. Under Technological 

Risks, the Online alternative demonstrated superior performance, ranking first with a CC value of 0.6694. Hybrid 

Learning followed in second place (CC = 0.5755), with Face-to-Face positioned third (CC = 0.2398). In 

Operational Risks, Online Learning again secured the first rank (CC = 0.6429), Hybrid Learning occupied the 

second position (CC = 0.5127), and Face-to-Face ranked third, reflecting notable vulnerability (CC = 0.0000). 

In the Pedagogical Risks category, Face-to-Face Learning achieved the highest CC value (0.5648), ranking first 

and indicating strong pedagogical effectiveness, whereas Online (CC = 0.3550) and Hybrid Learning (CC = 

0.2622) were ranked second and third, respectively. Concerning Compliance and Regulatory Risks, Face-to-Face 

Learning maintained the top position (CC = 0.7104), with Online Learning ranked second (CC = 0.5192) and 

Hybrid Learning third (CC = 0.4708). Lastly, under Reputational Risks, Online Learning ranked first (CC = 

0.6046), followed by Hybrid Learning in second place (CC = 0.4495), and Face-to-Face Learning ranked third 

(CC = 0.3924). These rankings underscore the comparative strengths and limitations of each alternative across 

various risk dimensions, revealing that Online Learning generally emerged as the most favourable overall, while 

Face-to-Face Learning excelled specifically in Pedagogical and Compliance and Regulatory aspects. 

Table 13:  Ranking of Overall 

Overall 

Alternative CC Value Rank 

Online 0.5611 1 

Hybrid Learning 0.4566 2 

Face-to-Face 0.3752 3 

 

Table 14:  Ranking for Main Criteria 

Main Criteria Alternative CC Value Rank 

Technological Risks 

Online 0.6694 1 

Hybrid Learning 0.5755 2 

Face-to-Face 0.2398 3 

Operational Risks 

Online 0.6429 1 

Hybrid Learning 0.5127 2 

Face-to-Face 0.0000 3 

Pedagogical Risks 

Face-to-Face 0.5648 1 

Online 0.3550 2 

Hybrid Learning 0.2622 3 

Compliance & 

Regulatory Risks 

Face-to-Face 0.7104 1 

Online 0.5192 2 

Hybrid Learning 0.4708 3 

Reputational Risks 
Online 0.6046 1 

Hybrid Learning 0.4495 2 
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Main Criteria Alternative CC Value Rank 

Face-to-Face 0.3924 3 

 

V. CONCLUSIONS AND FUTURE WORK 

The findings of this study underscore the relative effectiveness of different learning modes in addressing and 

mitigating risks associated with teaching evaluation processes. According to the overall rankings derived from CC 

analysis, the Online learning alternative emerged as the most favourable option with a CC value of 0.5611, 

outperforming Hybrid Learning (0.4566) and Face-to-Face Learning (0.3752). These outcomes emphasize the 

superior capability of Online learning environments in managing risks, particularly in technological, operational, 

and reputational domains, thereby benefiting educational institutions through enhanced digital resilience, 

streamlined operational procedures, and improved institutional image. 

A detailed assessment of each primary risk criterion further reveals that Online learning achieved the highest 

rankings in Technological Risks (CC=0.6694), Operational Risks (CC=0.6429), and Reputational Risks 

(CC=0.6046). This suggests significant advantages for institutions adopting online learning, as they are better 

equipped to address digital infrastructure vulnerabilities, optimize workflow efficiency, and safeguard their 

reputation. Conversely, Face-to-Face Learning exhibited notable strengths in Pedagogical Risks (CC=0.5648) and 

Compliance and Regulatory Risks (CC=0.7104), highlighting its efficacy in promoting instructional quality, learner 

engagement, and effective compliance with educational policies and regulatory frameworks. 

Hybrid Learning consistently positioned itself between the two alternatives across most criteria, reflecting its 

balanced but moderate risk management performance. Although it did not exhibit dominance in any single category, 

its integrated approach presents institutions with a strategic advantage through flexibility, allowing tailored 

responses to diverse educational challenges. These results offer practical benefits for educational institutions, 

providing a structured basis to inform strategic decisions concerning teaching methodologies, resource allocation, 

and risk management practices. By clearly identifying strengths and vulnerabilities within each instructional mode, 

institutions can better tailor their approaches to align with specific organizational priorities and stakeholder 

expectations. 

Future research directions may involve extending the evaluation framework by incorporating additional learning 

alternatives, refining the weighting of evaluation criteria through expert consensus methods, and integrating real-

time data analytics for more dynamic and responsive decision-making. Furthermore, investigating the potential 

impact of emerging technologies, such as artificial intelligence and adaptive learning systems, on risk mitigation 

processes could facilitate substantial advancements in teaching evaluation practices, ultimately enhancing 

institutional resilience and educational quality. 
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