J. Electrical Systems 21-1s (2025): 204-213

'Aakarsh Mavi Implementing Secure Data Exchange
for HVAC Vendors Using
Encryption, MFA, and Automation Journal of

FElectrical
Systems

Abstract

In today’s HVAC industry, sharing data securely between vendors and organizations is super
important to keep sensitive stuff safe, like design documents, purchase orders, and system specs. This
research introduces an automated data exchange protocol specifically designed for HVAC
companies, with an emphasis on encrypted communication and secure API interactions. The goal is to
create a framework that uses multi-factor authentication (MFA) along with modern security protocols
like OAuth 2.0 and JSON Web Tokens (JWT) to make sure that the data shared between HVAC
systems and vendor systems is confidential, intact, and authentic. On top of that, Ansible
automation is used to make it easier to roll out security updates and enforce encryption standards for
communication channels. This proposed solution boosts data protection while keeping things running
smoothly and complying with industry security standards. The research also helps cut down the
risks linked to unauthorized data access and potential weaknesses in HVAC supply chain exchanges,
offering a strong security model personalized to the needs of today’s industry.

Keywords: Multi-factor authentication (MFA), Ansible, TLS encryption, AES-256 encryption,
OAuth 2.0, JWT authentication, PyCryptodome, Flask, PyJWT, Google Authenticator, PyOTP, au-
tomation, security management, Elasticsearch, Logstash, Kibana (ELK Stack), DNS security,
DNSSEC, cloud storage, AWS S3, cloud security, data integrity, blockchain-based solutions, DNS-
based Authen- tication of Named Entities (DANE), DNS filtering, DNS spoofing.

Introduction

The HVAC (Heating, Ventilation, and Air Conditioning) industry really relies on smooth and secure
data sharing between vendors and organizations to boost efficiency in system design, purchasing, and
maintenance. This data often includes sensitive stuff like design documents, purchase orders, and system
specs that need to be protected to keep unauthorized eyes and cyber threats at bay. As HVAC systems get
more connected and automated, the chance of data breaches or leaks increases, so keeping data secure is a
big deal for organizations and their vendors.

One major challenge in keeping data exchanges secure in the HVAC field is making sure that
communication channels between organizations and vendors are reliable and safe from unauthorized
access. This means not just encrypting the data itself, but also ensuring the channels used for data
transmission, like APIs, are secure. Many organizations find it tough to implement all-encompassing
security measures that maintain the integrity and confidentiality of this sensitive info while still allowing
systems to work together smoothly.

To tackle these issues, this research suggests creating an automated secure data exchange protocol that’s
specifically designed for HVAC vendors and organizations. This solution includes encryption
standards for both data at rest and in transit, multi-factor authentication (MFA) to ramp up security for
users and systems, and API security protocols like OAuth 2.0 and JSON Web Tokens (JWT) to
protect interactions between HVAC systems and vendor platforms. Plus, using Ansible automation
helps to guarantee that security measures are consistently applied and updated across all systems,
which eases the burden on IT teams and boosts overall security. Along with MFA we can also integrate
SSO in our environment to have a seamless work[Vit23].

The aim of this research is to build a scalable and automated framework that gives HVAC organiza-
tions the tools they need to keep sensitive data safe during transmission, optimize security enforcement,

1 mavi.aakarsh4@gmail.com

204

mailto:mavi.aakarsh4@gmail.com

2.1

2.2

2.3

2.4

J. Electrical Systems 21-1s (2025): 204-213

and reduce the risk of cyber threats in vendor communications. By mixing modern encryption tech- niques
with strong authentication protocols, this proposed solution hopes to enhance the security of HVAC
systems and build trust between organizations and their vendors.

Literature Review

When it comes to industries like HVAC, making sure data is exchanged securely between vendors and
organizations is super important. They often share sensitive stuff like design documents, purchase
orders, and system specs as part of their everyday work. With so much reliance on cloud technology,
automation tools, and interconnected devices right now, needing secure communication is more im-
portant than ever. To really grasp how secure data exchange works in the HVAC world, let’s dive into
existing info on data encryption, API security, multi-factor authentication, and how these all fit into
secure communication protocols.

Encryption and Secure Communication Channels

Encryption is one of the most common and effective ways to keep sensitive data safe while it’s being
transmitted. Research on encryption methods like symmetric and asymmetric techniques shows just how
critical it is to have strong protection against unauthorized data access during exchanges. SS- L/TLS
protocols, which are widely used to secure online communications, provide end-to-end encryp- tion for
data on the move. For HVAC systems, using solid encryption protocols like AES (Advanced Encryption
Standard) is important for protecting design documents and system specifications sent over the internet.

Studies also point out how important it is to secure both data at rest and data in transit. For
HVAC organizations, sensitive data can be scattered across various platforms—Iocal servers, cloud
environments, and vendor databases. Encrypting these data repositories using standard industry algorithms
is key to reducing the risks tied to unauthorized access and potential data leaks (Smith & Brown,
2018)[SB18].

API Security and Authentication Protocols

When HVAC organizations team up with vendors, they usually exchange data through APIs, which are
go-betweens. API security is becoming a big deal, especially since many security breaches have been
linked to poorly protected APIs (Xu, Liu, & Kwiat, 2019)[XLK19]. There are a bunch of protocols
out there designed to keep APIs safe from abuse. OAuth 2.0 is a popular choice—it’s an authentication and
authorization framework that allows secure access to API resources by passing the authentication job to a
trusted third party. This framework is particularly important for HVAC systems since organizations
and vendors often share data through APIs.

JSON Web Tokens (JWT) are another handy tool, as they provide a compact and secure way to send
information between parties. JWT can carry encrypted claims about the user or system that’s trying to
access an API, making it super useful for securing communications (Jones, Bradley, & Sakimura,
2015)[JBS15]. Using JWT alongside OAuth 2.0 allows for secure, token-based authentication and
authorization, which is a great fit for the multi-user and multi-vendor environments common in the
HVAC industry.

Multi-Factor Authentication (MFA)

Multi-factor authentication, or MFA for short, is now a must-have when it comes to keeping sensitive
systems safe from unauthorized access. By asking for a couple of different types of verification—Ilike
something you know (a password), something you have (like a phone), and something you are (a
fingerprint)—MFA makes it much tougher for attackers to get into secure systems (Bdhme & Christin,
2015)[BC15]. This is especially true in the HVAC industry, where systems handle valuable assets and
sensitive operational data. By implementing MFA for vendor access to HVAC systems, you cut down the
chances of a breach, making sure that only the right people can get to important documents and technical
specs.

There have been a number of studies looking at how MFA works in cloud-based systems. They show
that mixing traditional password-based methods with things like biometrics, hardware tokens, or one-time
passcodes really boosts security. This is particularly critical for HVAC systems, which often connect to
cloud platforms and need secure remote access for maintenance and updates.

Automation in Security Management

Ansible, a popular automation tool, is finding its way into security management to make it easier to roll
out security policies consistently across complex environments. For HVAC systems, using Ansible helps

205

2.5

3.1

3.2

3.3

J. Electrical Systems 21-1s (2025): 204-213

automate the setup of encryption protocols, security patches, and access controls, so security measures are
applied uniformly across all vendor and organizational systems. Research has shown that automation can
cut down on human error and speed up the application of security policies (Humble & Farley,
2010)[HF10].

Automation also plays a big part in managing vulnerabilities. Ansible’s capability to automate security
updates and configurations is super valuable in the HVAC sector, where many stakeholders, vendors, and
interconnected devices are at play. By automating security patch deployment and sticking to encryption
standards, HVAC organizations can keep vendor communication channels well-guarded against new
threats.

Industry-Specific Security Challenges

A lot of research on data security tends to focus on general best practices like encryption and au-
thentication, but there’s not much out there that’s personalized to the HVAC industry. Given the
complexity and variability of HVAC systems, customized security measures are critical for protecting
vendor communication channels. As more HVAC vendors jump into 10T technologies and cloud-based
platforms, having a specific security framework becomes even more important. A strong combina- tion
of secure communication protocols, automated security management, and solid access control can
effectively tackle the unique security challenges that HVAC organizations face.

Framework Design

This framework is designed to create a secure, automated way for HVAC companies and vendors to
exchange data. This framework is all about protecting sensitive information—Ilike design documents,
purchase orders, and system specs—so that it stays confidential, reliable, and accessible while it’s being
sent. Here are the main elements of the framework:

Data Classification and Sensitivity Levels

The first thing we need to do is identify the sensitivity of the data before we build the security architecture.
HVAC data can vary a lot in how confidential it is and how it can impact operations. So we’ve identified
the following categories:

- Highly Sensitive Data: This includes proprietary design documents, system specs, and finan- cial

information that need top-notch encryption and protection.

+ Medium Sensitivity Data: Purchase orders and private contract details. These need encryp- tion, but

don’t require the highest level of security.

- Low Sensitivity Data: Here we are targetting system logs or general operational data that only need

basic protection.

Design Step: By understanding how sensitive the data is, we can decide on appropriate encryp- tion,
storage, and transmission methods during exchanges.

Encryption Standards for Data Transmission

To keep data exchanges secure, our framework uses strong encryption techniques to protect data both
when it’s being sent and when it’s stored.

+ Data in Transit: We’ll secure all the communication channels between HVAC systems and vendor

systems with TLS (Transport Layer Security) protocols. This helps keep the data safe from being
intercepted or altered while it’s in transit. For APIs, we’ll use SSL/TLS to ensure end-to-end security.

- Data at Rest: As for the data stored on HVAC and vendor systems, we’ll use AES (Advanced

Encryption Standard) with at least a 256-bit key size. The data will be encrypted before it’s saved in
databases or file systems.

Design Step: We’ll make sure to use secure encryption algorithms for both communication chan- nels
and data storage, keeping sensitive data protected every step of the way.

API Security with OAuth 2.0 and JWT

In the HVAC world, securely sharing data often happens through APIs that help different organizations
and vendors connect smoothly. To keep everything safe, we use OAuth 2.0 for managing who can access what,
along with JWT for handling identity and authorizations.

+ OAuth 2.0: This tool helps HVAC businesses control access for third-party vendors. It allows these

206

34

3.5

3.6

3.7

J. Electrical Systems 21-1s (2025): 204-213

organizations to specify what vendors can and can’t see, making sure that only the right people can access
sensitive information. With OAuth 2.0, we have detailed access controls so vendors can only view the data
they truly need.

+ JWT (JSON Web Tokens): JWT comes into play for token-based authentication. Once vendors

log in, they receive a secure JWT, which gets checked with each API call to ensure only approved
actions take place. These tokens can also include encrypted information to confirm who the user is
and any additional details.

Design Step: We’ll lock down API endpoints by enforcing OAuth 2.0 and using JWT for token
authentication. This way, only those who are verified and authorized can engage with our system.

Multi-Factor Authentication (MFA) for Access Control

To make sure that only authorized personnel can reach sensitive HVAC data, we’ll roll out multi-factor
authentication as an extra layer of security. MFA will be required at various access points throughout the
system, including:

+ Vendor Access: Vendors will need to log in with a mix of credentials (like their username and password)

and a second factor, such as a one-time passcode (OTP) or biometric verification.

+ Administrator Access: Our system administrators will also have MFA requirements to access important

parts of the HVAC infrastructure, including system setups and secure data storage.

Design Step: We will establish MFA at all key access points to minimize unauthorized access
risks.

Ansible Automation for Security Management

We’ll use Ansible to automate how we deploy and manage our security policies across the HVAC
infrastructure. Here’s what this automation covers:

« Automated Security Updates: We’ll automatically roll out security patches to both HVAC and

vendor systems to shield against vulnerabilities. With Ansible, we ensure that every system gets the latest
updates, lowering the chance of any unprotected systems.

- Encryption Standards Enforcement: Ansible playbooks will make sure that encryption standards

are consistently met, so all data exchanges follow the right encryption algorithms and key management
practices.

+ Access Control Configuration: We’ll automate the setup of firewall rules, access control lists

(ACLs), and other security settings using Ansible, which helps maintain uniform and compliant access
policies throughout the system.

Design Step: By using Ansible for security management, we’ll reduce human error and ensure security
policies are continuously applied.

Audit Logging and Monitoring

To keep a close eye on data exchanges, we’ve built in logging and monitoring features. Every time
there’s an API request, data transfer, or user access event, we’ll log it all to create a solid audit trail.
These logs are tamper-proof and will include:

+ Timestamped Logs: You’ll find detailed records of every data exchange, complete with the

timestamp, who accessed it, and which API endpoint they hit.

- Event Monitoring: We’re implementing smart algorithms to spot any suspicious activities like

unauthorized access attempts, data breaches, or anything unusual going on in the communica- tions.

Design Step: We’ll store these logs securely in a centralized logging system, like an SIEM (Security
Information and Event Management) platform, for real-time monitoring and thorough post-incident
analysis.

Scalability and Integration with Existing Systems

This framework is built to grow and blend right in with your current HVAC systems and vendor setups.
By using standardized protocols like TLS, OAuth 2.0, and JWT, we make sure it works smoothly
across different vendor platforms and HVAC systems. Plus, with Ansible’s automation capabilities,
the framework can expand easily as you add more vendors and adopt new security measures.

Design Step: The modular design means we can roll out future updates and bring in new vendors or
207

4.1

4.1.1

4.1.2

J. Electrical Systems 21-1s (2025): 204-213

technologies without causing disruptions to what’s already in place.

Implementation

Implementing this framework is a multi-step process that includes establishing encryption protocols,
configuring API security, enabling multi-factor authentication (MFA), automating security manage-
ment with Ansible, and setting up audit logging. Below, you’ll find a step-by-step guide on how to
implement this framework, complete with code snippets and a breakdown of how each part works.

Setting Up Encryption Standards

The first thing you need to do is secure your communication channels and data storage by configuring
some encryption standards.

Encrypting Data in Transit

To safeguard data while it’s being transmitted, we’ll need to use TLS/SSL protocols. Here’s a simple
example of how to set up TLS on a web server like Nginx or Apache for safe communication.

Nginx Configuration (example):

server {

listen 443 ssli;

server name example.com;

ssl certificate /etc/ssl/certs/hvac organization cert.pem;

ssl certificate key /etc/ssl/private/hvac organization key.pem;ssl protoco
Is TLSv1l.2 TLSv1.3;

ssl ciphers "YECDHE-ECDSA-AES128— GCM SHA256 :
ECDHE—-RSA—-AES128-GCM—-SHAZ256 :

location / {

proxy pass http://localhost:8080;

¥
¥

Explanation: This configuration enables HTTPS on port 443, ensuring TLS protocols are in use.
The SSL certificate and private key assist the encryption during communication.
Encrypting Data at Rest

For sensitive data stored on your system, we’ll use AES (Advanced Encryption Standard) with a
256-bit key size. Here’s a quick example of how to encrypt and decrypt data with Python using AES.

Python Example for AES Encryption (Using PyCryptodome):
from Crypto.Cipher import AES

from Crypto .Random import get random bytes import base 64
def encrypt data (data):

key = get random bytes (32) # 256—bit keycipher = AES. new(key,
AES MODE GCM)

ciphertext, tag = cipher.encrypt and digest(data.encode ()) return base64.b64
encode

(cipher.nonce + tag + ciphertext).decode (’utf —87)

def decrypt data (encrypted data):

encrypted data = base64.b64decode (encrypted data)nance, tag, ciphertext =

encrypted data[:16], encrypted data[16:32],encrypted data[32:]

cipher = AES. new(key, AES.MODE GCM, _nonce=nonce) return cipher.decrypt and
- 208

4.2

4.2.1

4.2.2

J. Electrical Systems 21-1s (2025): 204-213

verify

(ciphertext, tag).decode (’ utf—-8>)

Encrypt and Decrypt Example

data = ”Sensitive HVAC Design Document” encrypted data = encrypt data (data)
decrypted data = decrypt data (encrypted data)

print(f”Encrypted Data: {encrypted data}”) print(f” Decrypted Data: {decrypted
data }”)

Explanation: The data gets encrypted using AES-256 with GCM mode, which ensures both
confidentiality and integrity. We store the encrypted data in base64 format to make it easy to handle during
storage and transmission.

API Security with OAuth 2.0 and JWT
Next up, we’ll implement OAuth 2.0 and JWT to secure our APl authentication.
OAuth 2.0 Configuration

We’ll walk through a Flask example for OAuth 2.0 authentication. This allows HVAC organizations
to securely manage third-party access to their APIs.

Flask OAuth 2.0 Example (Using Authlib):

from flask import Flask, jsonify, redirect, requestfrom authlib.integratio
ns.flask oauth2 import

Authorization Server , Resource Protector , OAuth2PasswordBearer
app = Flask (__name)
app.secret key = ’your secret key’

authorization = AuthorizationServer (app) oauth2 scheme =
OAuth2PasswordBearer (app)

@app .route (’/api/resource ’, methods=[’GET’]) def resource ():

user = oauth2 scheme_.validate (request)return jsonify({”message”: ”Secure
data exchange ”, user ”: user .username})

Explanation: This example outlines an OAuth 2.0 resource server that validates access tokens
for incoming API requests. The classes AuthorizationServer and OAuth2PasswordBearer are used for
token validation from an authorization server.

JWT Authentication

We’ll use JWT to manage user authentication and control data access permissions.
JWT Example (Using PyJWT):

import jwt

from datetime import datetime , timedelta

Create JWT Token

def create jwt(user id):payload = {

>user id ’: user_id , _
>exp’: datetime .utcnow () + timedelta (hours=1)

}

secret key =_’your jwt secret key ’ _

return jwt.encode (payload, secret key, algorithm="HS256")

209

J. Electrical Systems 21-1s (2025): 204-213

Decode JWT Token

def decode jwt (token):try :

secret key = ’your jwt secret_key.’decoded token = jwt .decode
(token, secret key , algorithms =[’HS256°])return decoded token

except jwt.ExpiredSignature Error :return “Token has expired”

except jwt.Invalid TokenError :return ”Invalid token”

4.3

4.3.1

4.4

4.4.1

Example Usage

token = create jwit(123)

decoded = decode jwt (token) print(f”JWT Token: {token}”)
print(f”Decoded Token: {decoded}”)

Explanation: The code generates a JWT token that contains the user ID and an expiration
timestamp. The token is securely encoded using a secret key that the recipient can validate.

Multi-Factor Authentication (MFA) Setup

To enhance security, MFA is essential for accessing HVAC systems. We’ll incorporate Google Authen-
ticator as the second factor (OTP), along with a password.

Integrating MFA using PyOTP

PyOTP is a Python library that implements the OTP standard (TOTP), which is what Google Au-
thenticator uses.

MFA Setup Example:

import pyotp

Generate a secret key for MFA def generate mfa secret():
return pyotp.random base32 ()

Generate OTPi 7

def generate otp(secret):

totp = pyotp .TOTP(secret) return totp .now ()

Verify OTP

def verify otp(secret, otp):

totp = pyotp .TOTP(secret) return totp.verify (otp)

Example Usage

secret = generate mfa secret() otp = generate otp (secret)
is valid = verify otp(secret, otp)

print(f”Generated OTP: {otp}”) print(f”OTP Valid: {is valid}”)

Explanation: This code generates a secret key for a user, creates a one-time password (OTP), and
verifies the OTP input by the user. The OTP is time-sensitive and typically expires after 30 seconds.

Automation with Ansible

We’ll use Ansible to automate security updates and configuration changes across the HVAC infras-
tructure.

Example Ansible Playbook to Enforce Encryption and Security Updates

name: Secure HVAC Vendor Communication hosts : all
become: true tasks:
210

4.5

4.5.1

J. Electrical Systems 21-1s (2025): 204-213

name: Install required security packages apt:
name :
openssl

— python3—pip state : latest

name : Enforce AES—256 Encryption command: openssl enc —aes—256—chc —in
/path/to/sensitive/data —out

/ path/ to / encrypted / data

name: Install security updates apt:

upgrade : yes

name : Ensure API Server is running securely systemd :
name: api—serverstate: restartedenabled : true

Explanation: This playbook automates the installation of security packages, enforces AES-256
encryption, ensures that the latest security updates are applied, and restarts the API server with the most
recent security configurations.

Audit Logging and Monitoring

Centralized logging solution like Elasticsearch, Logstash and Kibana (ELK Stack) will be used to
store logs for continuous monitoring and auditing.

Example Python Logging Implementation

import logging

Set up logging configuration

logging.basicConfig (filename ="hvac exchange .log ’,
level=logging.INFO, format="%(asctime)s — %(message)s’)

Log an event

logging.info(’API request receivedfrom vendor X for data exchange *)
Log sensitive event

logging.error(’Unauthorized access attempt detected *)

Explanation: The Python logging module is used for tracking events. These logs play a key role
in keeping an eye on access to sensitive data and help monitor any security issues.

Future Work

- Bringing In Advanced Al for Threat Detection and Response: Future research could look

into using Al and machine learning (ML) to boost our threat detection capabilities. We could use
Al-driven systems to spot unusual patterns in data exchanges, user behavior, or API calls, which
would let us respond to potential security threats in real-time.

211

J. Electrical Systems 21-1s (2025): 204-213

- Using Blockchain for Data Integrity Verification: Even though we left out blockchain in our

current study, future efforts might focus on how it can help us keep critical data exchanges secure. A
blockchain solution would give us a tamper-proof and verifiable record of all transac- tions between
HVAC companies and their vendors, ensuring data integrity while creating clear audit trails.

+ Strengthening DNS Security: While we touched on DNSSEC for securing communication, there’s

room for further exploration into advanced DNS security strategies. This could include things like
DNS-based Authentication of Named Entities (DANE) and DNS filtering, which would provide
stronger defenses against DNS-related threats like Man-in-the-Middle (MITM) attacks

or DNS spoofing. Along with all this we can use framework designed by Talwar.S (2023) this helps
in scoring the Domains and Subdomains with ranking based on the type of vulnerability [TM23].

+ Optimizing Cloud Security and Multi-Cloud Integration: With cloud adoption rising in

[1]

[2]

the HVAC field, future studies could dive into ways to improve cloud security, especially in multi-
cloud setups. Figuring out how to manage encryption, access controls, and data storage effectively
across platforms like AWS, Azure, and Google Cloud would help keep our data secure and accessible,
while also steering clear of issues related to vendor lock-in.

Conclusion

This research lays out a solid framework for safely exchanging data between HVAC companies and their
vendors. It’s all about responding to the growing need for better cybersecurity in an industry that relies more
and more on digital communication and cloud services. By bringing together well-known security protocols
like TLS encryption, OAuth 2.0, JWT authentication, and multi-factor authentication, we ensure that
sensitive info—think design docs and purchase orders—gets sent securely and only the right folks can
access it.

Adding DNS security measures gives the framework an extra layer of protection for the commu-
nication channels between HVAC systems and vendor platforms. By using secure DNS practices like
DNSSEC, companies can dodge risks like DNS hijacking and cache poisoning, keeping domain name
resolutions intact and making sure that attackers can’t mess with traffic or snoop on data.

Cloud solutions, especially those taking advantage of secure cloud storage like AWS S3, provide
scalable and reliable ways to store sensitive HVAC data. With S3’s built-in encryption and access
controls, businesses can keep desigh documents, purchase orders, and system specs secure while still being
easy for authorized vendors to access, according to research already conducted we can use pre existing
framework designs to scan and fix those S3 buckets [Tal22].

Automating security management with tools like Ansible means that security updates and patches are
applied uniformly across on-premises and cloud systems, cutting down on human error and lowering
vulnerability risks. Centralized audit logging and monitoring, paired with cloud storage services, give real-
time insights into data access and transmission, allowing for quick responses to potential security issues.

In summary, this secure data exchange framework greatly lessens the chances of unauthorized access,
data breaches, and cyberattacks in the HVAC sector. By using strong encryption, DNS security, cloud
storage solutions like S3, and thorough access controls, this framework creates a secure and trustworthy
environment for collaboration between HVAC businesses and vendors. As the industry keeps developing
and adopting new tech, this flexible and scalable approach provides the infrastructure needed to guard
sensitive data and stay resilient against new cyber threats, whether on traditional setups or in the cloud.

References

[BC15] Rainer Bohme and Nicolas Christin. The role of multi-factor authentication in modern
security systems. Cybersecurity Journal, 8(1):33-50, 2015.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley, 2010.

212

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. Electrical Systems 21-1s (2025): 204-213

[JBS15] Michael Jones, Chris Bradley, and Noboru Sakimura. Using json web tokens for secure api
communication. Security and Privacy in Computing, 18(2):56-69, 2015.

[SB18] John Smith and Lisa Brown. Securing data in hvac systems: Best practices. Journal of
HVAC Security, 12(3):45-67, 2018.

[Tal22] S. Talwar. Securing cloud-native dns configurations: Automated detection of vulnerable s3-
linked subdomains. International Journal of Applied Engineering and Technology, 4(2):270— 278, 2022.

[TM23] S. Talwar and A. Mavi. An overview of dns domains/subdomains vulnerabilities scoring
framework. International Journal of Applied Engineering and Technology, 5(S4):274-280, 2023.

[Vit23] Surendra Vitla. Securing remote work environments: Implementing single sign-on (sso) and
remote access controls to mitigate cyber threats. Turkish Journal of Computer and Mathematics
Education (TURCOMAT), 14(2):1097-1114, 2023.

[XLK19] Lei Xu, Xia Liu, and Matthew Kwiat. Api security and its challenges in modern
systems.

Journal of Information Security, 23(4):101-115, 20109.

213

