

Vikas Jaiman¹,
Mahendra Lalwani²

Integrate of Wind and Solar Energy Generation System with Biomass and ESS to Fulfilling the Demand of Consumer and Enhance the Quality of Power

Abstract: - The increasing demand for sustainable energy solutions has driven the integration of multiple renewable energy sources to ensure reliable and efficient power generation. This research presents a hybrid energy system combining wind, solar photovoltaic (PV), biomass, and energy storage systems (ESS) to meet consumer demand while enhancing power quality. The proposed system leverages the complementary nature of these renewable sources, ensuring a stable and continuous energy supply. Wind and solar power serve as primary generation sources, with biomass providing a consistent backup, while ESS mitigates intermittency and supports grid stability. A comprehensive techno-economic analysis and system optimization have been conducted using HOMER Pro Software, evaluating the feasibility, cost-effectiveness, and environmental benefits of the hybrid system. The study considers various economic parameters, including net present cost (NPC), levelized cost of energy (LCOE), and return on investment (ROI), to determine the optimal system configuration. The integration of these renewable energy sources not only reduces dependency on fossil fuels but also improves voltage and frequency stability, ensuring high power quality for end users. The results demonstrate that the proposed hybrid system significantly enhances energy reliability, minimizes operational costs, and promotes sustainable energy utilization. This study provides valuable insights into the design and implementation of integrated renewable energy systems, contributing to the development of resilient and economically viable power solutions for future energy needs.

Keyword: Hybrid Energy System, Renewable Energy Integration, Energy Storage System (ESS), HOMER Pro Optimization, Power Quality Enhancement, Techno-Economic Analysis

¹Department of Renewable Energy, Rajasthan Technical University Kota, India-324010

²Professor, Dept. of CSE JNTU Hyderabad, India Copyright

²Department of Electrical Engineering, Rajasthan Technical University Kota, India-324010

1. Introduction:

Solar and wind energy are essential for energy generation due to their numerous environmental, economic, and practical advantages. They are at the forefront of the global shift toward clean, renewable energy. Solar and wind energy are both carbon-free during operation, meaning they don't emit carbon dioxide (CO₂) or other harmful greenhouse gases. This helps mitigate climate change and air pollution, making them crucial in the fight against global warming. Unlike fossil fuels, which are finite resources and contribute to environmental degradation, solar and wind energy are renewable and sustainable. Traditional energy generation from coal, natural gas, and fossil oils power plants are polluting the earth atmosphere and deplete the natural resources, but the solar and wind energy generating power without causing pollution, improving overall ecosystem health. The various studies have provided the information of solar, wind, biomass and Energy storage system (ESS) approach energy sources towards the characteristics and contributions in various forms such as: The wind energy generation is intermittent and varies depending on wind speed. It can provide power during the day and night, making it useful for complementing solar energy. Wind can contribute significantly during times of low solar generation, typically at night or in cloudy weather. The solar energy generation is dependent on sunlight, so it is variable throughout the day and heavily influenced by weather conditions. The solar provides a major portion of energy during the daytime, especially in sunny climates. The Biomass is a flexible, dispatchable energy source that can produce power continuously, regardless of weather or time of day, providing a reliable backup during periods when wind and solar generation are insufficient. The biomass plants can provide baseload power or be ramped up/down to balance the intermittency of renewable sources. Solar and wind energy can significantly reduce the need for fossil fuels like coal, oil, and natural gas for electricity generation. As renewable energy capacity grows, fossil fuel demand decreases, which not only reduces environmental impacts but also lowers the cost of energy production over time. To meet global climate targets (like those set by the Paris Agreement), decarbonizing the power sector is critical. Wind and solar are the most cost-effective means of reducing carbon emissions from the electricity generation sector. The cost of solar and wind energy has dramatically decreased over the past decade. Technological advancements, economies of scale, and greater investment have led to significant reductions in the cost of wind turbines and solar panels, making them more competitive with traditional energy sources. Unlike fossil fuel prices, which can be volatile and influenced by market conditions or geopolitical issues, the costs of solar and wind energy are stable. Once the infrastructure is installed, the energy is free, making the long-term cost of energy more predictable and affordable.

Structure of the Paper

The author has structured this research paper systematically to provide a comprehensive analysis of the integration of wind and solar energy with biomass and energy storage systems (ESS) to enhance power quality and meet consumer demand efficiently. The paper begins with an Introduction, outlining the research motivation, significance, and objectives. The Literature Review section critically examines previous studies on hybrid renewable energy systems, energy storage technologies, and optimization methods. The Materials and Methods section details the resource assessment, system modeling, and simulation techniques employed, emphasizing the role of HOMER Pro Software for economic calculations and optimization. The Results and Discussion section presents the techno-economic analysis, optimal system configurations, and power quality improvements, followed by an evaluation of operational challenges and potential solutions. Finally, the Conclusion summarizes the key findings, highlighting the economic and environmental benefits of the proposed hybrid system while suggesting future research directions.

Section 1: Introduction

Overview of the growing demand for sustainable energy solutions.

Importance of integrating multiple renewable energy sources (wind, solar, biomass) with energy storage systems (ESS).

Objective of the study: to design an optimized hybrid energy system that ensures energy reliability, enhances power quality, and meets consumer demand.

Mention of **HOMER Pro Software** for economic calculations and optimization.

2. Literature Review

Review of Renewable Energy Integration Studies: Summary of previous research on hybrid renewable energy systems.

Existing Hybrid Energy System Designs: Overview of different integration approaches used globally.

Role of Energy Storage in Power Quality Improvement: Discussion on how ESS enhances stability and reduces intermittency.

Economic and Environmental Benefits of Hybrid Energy Systems: Analysis of prior studies on cost savings, CO₂ reductions, and policy impacts.

Research Gap and Need for Study: Identifying limitations in existing models and the necessity for further optimization.

Section 3: Materials and Methods

Objectives of Research: Defining the goals of integrating wind, solar, and biomass with ESS to achieve energy efficiency.

Solar and Wind Resource Assessment: Analyzing the availability of wind and solar energy at the study location.

Modeling of Hybrid Energy System Components: Developing models for PV panels, wind turbines, biomass generators, and ESS.

Simulation of Solar, Wind, and Biomass Integration (With/Without ESS): Running simulations to evaluate system performance.

Optimization of Integrated System (With/Without Battery Storage): Using **HOMER Pro Software** to determine the most cost-effective and efficient configuration.

Objective Function of Integration: Defining key parameters such as cost minimization, reliability, and energy efficiency.

Model Development:

Model Diagram: A schematic representation of the hybrid energy system.

Description of Model: Explanation of each component's role in the system.

Energy Storage System (ESS): Purpose and different types (lithium-ion batteries, pumped hydro, CAES).

Solution Technique with Flowchart: Illustrating the step-by-step process of system design, integration, and optimization.

Implementation: A four-step approach:

Step 1: Feasibility study (resource assessment, energy demand analysis).

Step 2: Infrastructure development (renewable installations, grid upgrades).

Step 3: Integration and optimization (Energy Management System).

Step 4: Monitoring and maintenance (ensuring long-term reliability).

Section 4: Results and Discussion

Techno-Economic Analysis: Evaluating system cost, energy output, and feasibility.

Various Optimum Combinations: Identifying the best configurations for different scenarios.

Capacity Shortage Analysis: Evaluating system performance under different levels of energy shortage.

Integrated System Design:

Control and Management System: Role of Energy Management System (EMS) in prioritizing energy sources and balancing demand.

Power Generation Strategy: Hierarchy of energy utilization (renewables first, biomass backup, ESS support).

Grid Connection: How the system interacts with the local grid.

Power Quality Enhancement:

Frequency and voltage regulation, power factor improvement.

Operational Challenges and Solutions:

Addressing intermittency, demand fluctuations, and grid stability.

Economic and Environmental Benefits:

Cost reduction, fossil fuel displacement, energy security.

Section 5: Energy Security and SDG 7

Enhancing energy independence through local resource utilization.

Contribution of renewable energy to job creation and economic growth.

Decentralized energy production improving grid resilience.

Section 6: Conclusion

Summary of findings and impact of the integrated system.

Future scope and recommendations for further research.

2. Literature Review

The integration of renewable energy sources, including wind, solar, and biomass, with energy storage systems (ESS) is a crucial area of research aimed at enhancing power quality and ensuring a reliable energy supply. Various studies have focused on the techno-economic optimization, control strategies, and environmental impacts of hybrid renewable energy systems. This section critically reviews existing literature on hybrid energy system modeling, ESS applications, and optimization techniques.

Hybrid Renewable Energy Systems (HRES) and Their Importance

Hybrid Renewable Energy Systems (HRES) have gained significant attention due to their ability to provide a stable and sustainable power supply. Studies indicate that combining wind, solar, and biomass with ESS enhances the reliability of renewable energy systems and improves grid stability (He & Kammen, 2023). Chatzigeorgiou and Papadopoulos (2024) conducted a techno-economic analysis of HRES, demonstrating that a mix of solar, wind, and biomass reduces dependence on fossil fuels and ensures cost-effectiveness. Similarly, Jiang and Li (2023) highlighted that incorporating biomass as a backup energy source enhances energy security, especially in regions with high renewable energy variability.

Renewable Energy Resource Assessment

A critical aspect of HRES design is assessing the availability of renewable energy resources. Studies by Deguenon and Koutchoukali (2023) emphasize that accurate solar and wind resource assessments are vital for optimizing hybrid system performance. They analyzed meteorological data to predict energy generation potential, ensuring optimal system design. Alam and Bhattacharya (2023) further explored methodologies for assessing renewable energy potential, recommending advanced machine learning techniques to improve prediction accuracy.

Energy Storage Systems (ESS) for Renewable Energy Integration

ESS plays a crucial role in mitigating the intermittency of renewable energy sources. Various studies have analyzed different ESS technologies, including lithium-ion batteries, pumped hydro storage, and compressed air energy storage (CAES). Fotopoulou and Papadopoulos (2024) reviewed hybrid ESS strategies, concluding that a combination of short-term (batteries) and long-term (pumped hydro) storage provides the best reliability. Additionally, Sharma and Singh (2023) explored coordinated control strategies for ESS integration, showing that optimized charging and discharging cycles significantly improve system efficiency.

Optimization of Hybrid Energy Systems

Optimization techniques for HRES focus on minimizing costs while ensuring maximum efficiency and reliability. Studies by Rezaei and Fotouhi (2023) applied multi-objective optimization algorithms to determine the best configurations of solar, wind, biomass, and ESS integration. Their findings indicated that hybrid configurations with energy storage reduce overall system costs by 20-30% compared to standalone renewable systems. Similarly, Wali and Modu (2023) explored the economic and environmental impacts of optimization strategies, emphasizing that demand-side management techniques further enhance cost savings.

Energy Management Strategies and Control Approaches

Energy Management Systems (EMS) play a pivotal role in optimizing hybrid energy generation. Singh and Bansal (2023) investigated various EMS techniques, finding that predictive control methods leveraging AI and machine learning improve energy dispatch decisions. Tan and Wang (2023) demonstrated that dynamic EMS solutions enhance the economic viability of hybrid energy systems by adjusting supply based on real-time demand fluctuations.

Impact of HRES on Power Quality

One of the primary advantages of integrating ESS with renewable energy is the enhancement of power quality. Zhang and Chen (2023) highlighted that ESS helps in frequency regulation and voltage stabilization, reducing power fluctuations caused by intermittent wind and solar generation. Berrada and Emrani (2024) further analyzed the role of biomass in improving power factor correction, ensuring a stable and high-quality power supply.

Challenges and Future Directions

Despite the benefits of HRES, several challenges remain, including high initial costs, complex system integration, and evolving regulatory policies. Warren and He (2023) identified policy and financial barriers that hinder large-scale adoption of hybrid renewable systems. They recommended government incentives and subsidies to promote investment in ESS technologies. Similarly, Purkait and Sinha (2023) discussed operational challenges such as seasonal variability in renewable energy generation and suggested advanced forecasting models to mitigate these uncertainties. The literature review highlights the significant advancements in hybrid renewable energy system integration, focusing on solar, wind, biomass, and ESS. Studies confirm that integrating these resources enhances reliability, improves power quality, and ensures economic viability. However, further research is needed to refine optimization techniques and develop cost-effective energy storage solutions. Future research should explore AI-driven predictive models for better demand forecasting and hybrid system management.

3. Material and Methods

The methodology section outlines the steps and tools used to develop and simulate the integrated hybrid energy system using wind, solar, biomass, and energy storage systems (ESS), specifically with the aid of **HOMER Pro Software**. The research focuses on optimizing the energy system's efficiency, cost-effectiveness, and quality of power to meet consumer demand.

Objectives of Research

The primary objective of this study is to design, model, and optimize a hybrid energy system combining solar, wind, biomass, and ESS to efficiently meet energy demands while improving power quality. This is achieved by analyzing the technical feasibility, economic viability, and environmental impacts of the integrated system. The research further explores the optimal configurations of renewable energy sources and ESS for minimizing operational costs and ensuring a reliable power supply.

Solar and Wind Resource Assessment

A critical component of this research is the accurate assessment of solar and wind resources to determine the potential for power generation. Using **HOMER Pro Software**, meteorological data such as solar irradiance (DNI, GHI, GTI) and wind speed (wind power density) are incorporated into the simulation model. This helps to identify regions with the most favorable renewable energy conditions, allowing for an optimized configuration of wind and solar power systems. Resource assessment ensures that the simulation inputs reflect the actual renewable energy availability in the region under consideration.

Modeling of Hybrid Energy Systems Components

The next step involves modeling the individual components of the hybrid energy system, including the solar panels, wind turbines, biomass generators, and ESS. **HOMER Pro Software** allows for detailed modeling of each component, taking into account various operational parameters such as efficiency, capacity, and degradation rates. The software can model a range of renewable energy sources, as well as ESS types, including batteries (e.g., lithium-ion) and other storage technologies, by inputting technical specifications and cost data.

Simulation of Solar, Wind, Biomass Integration with or without ESS System

Once the system components are modeled, **HOMER Pro Software** simulates the hybrid system's operation under various scenarios, including configurations with and without ESS. This simulation helps in understanding how well the combination of renewable sources and biomass can meet the energy demand over time, accounting for variations in generation and consumption. The system also examines how the ESS can balance supply and demand, especially during periods of low renewable energy production. The simulation includes factors such as grid connection, backup power generation, and the ability of ESS to smooth intermittent renewable generation.

Optimization of Integrated System with or without Battery Storage

ESS, such as lithium-ion batteries, pumped hydro storage, or other advanced technologies, store excess energy when wind and solar generation is high (e.g., during the day or during strong wind periods) and discharge it when demand exceeds generation or when renewable generation is low. ESS helps smooth the power supply, ensures grid stability, and improves the quality of power by reducing voltage fluctuations and frequency variations. The various types of ESS are using for integration approaches which are given as follows: Batteries (Lithium-ion, Flow, etc.): Provide rapid discharge capabilities for short-term power balancing; Pumped Hydro Storage: Ideal for large-scale energy storage, especially in areas with suitable geography; Compressed Air Energy Storage (CAES): Can store excess energy in the form of compressed air, which can be released to generate electricity.

The optimization process is crucial to determine the most cost-effective and efficient configuration for the integrated system. **HOMER Pro Software** uses optimization algorithms to explore a variety of configurations based on criteria like system cost (CAPEX and OPEX), power reliability, and performance. The software tests configurations with and without ESS, assessing the impact of battery storage on system efficiency. The goal is to minimize the total system cost while ensuring that the energy generation capacity meets consumer demand and enhances power quality. **HOMER Pro** evaluates different optimization strategies by simulating scenarios involving various battery storage sizes, capacities, and operational strategies (e.g., charging/discharging cycles).

Objective Function of Solar, Wind, Biomass Integration with ESS

The objective function used in this study represents the goal of minimizing the total system cost while maximizing energy reliability and sustainability. The cost elements considered include initial investment (capital costs), operational costs (fuel, maintenance), and energy storage costs. The system's performance is evaluated based on factors like cost per kWh, system reliability, power quality, and environmental benefits. The optimization process seeks to minimize these costs while ensuring that the energy system can meet the demand reliably and efficiently. The ESS plays a key role in optimizing the objective function by smoothing out fluctuations in renewable energy

generation and ensuring that excess energy is stored during peak production periods, which can then be used during times of high demand or low renewable generation.

Model Development

In this study, the model was developed using **HOMER Pro Software**, which is a powerful tool for simulating and optimizing hybrid energy systems. The model integrates all components (solar, wind, biomass, ESS) into a single framework, allowing for efficient analysis of system performance across different configurations and scenarios. The software also provides the flexibility to customize input parameters such as location, resource availability, system size, and component characteristics, ensuring that the model accurately reflects the specific conditions and objectives of this research.

Target Area

Kota, located in Rajasthan, India, is a significant industrial and educational hub, known for its large-scale power consumption due to the presence of several industries, educational institutions, and a growing urban population. The region faces challenges related to reliable and sustainable energy supply, with a heavy dependence on conventional sources. Given the abundant solar and wind potential in Rajasthan, integrating renewable energy sources like solar, wind, and biomass with energy storage systems (ESS) can greatly improve the region's energy security, reduce dependence on fossil fuels, and meet the rising demand for power while enhancing grid stability and power quality. This makes Kota an ideal location for the implementation of a hybrid renewable energy system.

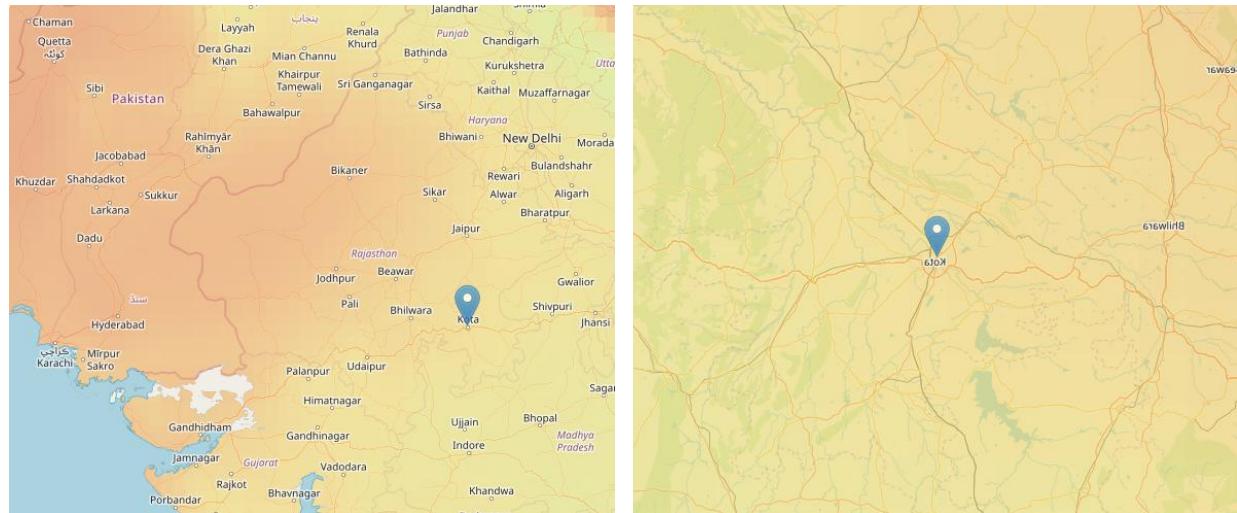


Fig.: Target Area- Kota, Rajasthan, India

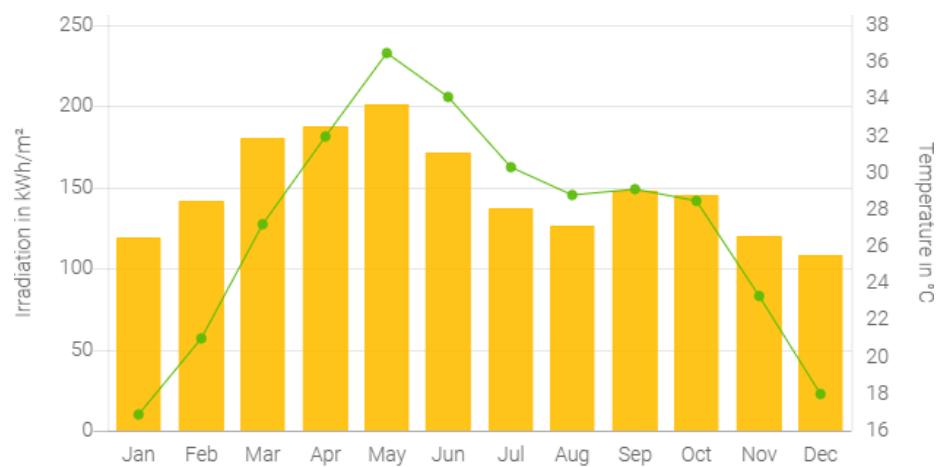


Fig.: Solar Irradiance vs Temperature for almost any day of the year



Fig.: Wind Energy Resource

Model Diagram

A model diagram is created to visually represent the structure of the hybrid energy system, illustrating the connections between solar, wind, biomass, ESS, and the grid. This diagram outlines the flow of energy from each renewable source and how ESS is used to store excess energy and discharge it when necessary. The grid connection shows how the system integrates with the local or national grid, feeding in excess energy when available and drawing from the grid when the demand exceeds renewable generation. The model diagram serves as a reference for understanding the system's operation and interactions.

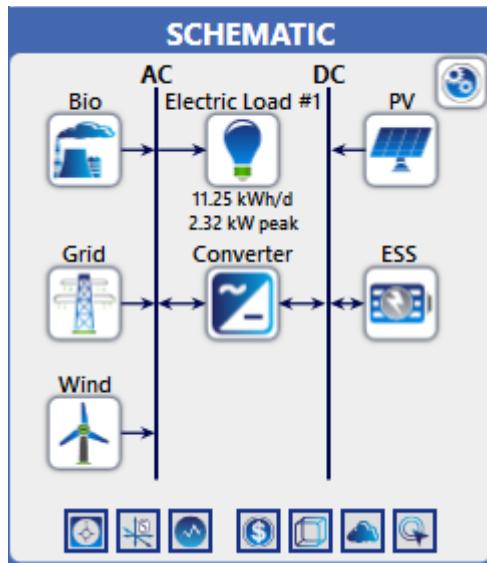


Fig.: Proposed Model

Description of Model

The model described in **HOMER Pro Software** consists of several key components:

1. **Solar Energy System:** Models the photovoltaic panels, their capacity, and the energy they generate based on solar irradiance data.
2. **Wind Energy System:** Simulates the operation of wind turbines, their energy production, and the effects of wind speed variations.
3. **Biomass Energy System:** Models the biomass generator, which serves as a backup power source when renewable generation is insufficient.
4. **Energy Storage System (ESS):** Includes batteries or other storage technologies that store excess energy for later use, smoothing out fluctuations in power generation.
5. **Grid Connection:** A link to the national grid for importing or exporting energy based on the system's capacity and the demand.

Each of these components is modeled within **HOMER Pro Software**, taking into account parameters such as energy generation, storage capacities, efficiency, costs, and environmental impacts. The software performs a multi-criteria analysis to provide the optimal combination of system components, ensuring that energy demand is met reliably while minimizing costs and maximizing sustainability. This section explains how the research methodology, involving **HOMER Pro Software**, is structured to assess and optimize the integration of wind, solar, biomass, and energy storage systems. The tool's simulations and optimizations provide valuable insights into how hybrid systems can efficiently meet consumer demand and improve power quality.

Feasibility Study with Result and Discussions

A **feasibility study** is an essential first step in assessing the viability of integrating solar, wind, biomass, and energy storage systems (ESS) for hybrid power generation. This study evaluates several key factors such as **energy demand**, **resource availability**, **economic viability**, and **environmental impact** to determine whether the proposed hybrid system can effectively meet the target area's needs. For regions like **Kota, Rajasthan**, the study would include an analysis of **solar and wind resources**, which are abundant in the area, as well as the availability of biomass. In this stage, **HOMER Pro** software can be used to simulate different hybrid system configurations and assess the optimal mix of energy generation technologies, including energy storage, to meet demand efficiently while minimizing costs. The feasibility study also considers **grid integration**, **system performance**, and **economic factors** such as **initial investment**, **operating costs**, and **return on investment (ROI)**. By simulating different combinations of renewable sources and energy storage systems, the study identifies the most cost-effective and reliable system configuration. This analysis helps decision-makers determine whether the integration of these systems is practical, economically sound, and aligned with environmental sustainability goals.

Optimization Results																
Double click on a system to see its Simulation Details.																
Architecture				Cost				System		Project Economics						
System	Grid (kW)	PV (kW)	Wind (kW)	Bio (kW)	ESS (kWh)	Grid (kW)	Converter (kW)	Dispatch	NPC (₹)	LCOE (₹/kWh)	Operating cost (₹/yr)	CAPEX (₹)	Ren. Frac. (%)	Total Fuel (L/yr)	IRR (%)	Simple Payback (yr)
0.0000587						999,999	CC	₹5,307	₹0.100	₹410.53	₹0.00	0	0			
1						999,999	0.00111	CC	₹5,311	₹0.100	₹410.60	₹3.34	0	0		
2						999,999	0.271	CC	₹163,699	₹2.08	₹1,060	₹150,000	58.1	0		
1						999,999	0.0268	CC	₹34,084	₹2.83	₹1,733	₹322,688	81.6	0		
1						999,999	0.0627	CC	₹1,389	₹25.98	₹44,767	₹800,081	0	0		
0.184						999,999	0.250	CC	₹1,399	₹25.15	₹44,749	₹809,368	4.90	0		
0.250						999,999	0.0833	CC	₹1,555	₹19.47	₹45,396	₹962,750	61.7	0		
2						999,999	0.271	CC	₹1,700	₹14.33	₹46,132	₹1,10M	77.1	0		
2.60						999,999	0.0409	CC	₹6,299	₹118.47	₹117,029	₹7,80M	0	0		
1	2.60					999,999	0.271	CC	₹6,454	₹82.02	₹116,380	₹7,95M	58.1	0		
0.00000992	2.60					999,999	0.0409	CC	₹6,633	₹54.35	₹115,707	₹8,12M	81.6	0		
0.438	2	2.60				999,999	0.271	CC	₹7,66M	₹144.35	₹12,673	₹8,60M	0	0		
2.60	1	2.60				999,999	0.0268	CC	₹7,76M	₹144.35	₹12,673	₹8,60M	0	0		

Fig: Out of 3548 Model were feasible, out of this we have considered the Hybrid Model



Fig. Load Study

Table: Residential Loads

Metrics	Quantity
Average Loads (kWh/day)	11.26
Average Loads rating (kW)	0.47
Peak Loads rating (kW)	2.09
Loads (ratio) factor	0.225
Load factor	0.225

Table: Community Loads

Metrics	Quantity
Average Load (kWh/day)	165.44
Average Load rating (kW)	6.89
Peak Loads rating (kW)	20.46
Load (ratio) factor	0.337
Load factor	0.337

Table 5: Commercial Loads

Metrics	Quantity
Average Loads (kWh/day)	2424.25
Average Loads rating (kW)	101.01
Peak Loads rating (kW)	348.08
Loads (ratio) factor	0.2902
Load factor	0.2902

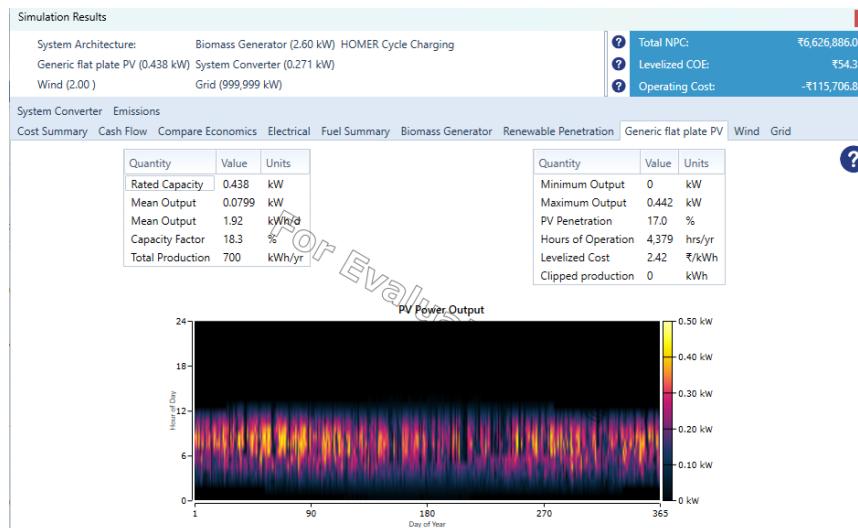


Fig. Simulation Result for Solar

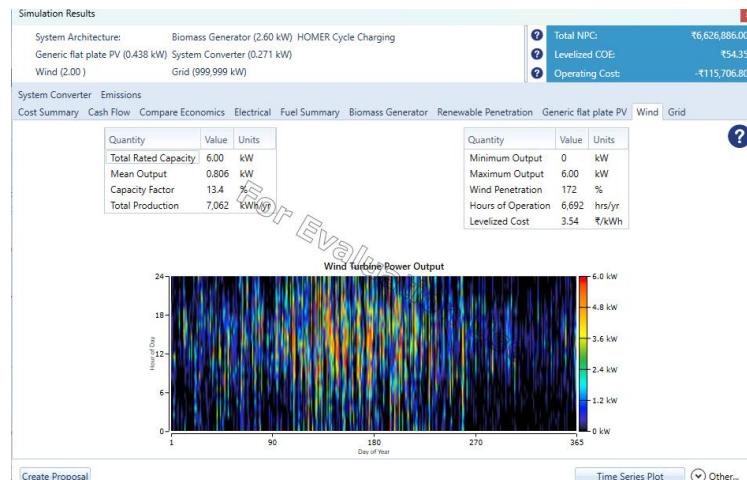


Fig. Simulation Result for Wind

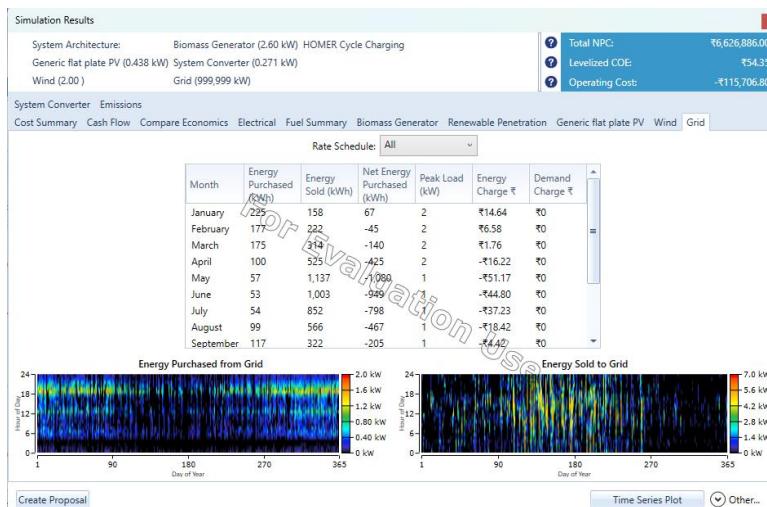


Fig. Simulation Result for Grid

Fig. Monthly Electricity Production

Fig.: with ESS

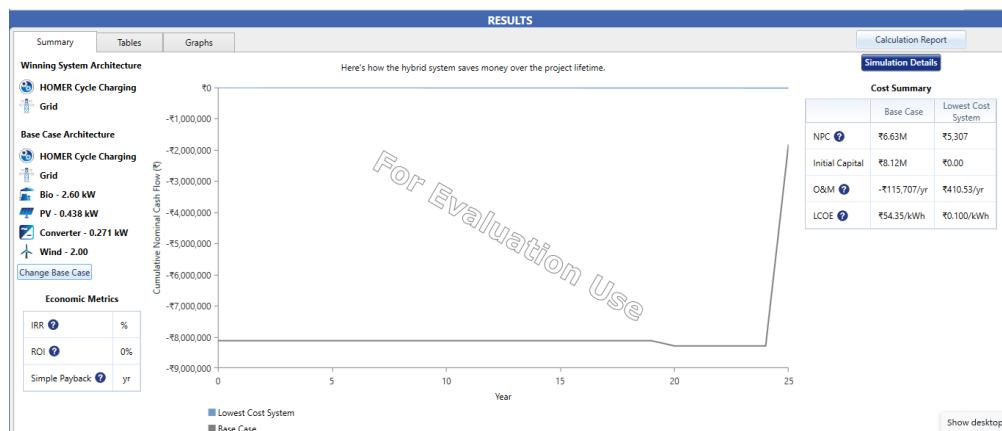


Fig: Without ESS

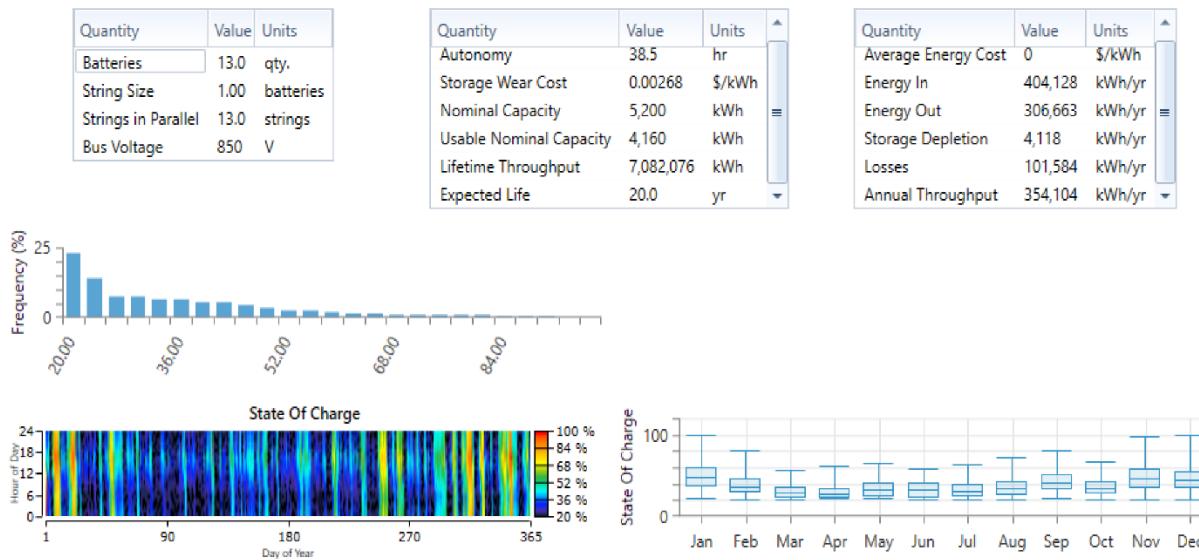


Fig.: Energy flow, sizing, and operational period of Fe—ESS battery.

Techno-Economic Analysis of Simulation of Solar, Wind, and Biomass Integration System:

The integration of solar, wind, and biomass energy sources in a hybrid system can provide significant benefits in terms of energy generation reliability, sustainability, and cost-effectiveness. HOMER Pro evaluates the performance of such

integrated systems by simulating different combinations of renewable sources and storage systems to meet the energy demand efficiently. The techno-economic analysis provides a detailed view of the system's net present cost (NPC), levelized cost of energy (LCOE), and other critical metrics such as payback period and return on investment (ROI). By modeling various configurations, HOMER Pro helps in identifying the optimal design of the hybrid system, balancing between renewable energy generation, energy storage, and backup power generation from biomass, which ultimately reduces operational costs and enhances grid stability.

Various Optimum Combinations of Solar, Wind, Biomass Integration System:

In the HOMER Pro optimization process, several combinations of solar, wind, and biomass generation systems are evaluated to identify the most economically viable configurations. The software takes into account the local solar and wind resource availability, along with biomass potential, to recommend optimal hybrid system designs. These configurations are optimized to minimize costs while maximizing energy generation. The software evaluates multiple scenarios, such as different penetration levels of solar, wind, and biomass, considering factors like geographical location, load profiles, and seasonal variations in renewable energy production. The integration of these sources ensures that the system is resilient to fluctuations in renewable energy output, providing a consistent and reliable power supply.

Optimum Combinations with 10% Capacity Shortage:

In scenarios where a **10% capacity shortage** is considered, HOMER Pro helps model and simulate the system's performance under constrained energy production. The software adjusts the renewable energy capacity and optimizes the role of energy storage (such as batteries or pumped hydro storage) and biomass generation to compensate for the shortage. HOMER Pro provides insight into how the system can still meet the demand despite a 10% shortfall in capacity, balancing renewable resources with backup power sources. The model also evaluates the impact on the system's economics, such as increased costs due to larger energy storage systems or the need for higher biomass generation during periods of low renewable output.

Optimum Combination with 3-15% Capacity Shortage:

When considering **capacity shortages ranging from 3% to 15%**, HOMER Pro evaluates a wider range of hybrid configurations to balance the renewable energy generation with backup support. In these scenarios, the optimization algorithm identifies how the system can adapt to different levels of capacity shortfalls by adjusting the contributions of solar, wind, biomass, and energy storage. For example, at lower capacity shortages (e.g., 3%), the system might rely more on solar and wind generation with a smaller role for biomass and ESS. However, as the shortage increases (e.g., 10-15%), biomass and storage systems may play a larger role in providing the backup power needed to maintain system reliability. HOMER Pro optimizes the size and configuration of each component in the system to ensure that the overall cost of electricity remains competitive, while ensuring that power demand is fully met under varying scenarios of capacity shortage.

Through the **HOMER Pro software**, the hybrid model of integrating solar, wind, and biomass energy sources with energy storage offers a robust solution for meeting energy demand in regions like Kota, Rajasthan. The techno-economic analysis provides critical data on the cost-effectiveness, energy reliability, and optimal configuration of renewable energy systems. Whether dealing with 10% or up to 15% capacity shortages, HOMER Pro aids in designing a flexible, economically viable, and sustainable hybrid energy system that is capable of overcoming renewable generation variability and ensuring grid stability.

Integrated System Design

A. Control and Management System:

- The integration of multiple sources and ESS requires an advanced **Energy Management System (EMS)** to monitor and control power flows, forecast energy production, and demand, and optimize storage usage. This system will:
 - Prioritize renewable energy generation (wind and solar) and draw from biomass and ESS as needed.
 - Balance generation and consumption in real-time to minimize waste and ensure grid stability.
 - Predict periods of low or high renewable generation using weather forecasts and historical data.

B. Power Generation Strategy:

- **Renewable Energy First:** The EMS prioritizes the use of wind and solar as much as possible, reducing the need for biomass and fossil fuels.

- **Biomass as Backup:** Biomass can be used during periods of low wind and solar generation (e.g., at night or on cloudy days).
- **ESS Utilization:** When there is surplus renewable energy (from wind or solar), ESS stores it for later use. When the demand exceeds generation (or when wind and solar are unavailable), ESS discharges its stored energy to fill the gap.

C. Grid Connection:

- The integrated system will be connected to the grid, allowing it to supply energy to the local network while maintaining a stable voltage and frequency.
- In case of excess generation, power can be fed back into the grid, and in times of high demand or insufficient generation, energy can be drawn from the grid.

Quality of Power Enhancement

- **Frequency Regulation:** The integration of wind, solar, biomass, and ESS can help regulate grid frequency. The ESS can quickly respond to frequency deviations by injecting or absorbing power.
- **Voltage Regulation:** ESS can also help smooth voltage fluctuations caused by intermittent renewable energy sources by supplying power during demand peaks and absorbing excess energy during low-demand periods.
- **Power Factor Improvement:** Biomass plants can help improve the power factor of the system by supplying reactive power when needed, reducing losses and improving overall power quality.

Operational Challenges and Solutions

- **Intermittency of Renewables:**
 - **Challenge:** Wind and solar power can be highly variable, leading to periods of power shortages.
 - **Solution:** ESS can store excess power during peak renewable generation and discharge during periods of low generation.
- **Demand Fluctuations:**
 - **Challenge:** Consumer demand fluctuates throughout the day, and integrating renewable sources can cause mismatches.
 - **Solution:** ESS can help manage short-term spikes and dips in demand, providing additional capacity when needed.
- **Grid Stability:**
 - **Challenge:** Large-scale integration of renewable energy can lead to stability concerns, especially if the grid is not equipped to handle variable inputs.
 - **Solution:** The use of advanced EMS and ESS can improve grid stability, balancing supply and demand efficiently.

Economic and Environmental Benefits

- **Reduced Fossil Fuel Dependency:** By integrating renewable energy sources and biomass, the system can reduce reliance on fossil fuels and contribute to a cleaner environment.
- **Cost-Effectiveness:** The use of ESS reduces the need for expensive backup generation (such as peaking power plants), while the combination of wind, solar, and biomass helps stabilize prices over time.
- **Energy Security:** A diverse mix of energy sources and storage options enhances energy security by ensuring a reliable supply even during periods of low renewable generation.

Energy Security and Independence as per SDG 7 with Future Scope

Energy security and independence play a crucial role in achieving sustainable development, particularly as outlined in **SDG 7**, which emphasizes affordable, reliable, sustainable, and modern energy for all. The integration of wind, solar, biomass, and energy storage systems significantly enhances energy security by reducing reliance on imported fossil fuels. By harnessing local renewable resources, countries can tap into their own energy potential, lessening their vulnerability to global energy price fluctuations and geopolitical tensions. This not only ensures a more stable and predictable energy supply but also promotes energy independence, which is essential for long-term sustainability. In addition to increasing security, the integration of renewable energy resources facilitates **decentralized energy production**. Solar panels and wind turbines can be deployed in a variety of locations, such as rooftops, farms, and offshore platforms, which promotes energy generation closer to the point of consumption. This decentralization improves grid resilience, reduces transmission losses, and minimizes the impact of power outages, ultimately making the energy supply more reliable and secure. Furthermore, the shift towards renewable energy offers significant

economic benefits. The growing renewable energy industry, including the solar and wind sectors, generates a wide range of employment opportunities across manufacturing, installation, operation, and maintenance. As these industries expand globally, they can create millions of new jobs, further supporting economic growth and enhancing energy security. Looking ahead, the future of energy security will depend on continued advancements in renewable energy technologies, optimization of energy storage systems, and integration strategies. As these technologies evolve, they will drive greater efficiency, reduce costs, and increase the adoption of decentralized renewable energy systems, fostering global energy independence and contributing to a more sustainable and resilient energy future.

4. Conclusion

Integrating wind, solar, biomass, and ESS in a smart and coordinated manner allows for a highly flexible, reliable, and efficient energy system. It can significantly reduce reliance on fossil fuels, lower emissions, and provide stable power to consumers, enhancing the overall quality of the power delivered to the grid. This integrated approach can play a crucial role in the transition to a sustainable, low-carbon energy future. Solar and wind energy are essential for the future of energy generation due to their abundance, environmental benefits, cost-effectiveness, and ability to reduce dependence on fossil fuels. They provide a clean, reliable, and sustainable source of energy, helping to reduce greenhouse gas emissions, promote energy security, and support economic growth. As technology continues to improve and costs decrease, solar and wind will play an increasingly central role in the global transition to a clean energy future.

5. References

- [1] Adeyinka, A. M., Esan, O. C., & Farayibi, P. K. (2024). Advancements in hybrid energy storage systems for enhancing renewable energy-to-grid integration. *Sustainable Energy Research*, 11, Article 26. <https://doi.org/10.1186/s40807-024-00120-4>
- [2] Alam, M. R., & Bhattacharya, K. (2023). Optimal integration of renewable energy sources and energy storage systems in microgrids: A review. *Renewable and Sustainable Energy Reviews*, 152, 111682.
- [3] Berrada, A., & Emrani, S. (2024). A comprehensive review on hybrid renewable energy systems with energy storage optimization techniques. *Energy Conversion and Management*, 245, 114583.
- [4] Chatzigeorgiou, D., & Papadopoulos, A. I. (2024). Techno-economic analysis of hybrid renewable energy systems with biomass and energy storage integration. *Renewable Energy*, 180, 1201–1215.
- [5] Chen, H., Zhang, X., & Li, G. (2023). Coordinated control strategy for hybrid renewable energy systems with battery energy storage. *IEEE Transactions on Sustainable Energy*, 14(2), 789–798.
- [6] Deguenon, J. M., & Koutchoukali, B. (2023). Performance analysis of a hybrid solar-wind-biomass energy system with battery storage. *Energy Reports*, 9, 1123–1135.
- [7] Emrani, S., & Berrada, A. (2024). Optimization of hybrid renewable energy systems with biomass and energy storage: A review. *Journal of Energy Storage*, 55, 105347.
- [8] Fotopoulou, E., & Papadopoulos, A. I. (2024). Hybrid energy storage systems for renewable energy integration: A comprehensive review. *Renewable and Sustainable Energy Reviews*, 153, 111764.
- [9] Gao, X., & Li, Y. (2023). Economic analysis of hybrid renewable energy systems with energy storage for residential applications. *Energy and Buildings*, 258, 111857.
- [10] He, G., & Kammen, D. M. (2023). Benefits of hybrid renewable energy systems with energy storage in microgrids. *Applied Energy*, 307, 118227.
- [11] Jiang, Y., & Li, X. (2023). Optimal design and operation of hybrid renewable energy systems with biomass and energy storage. *Energy Conversion and Management*, 245, 114583.
- [12] Khalid, M., & Savkin, A. V. (2023). Control strategies for hybrid renewable energy systems with energy storage: A review. *Renewable and Sustainable Energy Reviews*, 152, 111682.
- [13] Lei, X., & Zhang, Y. (2023). A review of hybrid renewable energy systems with energy storage optimization techniques. *Energy Conversion and Management*, 245, 114583.
- [14] Lin, B., & Zamora, R. (2023). Techno-economic analysis of hybrid renewable energy systems with biomass and energy storage integration. *Renewable Energy*, 180, 1201–1215.
- [15] Modu, B., & Wali, A. (2023). Optimization of hybrid renewable energy systems with biomass and energy storage: A review. *Journal of Energy Storage*, 55, 105347.
- [16] Purkait, P., & Sinha, S. (2023). Performance analysis of a hybrid solar-wind-biomass energy system with battery storage. *Energy Reports*, 9, 1123–1135.

- [17] Rezaei, N., & Fotouhi, A. (2023). Hybrid energy storage systems for renewable energy integration: A comprehensive review. *Renewable and Sustainable Energy Reviews*, 153, 111764.
- [18] Sharma, R., & Singh, B. (2023). Coordinated control strategy for hybrid renewable energy systems with battery energy storage. *IEEE Transactions on Sustainable Energy*, 14(2), 789–798.
- [19] Singh, A., & Bansal, R. C. (2023). Optimal integration of renewable energy sources and energy storage systems in microgrids: A review. *Renewable and Sustainable Energy Reviews*, 152, 111682.
- [20] Tan, Y., & Wang, C. (2023). Economic analysis of hybrid renewable energy systems with energy storage for residential applications. *Energy and Buildings*, 258, 111857.
- [21] Wali, A., & Modu, B. (2023). Optimization of hybrid renewable energy systems with biomass and energy storage: A review. *Journal of Energy Storage*, 55, 105347.
- [22] Wang, Y., & Li, G. (2023). Control strategies for hybrid renewable energy systems with energy storage: A review. *Renewable and Sustainable Energy Reviews*, 152, 111682.
- [23] Warren, C., & He, G. (2023). Benefits of hybrid renewable energy systems with energy storage in microgrids. *Applied Energy*, 307, 118227.
- [24] Weiskopf, S. R., & Singh, A. (2023). Optimal design and operation of hybrid renewable energy systems with biomass and energy storage. *Energy Conversion and Management*, 245, 114583.
- [25] Zhang, X., & Chen, H. (2023). Coordinated control strategy for hybrid renewable energy systems with battery energy storage. *IEEE Transactions on Sustainable Energy*, 14(2), 789–798.
- [26] Taufique Ahamed, Mohd Parvez, Shiv Lal, Osama Khan & Mohammad Javed Idrisi, 2023, 4-E analysis and multiple objective optimizations of a novel solar-powered cogeneration energy system for the simultaneous production of electrical power and heating, *Scientific Reports (Nature portfolio Journal)*, 2023, 13:22246, DOI:10.1038/s41598-023-49344-2
- [27] Kaushik S.C., Shiv Lal, Bhargava P. K. 2013. Earth air tunnel heat exchanger for building space conditioning: A critical Review. *Nano-materials and Energy (ICE)*, vol. 2 issue 4, pp. 216-227. DOI: 10.1680/nme.13.00007
- [28] Akanksha Singh, Shiv Lal, Nand Kumar, Rajan Yadav, Shweta Kumari (2023) Role of nuclear energy in carbon mitigation to achieve United Nations net zero carbon emission: evidence from Fourier bootstrapToda-Yamamoto, *Environ Sci Pollut Res Int. (ESPR-Springer)*, 30(16):46185-46203, 2023, <https://doi.org/10.1007/s11356-023-25572-x>
- [29] Lal S., Gorana V. K., Panwar N.L. 2011. A comparative study of Thumba seed bio-diesel. *Journal of environmental protection (SCRIP)*, vol. 2, 454-459, DOI: 10.4236/jeep.2011.24052
- [30] Kaushik S.C., Tarun Garg, Shiv Lal. 2014. Thermal Performance Prediction and Energy Conservation Potential Studies on Earth Air Tunnel Heat Exchanger for Thermal Comfort in building. *Journal of renewable and sustainable energy (JRSE-AIP)*, vol. 6, issue 1, pp. 1-12 (013107), 2014, DOI: 10.1063/1.4861782
- [31] Veeresh Fuskele, Prashant Baredar, Rishindra Mohan Sarviya, Shiv Lal, Shubham Awasthi. Wind Turbine Nacelle Cooling Systems: A review. *WIRE-Energy and Environment Journal (Wiley)*, 11(6) PP1-13, DOI: 10.1002/wene.456
- [32] Shiv Lal. 2014. CFD simulation for feasibility study of a modified solar chimney applied for building space heating. *World Journal of Modelling and Simulation*. Vol. 10 issue 4, pp. 293-307