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Abstract: - The main goal of designing peptide vaccines, conducting immunodiagnosis, and producing antibodies is to accurately identify 

linear B-cell epitopes. However, experimental analysis to determine these epitopes is costly. This study focuses on developing a Gaussian-

based dilated 1-D CNN model for classifying epitopes and non-epitopes in protein sequences related to Zika and Dengue viruses. The 

Immune Epitope Database (IEDB) was used, containing a total of 1741 and 7020 linear B-cell epitopes for Zika and Dengue viruses, 

respectively. Physicochemical features of the protein sequences dataset were extracted using the Gaussian distribution to extract optimal 

features based on feature probability distribution. The proposed model achieved an accuracy score of 83.00% and 85.00%, precision of 

87.00%, recall of 83.00% and 85.00%, and an F1-score of 84.00% and 86.00% over the Zika and Dengue datasets. The suggested model 

outperforms existing methods, demonstrating the potential of deep learning approaches in bioinformatics for enhancing epitope prediction 

in viruses, with implications for drug discovery and vaccine development. 

Keywords: Linear B-Cell, Protein Sequences, Amino Acid Sequences, Epitopes, Non-Epitopes, Deep Learning, Drug 
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I. INTRODUCTION 

The human the immune system's reaction relies heavily on antibodies, which are essential elements that identify 

and attach to the proteins of pathogenic organisms like bacteria or viruses [1,51,52,53,54]. An epitope represents 

the portion of an antigenic material that such antibodies identify. It is possible to identify a linear epitope, that is 

an ongoing chain of amino acids found within the linear protein sequence, as well as a conformal epitope, which is 

a group of amino acids that may be divided in the amino acid sequence but are situated strongly in the three-

dimensional framework of the protein. In instances, uses like peptide-based vaccine development [2,55,56,57,58], 

immuno-diagnostic testing [3], and the synthesis of synthesized antibodies [47,48,49,50] depend on the 

recognition B-cell epitopes (BCEs). Statistical modeling can be crucial in the invention of novel vaccines and 

medications toward major viruses infections such the hiv , liver disease, or flu viruses, since clinical identification 

 
1 Marathwada  Mitramandal’s Institute of Technology, Pune, Maharashtra, India 

jyoti1584@gmail.com 

2G H Raisoni College of Engineering and Management, Pune, Maharashtra, India,  

dipikaus@gmail.com 

3MIT Art Desgin and Technology University’s School of Computing, Pune, Maharashtra, India,  

anuja.gaikwad@mituniversity.edu.in 

4AISSMS Institute of Information Technology, Pune, Maharashtra, India 

mayura.shelke@gmail.com 

5Ajeenkya D Y Patil School of Engineering, Pune Maharashtra, India, 

ankitatidake@dypic.in 

6Vishwakarma institute of technology, Pune, Maharashtra, India,  

sheetal.phatangare@vit.edu 

Copyright © JES 2024 on-line : journal.esrgroups.org 

mailto:jyoti1584@gmail.com
mailto:dipikaus@gmail.com
mailto:anuja.gaikwad@mituniversity.edu.in
mailto:mayura.shelke@gmail.com
mailto:ankitatidake@dypic.in


J. Electrical Systems 20-1s (2024): 862 - 874 

863 

of BCEs is costly and time-consuming [5]-[6]-[7]. The forecasting of continuous BCEs has drawn a lot of interest 

[8], despite the fact that conformational BCEs make up almost all of normally existing BCEs [9]. This is because 

linear BCEs are useful for peptide-based vaccine production, besides additional uses [10]-[11]. 

Some physiochemical feature of the individual amino acids, such as membrane access [12], fluidity [13], 

hydrophilic properties [14], or antigenic properties [15], was the single assessed by the early epitope predicting 

algorithms. Among the techniques which are presently available online include BEPITOPE [16], PEOPLE [17]. 

Using a folding frame across the search query peptide sequence, these methods determine the typical amino acid 

probability score for each characteristic [37,38,39,40]. A linear BCE is identified in the corresponding area of the 

sequence whenever the projected ratios for an ongoing portion of the amino acid are higher than a predetermined 

cut-off. On the other hand,  using a particular amino acid profile or additionally a mixture of traits, an evaluation 

of 485 likelihood factors showed that these factors are ineffective to identify BCEs and slightly exceeded 

randomized BCE identification [41,42,43]. 

Innovative methods that were based on multiple likelihood factors and incorporated previously unincluded amino 

acid characteristics have been developed in response to the growing accessibility of empirically determined 

epitopes [19]. These techniques, which differentiate between BCEs and non-BCEs in the arrangement of amino 

acids using machine learning (ML) techniques, have demonstrated higher performance than individual likelihood 

scale-based techniques. BCEs are provided as features sets for learning the machine learning models, which 

originate from various features of amino acids, including the amino acid composition (AAC), the amino acid pair  

antigenicity level [20]. BepiPred 3.0 [21], ABCPred [22], AAAPred [23], SVMTrip [24], EpitopeVec [18], and 

EpiDope [25], EpitopeVec [26] represent a few instances of ML-based techniques for BCE modeling. One 

prominent problem appears to be that none of the previously listed techniques achieve higher performance when 

used in a cross-testing strategy, because ML training and validation are carried out on separate databases 

[44,45,46].  

Contribution of the paper 

• To develop the Gaussian based dilated 1-D CNN for classifying epitopes and non-epitopes in protein 

sequences associated with Zika and Dengue viruses. 

• This study's contribution lies in its application of deep learning techniques to bioinformatics, aiming to 

improve epitope prediction in viruses. Such models have the potential to enhance for understanding of 

viral proteins, aiding in drug discovery and vaccine development efforts. The research underscores the 

importance of deep learning in bioinformatics and its potential to impact public health and medical 

research positively. 

Organization of the paper  

Section 2 presents the brief overview of dataset, Physicochemical feature extraction, Gaussian Distribution 

function, deep learning model. The suggested methodology and dilated 1D-CNN model are presented in section 3. 

Section 4 presents the result analysis, comparative analysis of the proposed model. Section 5 discussed the 

conclusion and future direction of the study.  

II. MATERIALS AND METHODS 

Figure 1 shows the architecture of proposed model which consists of data inputs, feature extraction, building Deep 

learning model, and classification. Input of the model are protein sequence of Zika and Dengue virus dataset that 

consists of 20 amino acid charecters. The Physicochemical Features of 21-character text sequences are provided as 

inputs. These features need to be converted into an integer sequence using quantization coding. These features are 

extracted using Gaussian distribution to extract the optimal features based on the probability of feature 

distribution. The dilated 1D-CNN model is designed for classifying the epitopes and non-epitopes of protein 

sequences.  

Datasets 

In this study, extracted the piptide dataset of Zika and Dengue from the IEDB that contains the epitopes and non-

epitopes. (http://www.iedb.org/).  The IEDB database recorded a total of 1741 and 7020 linear B-cell epitopes of 

zika and dengue respectively. Among these total epitopes, 1261 positive epitopes and 480 negative epitopes were 

http://www.iedb.org/
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recorded from the Zika virus dataset. Likewise, 5008 positive epitopes and 2012 negative epitopes are recorded 

from the dengue virus dataset. 

 

Figure 1: Architecture of Proposed Model 

Physicochemical Feature  

Amino Acid Composition : A vector indicating the proportional amount of every single amino acid in the protein 

serves as a representation of the AAC [27]. It could be expressed as: 

𝐴𝐶𝐶 = (𝑓1, 𝑓2, … … 𝑓20)        (1) 

Where 𝑓𝑖 =  
𝐴𝑖

𝑁
 (i=1,2,3,…..20) shows the type of amino acid 𝑖, 𝐴𝑖  represents the total amount of amino acid 

sequence, and 𝑁 represents the lenght of amino acid sequence 

Dipeptide Composition 

A vector that specifies the quantity of dipeptides standardized over every possible dipeptide pairings for a given 

protein sequence is used to express dipeptide composition (DC). Its features remain constant at 400 in length [28]. 

It could be expressed as: 

𝐷𝐶 = (𝑓1, 𝑓2, … … 𝑓400)        (2) 

Where 𝑓𝑖 =  
𝐴𝑖

𝑁
 (i=1,2,3,…..400) shows the type of dipeptide 𝑖, 𝐴𝑖  represents the total amount of dipeptide 

composition, and 𝑁 represents the lenght of peptide 

Moreau-Broto Autocorrelation 

The Moreau-Broto autocorrelation feature is a method used to analyze protein sequences. It calculates the 

correlation between the properties of amino acids in a protein sequence and their positions within the sequence. 

Mathematically, the Moreau-Broto autocorrelation for a feature 𝑃of an amino acid sequence is given by: 

𝑀𝐵 − 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) =  ∑ (
𝑃(𝑖) .  𝑃(𝑖+1)

𝑖
)𝑛−1

𝑖=1      (3) 

where 𝑛 is the length of the sequence, and 𝑃(𝑖) represents the value of property 𝑃 for the amino acid at position ii 

in the sequence. This feature helps in predicting various properties of proteins, such as their function, with other 

molecules, by considering the spatial relationships between amino acids in the sequence. 

Moran Autocorrelation 
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The Moran autocorrelation feature is a method used in bioinformatics to analyze protein sequences [29]. It 

calculates the correlation between the properties of amino acids in a protein sequence and the properties of 

neighboring amino acids. Mathematically, the Moran autocorrelation for a property 𝑃 of an amino acid sequence 

is given by: 

𝑀𝑜𝑟𝑎𝑛 − 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) =
𝑛

∑ (𝑃(𝑖) − �̅�)2𝑛
𝑖=1

 .
∑ ∑ (𝑃(𝑖)− �̅�)𝑛

𝑗=𝑖+1 .(𝑃(𝑗)−�̅�)𝑛
𝑖=1

∑ (𝑃(𝑖) − �̅�)2𝑛
𝑖=1

   (4) 

Where nn is the length of the sequence, 𝑃(𝑖) represents the value of property PP for the amino acid at position ii in 

the sequence, and �̅� is the average value of property 𝑃 across all amino acids in the sequence. This feature helps in 

predicting various properties of proteins by considering the spatial relationships between amino acids and their 

properties. 

Geary Autocorrelation 

The Geary autocorrelation feature is a method used to measures the similarity between the properties of amino 

acids at different positions in the sequence. Mathematically, the Geary autocorrelation for a property 𝑃 of an 

amino acid sequence is given by: 

𝐺𝑒𝑎𝑟𝑦 − 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) =
∑ ∑ (𝑃(𝑖)−𝑃(𝑗))2.𝑤𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛
𝑖=1

2.∑ (𝑃(𝑖)−𝑃(𝑗))2𝑛
𝑖=1  

     (5) 

Where 𝑛 is the length of the sequence, 𝑃(𝑖) represents the value of property 𝑃 for the amino acid at position 𝑖 in 

the sequence, and 𝑤𝑖𝑗  is a weight factor that can be defined based on the distance between positions 𝑖 and 𝑗 in the 

sequence. This feature helps in predicting various properties of proteins by considering the spatial relationships 

between amino acids and their properties. 

Combined Feature  

In this step combine the features can enhance the prediction of model by incorporating diverse information of 

amino acid sequences over the Zika and Dengue dataset. In this step combining all five physicochemical 

properties of amino acid sequence that can lead to improved accuracy in predicting epitopes. 

𝐹 =  𝐴𝐶𝐶 ∪ 𝐷𝐶 ∪ 𝑀𝐵𝐴 ∪ 𝑀𝐴 ∪ 𝐺𝐴      (6) 

Gaussian Distribution 

In this study, presented the Gaussian distribution to extract the optimal features for enhancing the weights of the 

targeted features and its adjacent features [30], so that the proposed deep model can train with optimal features of 

amino acid. The Gaussian distribution function is: 

𝑓(𝑎) =  
1

√2𝜋𝛿
𝑒𝑥𝑝 (− 

(𝑎−𝜇)2

2𝛿2 )        (7) 

Gaussian distribution is measured using equations 8 

𝑓(𝑎) =  ∫ 𝑓(𝑎) 𝑑𝑥,
𝑎

−∞
         (8) 

Gaussian probability distribution function is defined in equation 9 

𝑃(𝑎)  =  𝐹(𝑎)  −  𝐹(𝑥 − 𝑤)        (9) 

where 𝑤 represents the token window, 𝛿 is the standard deviation, 𝜇 is the average of the distribution, and an is an 

actual value. To denote the length of every token in the tests, defined the token window 𝑤 to 1. It is also defined 

the optimum values of 𝜇 and d to 0 and 2.5, respectively. The design set is where these properties are adjusted. 

This probability is used as a feature in deep learning model for protein sequence prediction. 

Dilated 1D-CNN 

In this study, we designed a dilated 1-D CNN to classify epitopes and non-epitopes from protein sequences related 

to Zika and Dengue viruses. Before designing the proposed dilated 1D-CNN model, we set the parameters for 

training the model, which includes 3 channels with an input width of 17, 32 filters, a kernel size of 3, and a 
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dilation rate of 2. The model was trained with a batch size of 32 over 100 epochs using the Adam optimizer. The 

model's loss was measured using the binary cross-entropy function. 

Given 1D protein sequence features 𝑓: 𝑁−>  𝑅 and kernel 𝑘 ∶  {0,1, . . . 𝑛 − 1} −>  𝑅, the dilated convolutional 

function (𝑓 ∗ 𝑑 𝑘): 𝑁 −>  𝑅 is: 

(𝑓 ∗ 𝑑 𝑘)(𝑠) = ∑ 𝑘(𝑖) ∗ (𝑠 − 𝑖𝑑)𝑛−1
𝑖=0        (10) 

Where, 𝑁 is the real numbers, and n and d represents the kernel size and dilation parameter respectively. If 𝑑 =

 1, the neural network operate normal convolutopnal operator. In dilated CNN, residual connection is used to 

stability of the network [31]. In this network used 1 𝑥 1 convolutional layer to compare the size of input and 

output. The weight normalization is used in the kernel of dilated layer. To randomized apply the dropout to the 

output layer. The Relu is used as a activation function . The figure 2 shows the complete architecture of the 1D 

dialted CNN model. 

 

Figure 2: Architecture of the Dilated 1D CNN Model 

Dilated Convolutional Operator 

The dilated convolutional function can be defined (𝐹 ∗𝑑  𝑘): 𝑁 −>  𝐶 as follows 

(𝐹 ∗𝑑  𝑘) (𝑠)  =  𝑎𝑟𝑔 min
𝑐

∑ 𝑘(𝑖)𝑑𝐶
2(𝐹(𝑠 − 𝑖𝑑), 𝐶) 𝑁−1

𝐼=0      (11) 

Where, C represents the valued operator of (𝐹 ∗𝑑  𝑘). the C is used as manifold function which is equal to 

Euclidean dilated layer. 

Residual Connection 

 If 𝐹 and 𝑌 is the input and ouput of neural network. Based on the  Euclidean residual connection, apply  residual 

connection in two phases: 1) Concatenate 𝐹 and 𝑌(𝐹) to obtained the number of input and output channels. 2) 

𝑤𝑌𝐶 is used extract the ouput. Let, 𝑅(𝐹, 𝑌𝑓) is the ouput of the residual connection [32], then 𝑛𝑡ℎ channel of 

connection , 𝑅𝑛(𝐹, 𝑌(𝐹)) is defined as  

𝑅𝑛(𝐹, 𝑌(𝐹))(𝑠)  ≝  arg 𝑚𝑖𝑛
𝐶

        (12) 

(∑ 𝑘(𝑖)𝑑𝐶
2(𝐹(𝑠 − 𝑖𝑑), 𝐶) +  ∑ 𝑘(𝑗 + 𝑖𝑛𝑝𝑢𝑡)𝑑𝐶

2𝑐𝑜𝑢𝑛𝑡
𝑗=1 (𝑌𝑗(𝑠), 𝐶)

𝑖𝑛𝑝𝑢𝑡
𝑖=1 ),     

𝑆𝑡 ∑ 𝑘(𝑖) = 1, ∀𝑘(𝑖)  > 0𝑖         (13) 
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Where, 𝑛 ∈ (1,2, . . . . 𝑜𝑢𝑡𝑝𝑢𝑡) and 𝐹𝑖 and 𝑌𝑗 represents the 𝑖𝑡ℎand 𝑗𝑡ℎ channel of 𝐹 and 𝑌 respectively. 

Loss Function  

The binary cross-entropy loss function is used for classifying epitopes and non-epitopes. It calculates the 

difference between the predicted probability distribution and the actual distribution of the epitopes and non-

epitopes. Mathematically, it is defined as: 

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 = −
1

𝑁
 ∑ [𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖)log (1 − 𝑦�̂�)]𝑁

𝑖=1    (14) 

Where 𝑁 is the number of features, 𝑦𝑖  is the actual label (epitopes and non-epitopes) for features 𝑖, and 𝑦�̂� is the 

predicted probability of the features belonging to epitopes. The loss function penalizes the model more when it 

makes incorrect predictions with high confidence and less when it is uncertain. The goal is to minimize this loss 

function during training to improve the model's ability to correctly classify epitopes and non-epitopes. 

Pseudo Code: Dilated 1D-CNN 

Input: 𝐹 =  𝐹(𝐴𝐶𝐶, 𝐷𝐶, 𝑀𝐵𝐴, 𝑀𝐴, 𝐺𝐴) // Physicochemical Feature 

Output: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝐸𝑝𝑖𝑡𝑜𝑝𝑒 𝑎𝑛𝑑 𝑁𝑜𝑛 − 𝐸𝑝𝑖𝑡𝑜𝑝𝑒             

Define the Gaussian distribution function based on equation 6 

Measure the Gaussian distribution using the cumulative distribution function based on equation 7 

Define the Gaussian probability distribution function based on equation 8 

Function 1D-CNN 

Parameters (N, 𝐹𝑖𝑛, 𝐹𝑜𝑢𝑡, res, k1, d1, k2, d2, nC, c) 

𝒙𝒊−𝟏 = 𝑰𝒏𝒑𝒖𝒕(𝐹𝑖𝑛 , 𝑵) 

𝑦1 = 𝐷𝑖𝑙𝑎𝑡𝑒𝑑 − 𝐶𝑜𝑛𝑣(𝑥𝑖−1, 𝐹𝑖𝑛,𝐹𝑜𝑢𝑡 , 𝑘1, 𝑑1 ) 

𝑦1 = 𝐷𝑖𝑙𝑎𝑡𝑒𝑑 − 𝐶𝑜𝑛𝑣(𝑦1, 𝐹𝑜𝑢𝑡 , 𝑘2, 𝑑2 ) 

𝑥𝑖 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑥𝑖−1, 𝑦1, 𝐹𝑖𝑛, 𝐹𝑜𝑢𝑡 , 𝐶𝑟𝑒𝑠) 

𝑦0 = 𝐼𝑛𝑣(𝑥𝑖 , 𝑛𝐶, 𝑐) 

End Function 

The above pseudo code describes a dilated 1D-CNN for classifying epitope and non-epitope regions in protein 

sequences based on physicochemical features (ACC, DC, MBA, MA, GA). It begins by defining a Gaussian 

distribution function and measuring it using a cumulative distribution function. The 1D-CNN function takes 

parameters such as the number of amino acids (N), input and output features (F_in, F_out), kernel sizes (k1, k2), 

dilation rates (d1, d2), and number of classes (nC). It then performs dilated convolutions with different kernel 

sizes and dilation rates, calculates the residual connection between the input and output, and performs an inverse 

transformation to obtain the classification probabilities for epitope and non-epitope regions. 

III. RESILT ANALYSIS 

The proposed Gaussian based Dilated 1D-CNN model was trained using Physicochemical Features of linear B-

Cell protein sequence over the Zika and Dengue virus dataset. The implementation was carried out using core 

Python programming and the scikit-learn library. The experimental setup was conducted on Google Colab, 

utilizing a high-end GPU and 16 GB of RAM.  To measure the performance and effectiveness of proposed 

Gaussian based Dilated 1D-CNN model for prediction and classification of linear B-cell Epitopes. Following 

evaluation parameters such as accuracy, precision, Recall and f1 score is used to meets the desired objectives of 

the study.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇_𝑃 + 𝑇_𝑁

𝑇_𝑃 + 𝑇_𝑁 + 𝐹_𝑃 + 𝐹_𝑁
       (15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑃
        (16) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑁
        (17) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (18) 
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Table 1: Classification Report of proposed model over the Zika virus dataset 

 Precision Recall F1-Score Support 

0 0.65 0.90 0.75 395 

1 0.95 0.80 0.87 997 

Accuracy   0.83 1392 

Micro Avg 0.80 0.85 0.81 1392 

Weighted Avg 0.87 0.83 0.84 1392 

 

Table 1 shows the classification report of a proposed model for classifying epitope and non-epitope of linear B-

cell over the Zika virus dataset. For class 0 (epitope), the model achieved a precision of 0.65, recall of 0.90, and 

F1-score of 0.75. For class 1 (non-epitope), the precision was higher at 0.95, recall was 0.80, and F1-score was 

0.87. The accuracy of the model was 0.83. In the micro-average calculation across both classes, the precision was 

0.80, recall was 0.85, and F1-score was 0.81, considering all instances. The weighted average, which considers 

class imbalance, resulted in a precision of 0.87, recall of 0.83, and F1-score of 0.84. This indicates that the model 

performed well, particularly in classifying class 1 instances. 

  

Figure 3: Training and Validation Accuracy and Loss of model for Zika virus dataset 

 

Figure 4: ROC curve for Zika dataset 

The figure 3 shows the training and validation accuracy and loss of a model trained on the Zika virus dataset. The 

training accuracy steadily increases over 100 epochs. The training loss, which measures the difference between 

predicted and actual values during training, decreases over 100 epochs, indicating that the model is improving in 

its predictions. The figure 3 indicates that insights into how well the model is learning and generalizing from the 
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Zika data. Figure 4 shows the ROC curve that indicate the performance of a dilated 1D-CNN model trained on the 

Dengue virus dataset in terms of its true positive rate against the false positive rate across different thresholds. The 

area under the ROC curve (AUC) is 0.92, indicating that the model has good discriminative ability in 

distinguishing between positive and negative instances. A higher AUC value suggests that the model is better at 

classifying Epitopes and Non-Epitopes correctly across various thresholds. The ROC curve and its AUC of 0.92 

indicate that the suggested model has a strong performance in classifying Epitopes and Non-Epitopes in the Zika 

virus dataset. 

 

Figure 5: Confusion Matrix for Zika Dataset 

Figure 5 shows the confusion matrix, indicates that the model correctly identified 196 epitope regions and 38 non-

epitope regions, but it misclassified 801 non-epitope regions as epitope and 357 epitope regions as non-epitope 

over the Zika Dataset.  

Table 2: Classification Report of Proposed Model over the Dengue virus dataset 

 Precision Recall F1-Score Support 

0 0.70 0.86 0.77 1616 

1 0.94 0.85 0.89 3999 

Accuracy   0.85 5615 

Micro Avg 0.82 0.85 0.83 5615 

Weighted Avg 0.87 0.85 0.86 5615 

Table 2 presents the classification report of a proposed model for classifying epitope and non-epitope of linear B-

cell over the Dengue virus dataset. For class 0 (non-epitope), the model achieved a precision of 0.70, recall of 

0.86, and F1-score of 0.77. For class 1 (non-epitope), the precision was higher at 0.94, recall was 0.85, and F1-

score was 0.89. The overall accuracy of the model was 0.85.  

 

Figure 6: Training and Validation Accuracy and Loss of model for Dengue virus dataset 
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Figure 6 shows the training and validation accuracy and loss of a model trained on the Dengue virus dataset. The 

training accuracy steadily increases over 100 epochs. The training loss, which measures the difference between 

predicted and actual values during training, decreases over 100 epochs, indicating that the model is improving in 

its predictions. The figure 6 indicates that insights into how well the model is learning and generalizing from the 

Zika data. 

 

Figure 7: ROC Curve of Model for Dengue Dataset 

Figure 7 shows the ROC curve that indicate the performance of a dilated 1D-CNN model trained on the Dengue 

virus dataset in terms of its true positive rate against the false positive rate across different thresholds. The area 

under the ROC curve (AUC) is 0.94, indicating that the model has good discriminative ability in distinguishing 

between positive and negative instances. A higher AUC value suggests that the model is better at classifying 

Epitopes and Non-Epitopes correctly across various thresholds. Overall, the ROC curve and its AUC of 0.94 

indicate that the model has a strong performance in classifying Epitopes and Non-Epitopes in the Dengue virus 

dataset. 

 

Figure 8: Confusion Matrix for Dengue Dataset 

Figure 8 shows the confusion matrix, indicates that the model correctly identified 599 epitope regions and 229 

non-epitope regions, but it misclassified 1387 non-epitope regions as epitope and 3400 epitope regions as non-

epitope over the Dengue Dataset.  
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Table 3: Comparative Analysis of Proposed Model with Existing Methods 

Author Dataset Accuracy Precision Recall F1-Score 

Liu F. et. al. 

(2024) [33] 
iBCE-EL 75.7 72.2 73.1 72.6 

Ras-Carmona 

A et. al. 

(2022) [34] 

BLAST 72.54 81.58 63.49 - 

Khanna D. et. 

al. (2020) 

[35]  

APCpred 76.6 70.00 82.00 - 

Maximilian 

Collatz et. al. 

(2020) [25] 

Bepipred 69.00 63.5 52.00 - 

Qi Y. et. al. 

(2023) [36] 
DeepLBCEPred 67.00 63.00 71.00 - 

Proposed 

Dilated 1D-

CNN 

Zika 83.00 87.00 83.00 84.00 

Dengue 85.00 87.00 85.00 86.00 

 

Table 3 presents a comparative analysis of the proposed model with existing methods for classifying epitope and 

non-epitope. The proposed Dilated 1D-CNN model outperforms existing methods in terms of accuracy, precision, 

recall, and F1-score. The proposed model achieves an accuracy of 83%, which is higher than the accuracies 

reported by Liu F. et al. (75.7%), Ras-Carmona A et. al. (72.54%), Khanna D. et. al. (76.6%), Maximilian Collatz 

et. al. (69.00%), and Qi Y. et. al. (67.00%). Similarly, the precision, recall, and F1-score of the proposed model are 

also higher compared to the existing methods, indicating that the proposed Dilated 1D-CNN model is more 

effective in classifying epitope and non-epitope regions in the dataset. 

IV. CONCLUSION AND FUTURE SCOPE 

In this study, we addressed the challenge of accurately identifying linear B-cell epitopes in protein sequences 

related to Zika and Dengue viruses. We introduced a Gaussian-based dilated 1-D CNN model, aiming to improve 

epitope prediction, a critical step in peptide vaccine design and immunodiagnosis. Our model, trained on the 

Immune Epitope Database (IEDB) containing 1741 and 7020 epitopes for Zika and Dengue dataset, respectively, 

achieved high accuracy score of 83.00% and 85.00%, precision of 87.00%, recall of 83.00% and 85.00%, and an 

F1-score of 84.00% and 86.00% over the Zika and Dengue datasets. The results indicate the effectiveness of our 

model in classifying epitopes and non-epitopes, outperforming existing methods. For future research, we plan to 

enhance the model by exploring advanced deep learning pretrained techniques such as Resnet, LSTM, Mobilenet 

etc. and implements optimization techniques such as PSO, GA, Jelly Fish optimizer etc. to extract the optimal 

feature and also incorporating experimental data for validation, thereby further improving epitope prediction 

accuracy and expanding the model's applicability to other viruses and organisms. 
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