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Abstract: - The main goal of designing peptide vaccines, conducting immunodiagnosis, and producing antibodies is to accurately identify
linear B-cell epitopes. However, experimental analysis to determine these epitopes is costly. This study focuses on developing a Gaussian-
based dilated 1-D CNN model for classifying epitopes and non-epitopes in protein sequences related to Zika and Dengue viruses. The
Immune Epitope Database (IEDB) was used, containing a total of 1741 and 7020 linear B-cell epitopes for Zika and Dengue viruses,
respectively. Physicochemical features of the protein sequences dataset were extracted using the Gaussian distribution to extract optimal
features based on feature probability distribution. The proposed model achieved an accuracy score of 83.00% and 85.00%, precision of
87.00%, recall of 83.00% and 85.00%, and an F1-score of 84.00% and 86.00% over the Zika and Dengue datasets. The suggested model
outperforms existing methods, demonstrating the potential of deep learning approaches in bioinformatics for enhancing epitope prediction
in viruses, with implications for drug discovery and vaccine development.
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L INTRODUCTION

The human the immune system's reaction relies heavily on antibodies, which are essential elements that identify
and attach to the proteins of pathogenic organisms like bacteria or viruses [1,51,52,53,54]. An epitope represents
the portion of an antigenic material that such antibodies identify. It is possible to identify a linear epitope, that is
an ongoing chain of amino acids found within the linear protein sequence, as well as a conformal epitope, which is
a group of amino acids that may be divided in the amino acid sequence but are situated strongly in the three-
dimensional framework of the protein. In instances, uses like peptide-based vaccine development [2,55,56,57,58],
immuno-diagnostic testing [3], and the synthesis of synthesized antibodies [47,48,49,50] depend on the
recognition B-cell epitopes (BCEs). Statistical modeling can be crucial in the invention of novel vaccines and
medications toward major viruses infections such the hiv , liver disease, or flu viruses, since clinical identification
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of BCEs is costly and time-consuming [5]-[6]-[7]. The forecasting of continuous BCEs has drawn a lot of interest
[8], despite the fact that conformational BCEs make up almost all of normally existing BCEs [9]. This is because
linear BCEs are useful for peptide-based vaccine production, besides additional uses [10]-[11].

Some physiochemical feature of the individual amino acids, such as membrane access [12], fluidity [13],
hydrophilic properties [14], or antigenic properties [15], was the single assessed by the early epitope predicting
algorithms. Among the techniques which are presently available online include BEPITOPE [16], PEOPLE [17].
Using a folding frame across the search query peptide sequence, these methods determine the typical amino acid
probability score for each characteristic [37,38,39,40]. A linear BCE is identified in the corresponding area of the
sequence whenever the projected ratios for an ongoing portion of the amino acid are higher than a predetermined
cut-off. On the other hand, using a particular amino acid profile or additionally a mixture of traits, an evaluation
of 485 likelihood factors showed that these factors are ineffective to identify BCEs and slightly exceeded
randomized BCE identification [41,42,43].

Innovative methods that were based on multiple likelihood factors and incorporated previously unincluded amino
acid characteristics have been developed in response to the growing accessibility of empirically determined
epitopes [19]. These techniques, which differentiate between BCEs and non-BCEs in the arrangement of amino
acids using machine learning (ML) techniques, have demonstrated higher performance than individual likelihood
scale-based techniques. BCEs are provided as features sets for learning the machine learning models, which
originate from various features of amino acids, including the amino acid composition (AAC), the amino acid pair
antigenicity level [20]. BepiPred 3.0 [21], ABCPred [22], AAAPred [23], SVMTrip [24], EpitopeVec [18], and
EpiDope [25], EpitopeVec [26] represent a few instances of ML-based techniques for BCE modeling. One
prominent problem appears to be that none of the previously listed techniques achieve higher performance when
used in a cross-testing strategy, because ML training and validation are carried out on separate databases
[44,45,46].

Contribution of the paper

e To develop the Gaussian based dilated 1-D CNN for classifying epitopes and non-epitopes in protein
sequences associated with Zika and Dengue viruses.

e This study's contribution lies in its application of deep learning techniques to bioinformatics, aiming to
improve epitope prediction in viruses. Such models have the potential to enhance for understanding of
viral proteins, aiding in drug discovery and vaccine development efforts. The research underscores the
importance of deep learning in bioinformatics and its potential to impact public health and medical
research positively.

Organization of the paper

Section 2 presents the brief overview of dataset, Physicochemical feature extraction, Gaussian Distribution
function, deep learning model. The suggested methodology and dilated 1D-CNN model are presented in section 3.
Section 4 presents the result analysis, comparative analysis of the proposed model. Section 5 discussed the
conclusion and future direction of the study.

II. MATERIALS AND METHODS

Figure 1 shows the architecture of proposed model which consists of data inputs, feature extraction, building Deep
learning model, and classification. Input of the model are protein sequence of Zika and Dengue virus dataset that
consists of 20 amino acid charecters. The Physicochemical Features of 21-character text sequences are provided as
inputs. These features need to be converted into an integer sequence using quantization coding. These features are
extracted using Gaussian distribution to extract the optimal features based on the probability of feature
distribution. The dilated 1D-CNN model is designed for classifying the epitopes and non-epitopes of protein
sequences.

Datasets

In this study, extracted the piptide dataset of Zika and Dengue from the IEDB that contains the epitopes and non-
epitopes. (http://www.iedb.org/). The IEDB database recorded a total of 1741 and 7020 linear B-cell epitopes of
zika and dengue respectively. Among these total epitopes, 1261 positive epitopes and 480 negative epitopes were
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recorded from the Zika virus dataset. Likewise, 5008 positive epitopes and 2012 negative epitopes are recorded
from the dengue virus dataset.

Feature Extraction with Physicochemical Feature
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Figure 1: Architecture of Proposed Model
Physicochemical Feature

Amino Acid Composition : A vector indicating the proportional amount of every single amino acid in the protein
serves as a representation of the AAC [27]. It could be expressed as:

ACC = (f1,£2, ......f20) (1)

Where f; = % (i=1,2,3,.....20) shows the type of amino acid i, A; represents the total amount of amino acid

sequence, and N represents the lenght of amino acid sequence
Dipeptide Composition

A vector that specifies the quantity of dipeptides standardized over every possible dipeptide pairings for a given
protein sequence is used to express dipeptide composition (DC). Its features remain constant at 400 in length [28].
It could be expressed as:

DC = (f1,f2,..... f400) 2)

Where f; = % (i=1,2,3,.....400) shows the type of dipeptide i, A; represents the total amount of dipeptide
composition, and N represents the lenght of peptide

Moreau-Broto Autocorrelation

The Moreau-Broto autocorrelation feature is a method used to analyze protein sequences. It calculates the
correlation between the properties of amino acids in a protein sequence and their positions within the sequence.
Mathematically, the Moreau-Broto autocorrelation for a feature Pof an amino acid sequence is given by:

MB — autocorrelation(P) = Y} (w) 3)

i

where n is the length of the sequence, and P (i) represents the value of property P for the amino acid at position ii
in the sequence. This feature helps in predicting various properties of proteins, such as their function, with other
molecules, by considering the spatial relationships between amino acids in the sequence.

Moran Autocorrelation
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The Moran autocorrelation feature is a method used in bioinformatics to analyze protein sequences [29]. It
calculates the correlation between the properties of amino acids in a protein sequence and the properties of
neighboring amino acids. Mathematically, the Moran autocorrelation for a property P of an amino acid sequence
is given by:

n Z?:lzj}:iq.l(P(i)_ P)(P(])_Is) (4)
ORI I Y, (P - p)?

Moran — autocorrelation(P) =

Where nn is the length of the sequence, P (i) represents the value of property PP for the amino acid at position ii in
the sequence, and P is the average value of property P across all amino acids in the sequence. This feature helps in
predicting various properties of proteins by considering the spatial relationships between amino acids and their
properties.

Geary Autocorrelation

The Geary autocorrelation feature is a method used to measures the similarity between the properties of amino
acids at different positions in the sequence. Mathematically, the Geary autocorrelation for a property P of an
amino acid sequence is given by:

Z?:l 27=i+1(P(i)_P(j))2-Wij
230 (PD-P())?

Geary — autocorrelation(P) = &)

Where n is the length of the sequence, P (i) represents the value of property P for the amino acid at position i in
the sequence, and w;; is a weight factor that can be defined based on the distance between positions i and j in the
sequence. This feature helps in predicting various properties of proteins by considering the spatial relationships
between amino acids and their properties.

Combined Feature

In this step combine the features can enhance the prediction of model by incorporating diverse information of
amino acid sequences over the Zika and Dengue dataset. In this step combining all five physicochemical
properties of amino acid sequence that can lead to improved accuracy in predicting epitopes.

F = ACCUDCUMBAUMAUGA (6)
Gaussian Distribution

In this study, presented the Gaussian distribution to extract the optimal features for enhancing the weights of the
targeted features and its adjacent features [30], so that the proposed deep model can train with optimal features of
amino acid. The Gaussian distribution function is:

_ 1 _ (a-p)?
fa) = NS exp( 252 ) 7
Gaussian distribution is measured using equations 8

fla@) = [°, f(a)dx, (8)
Gaussian probability distribution function is defined in equation 9
P(a) = F(a) — F(x —w) ®

where w represents the token window, & is the standard deviation, y is the average of the distribution, and an is an
actual value. To denote the length of every token in the tests, defined the token window w to 1. It is also defined
the optimum values of u and d to 0 and 2.5, respectively. The design set is where these properties are adjusted.
This probability is used as a feature in deep learning model for protein sequence prediction.

Dilated 1D-CNN

In this study, we designed a dilated 1-D CNN to classify epitopes and non-epitopes from protein sequences related
to Zika and Dengue viruses. Before designing the proposed dilated 1D-CNN model, we set the parameters for
training the model, which includes 3 channels with an input width of 17, 32 filters, a kernel size of 3, and a
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dilation rate of 2. The model was trained with a batch size of 32 over 100 epochs using the Adam optimizer. The
model's loss was measured using the binary cross-entropy function.

Given 1D protein sequence features f: N—> R and kernel k : {0,1,...n — 1} —> R, the dilated convolutional
function (f *d k): N —> R is:

(f xdk)(s) = Lo k(@) * (s — id) (10)

Where, N is the real numbers, and n and d represents the kernel size and dilation parameter respectively. If d =
1, the neural network operate normal convolutopnal operator. In dilated CNN, residual connection is used to
stability of the network [31]. In this network used 1 x 1 convolutional layer to compare the size of input and
output. The weight normalization is used in the kernel of dilated layer. To randomized apply the dropout to the
output layer. The Relu is used as a activation function . The figure 2 shows the complete architecture of the 1D
dialted CNN model.

Ratten

= Residual
[ Connection

Dilated Dilated Dilated
Conv Conv Conv Conv

Dilated
Conv

J— Output
| MBA y
[ MA |
] Concatenate
=
Physlcochemlcal'
Feature
|
|
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|
b o o i i e i it o o e |
Figure 2: Architecture of the Dilated 1D CNN Model
Dilated Convolutional Operator
The dilated convolutional function can be defined (F *; k): N —> C as follows
(F *q k) (s) = arg min Z]55 k(D dE(F (s — id), €) (1)
c

Where, C represents the valued operator of (F *; k). the C is used as manifold function which is equal to
Euclidean dilated layer.

Residual Connection

If F and Y is the input and ouput of neural network. Based on the Euclidean residual connection, apply residual
connection in two phases: 1) Concatenate F and Y (F) to obtained the number of input and output channels. 2)
wYC is used extract the ouput. Let, R(F,Y;) is the ouput of the residual connection [32], then nt* channel of
connection , R, (F,Y(F)) is defined as

Ra(F,Y(F))(s) & remn (12)
(P k(D)2 (F (s — id), €) + TS k(j + input)dZ (Y (s), ),
St ¥ k(@) = 1,vk(i) >0 (13)
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Where, n € (1,2,....output) and F; and Y] represents the i"and jt" channel of F and Y respectively.
Loss Function

The binary cross-entropy loss function is used for classifying epitopes and non-epitopes. It calculates the
difference between the predicted probability distribution and the actual distribution of the epitopes and non-
epitopes. Mathematically, it is defined as:

Binary Cross — Entropy Loss = —% YN [yilog(®) + (1 — y)log (1 — 3)] (14)

Where N is the number of features, y; is the actual label (epitopes and non-epitopes) for features i, and ¥, is the
predicted probability of the features belonging to epitopes. The loss function penalizes the model more when it
makes incorrect predictions with high confidence and less when it is uncertain. The goal is to minimize this loss
function during training to improve the model's ability to correctly classify epitopes and non-epitopes.

Pseudo Code: Dilated 1D-CNN

Input: F = F(ACC,DC,MBA,MA, GA) // Physicochemical Feature
Output: Classify Epitope and Non — Epitope

Define the Gaussian distribution function based on equation 6

Measure the Gaussian distribution using the cumulative distribution function based on equation 7
Define the Gaussian probability distribution function based on equation 8
Function 1D-CNN

Parameters (N, Fj,,, Fyys, 1es, k1, d1, k2, d2, nC, c)

xt~1 = Input(F;,,N)

y1 = Dilated — Conv(x'™, Fip, Four, k1,d1)

y1 = Dilated — Conv(y1, Fyy, k2,d2)

x' = Residual (x'™Y,y1, Fyy, Fout) Cres)

y0 = Inv(x,nC, c)

End Function

The above pseudo code describes a dilated 1D-CNN for classifying epitope and non-epitope regions in protein
sequences based on physicochemical features (ACC, DC, MBA, MA, GA). It begins by defining a Gaussian
distribution function and measuring it using a cumulative distribution function. The 1D-CNN function takes
parameters such as the number of amino acids (N), input and output features (F_in, F_out), kernel sizes (k1, k2),
dilation rates (d1, d2), and number of classes (nC). It then performs dilated convolutions with different kernel
sizes and dilation rates, calculates the residual connection between the input and output, and performs an inverse
transformation to obtain the classification probabilities for epitope and non-epitope regions.

III. RESILT ANALYSIS

The proposed Gaussian based Dilated 1D-CNN model was trained using Physicochemical Features of linear B-
Cell protein sequence over the Zika and Dengue virus dataset. The implementation was carried out using core
Python programming and the scikit-learn library. The experimental setup was conducted on Google Colab,
utilizing a high-end GPU and 16 GB of RAM. To measure the performance and effectiveness of proposed
Gaussian based Dilated 1D-CNN model for prediction and classification of linear B-cell Epitopes. Following
evaluation parameters such as accuracy, precision, Recall and f1 score is used to meets the desired objectives of
the study.

T P+T.N

Accuracy = TP+TN+FP+FN (15)
Precision = —= (16)
TP+FP
Recall = — = (17)
T P+F_N

F1 — Score = 2 X Precision XRecall (18)

Precision+Recall
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Table 1: Classification Report of proposed model over the Zika virus dataset

Precision Recall F1-Score Support
0 0.65 0.90 0.75 395
1 0.95 0.80 0.87 997
Accuracy 0.83 1392
Micro Avg 0.80 0.85 0.81 1392
Weighted Avg 0.87 0.83 0.84 1392

Table 1 shows the classification report of a proposed model for classifying epitope and non-epitope of linear B-
cell over the Zika virus dataset. For class 0 (epitope), the model achieved a precision of 0.65, recall of 0.90, and
F1-score of 0.75. For class 1 (non-epitope), the precision was higher at 0.95, recall was 0.80, and F1-score was
0.87. The accuracy of the model was 0.83. In the micro-average calculation across both classes, the precision was
0.80, recall was 0.85, and F1-score was 0.81, considering all instances. The weighted average, which considers
class imbalance, resulted in a precision of 0.87, recall of 0.83, and F1-score of 0.84. This indicates that the model
performed well, particularly in classifying class 1 instances.

Training and Validation Accuracy

Training and Validation Loss

2.25 1
0.80
2.00 1
0.75
1.75 1
0.70 1.50
>
E —— Training Accuracy wn —— Training Loss
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0.60
0.75 1
3
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Figure 3: Training and Validation Accuracy and Loss of model for Zika virus dataset

Receiver Operating Characteristic (ROC) Curve
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Figure 4: ROC curve for Zika dataset

10

The figure 3 shows the training and validation accuracy and loss of a model trained on the Zika virus dataset. The
training accuracy steadily increases over 100 epochs. The training loss, which measures the difference between
predicted and actual values during training, decreases over 100 epochs, indicating that the model is improving in
its predictions. The figure 3 indicates that insights into how well the model is learning and generalizing from the
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Zika data. Figure 4 shows the ROC curve that indicate the performance of a dilated 1D-CNN model trained on the
Dengue virus dataset in terms of its true positive rate against the false positive rate across different thresholds. The
area under the ROC curve (AUC) is 0.92, indicating that the model has good discriminative ability in
distinguishing between positive and negative instances. A higher AUC value suggests that the model is better at
classifying Epitopes and Non-Epitopes correctly across various thresholds. The ROC curve and its AUC of 0.92
indicate that the suggested model has a strong performance in classifying Epitopes and Non-Epitopes in the Zika
virus dataset.

Confusion Matrix

True Label

Predicted Label

Figure 5: Confusion Matrix for Zika Dataset

Figure 5 shows the confusion matrix, indicates that the model correctly identified 196 epitope regions and 38 non-
epitope regions, but it misclassified 801 non-epitope regions as epitope and 357 epitope regions as non-epitope
over the Zika Dataset.

Table 2: Classification Report of Proposed Model over the Dengue virus dataset

Precision Recall F1-Score Support
0 0.70 0.86 0.77 1616
1 0.94 0.85 0.89 3999
Accuracy 0.85 5615
Micro Avg 0.82 0.85 0.83 5615
Weighted Avg 0.87 0.85 0.86 5615

Table 2 presents the classification report of a proposed model for classifying epitope and non-epitope of linear B-
cell over the Dengue virus dataset. For class 0 (non-epitope), the model achieved a precision of 0.70, recall of
0.86, and F1-score of 0.77. For class 1 (non-epitope), the precision was higher at 0.94, recall was 0.85, and F1-
score was 0.89. The overall accuracy of the model was 0.85.

Training and Validation Accuracy Training and Validation Loss

—— Training Loss
validation Loss

Accuracy
Loss.

0.4
©.559 _ Training Accuracy

validation Accuracy

0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 6: Training and Validation Accuracy and Loss of model for Dengue virus dataset
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Figure 6 shows the training and validation accuracy and loss of a model trained on the Dengue virus dataset. The
training accuracy steadily increases over 100 epochs. The training loss, which measures the difference between
predicted and actual values during training, decreases over 100 epochs, indicating that the model is improving in
its predictions. The figure 6 indicates that insights into how well the model is learning and generalizing from the
Zika data.

Receiver Operating Characteristic (ROC) Curve

1.0+ rd
-,
td
rd
,
”
-,
-,
’/
0.8 .,
rd
s
.
rd
-,
-
2 g
T 0.6 1 rd
-3 .
@
> -,
=i Cd
= -
a -
g -
o e
g 04 -
= ,
”
td
-,
rd
e
0.2 1 rd
,
-,
b4
rd
,
-
’,
-
0.04 ¥ ROC curve (area = 0.94)

T
0.4

T
0.6

0.8

1.0

False Positive Rate

Figure 7: ROC Curve of Model for Dengue Dataset

Figure 7 shows the ROC curve that indicate the performance of a dilated 1D-CNN model trained on the Dengue
virus dataset in terms of its true positive rate against the false positive rate across different thresholds. The area
under the ROC curve (AUC) is 0.94, indicating that the model has good discriminative ability in distinguishing
between positive and negative instances. A higher AUC value suggests that the model is better at classifying
Epitopes and Non-Epitopes correctly across various thresholds. Overall, the ROC curve and its AUC of 0.94
indicate that the model has a strong performance in classifying Epitopes and Non-Epitopes in the Dengue virus
dataset.

Confusion Matrix

o - 1387 229

True Label

Predicted Label

Figure 8: Confusion Matrix for Dengue Dataset

Figure 8 shows the confusion matrix, indicates that the model correctly identified 599 epitope regions and 229
non-epitope regions, but it misclassified 1387 non-epitope regions as epitope and 3400 epitope regions as non-
epitope over the Dengue Dataset.
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Table 3: Comparative Analysis of Proposed Model with Existing Methods

Author Dataset Accuracy Precision Recall F1-Score
2‘5 2F 4;;321] iBCE-EL 75.7 722 73.1 72.6
Ras-Carmona

Acet. al. BLAST 72.54 81.58 63.49 -
(2022) [34]

Khanna D. et.
al. (2020) APCpred 76.6 70.00 82.00 -
[35]
Maximilian
Collatz et. al. Bepipred 69.00 63.5 52.00 -
(2020) [25]
8‘0;;?[ ;gj DeepLBCEPred 67.00 63.00 71.00 -
Proposed Zika 83.00 87.00 83.00 84.00
Dilated 1D-
CNN Dengue 85.00 87.00 85.00 86.00

Table 3 presents a comparative analysis of the proposed model with existing methods for classifying epitope and
non-epitope. The proposed Dilated 1D-CNN model outperforms existing methods in terms of accuracy, precision,
recall, and Fl-score. The proposed model achieves an accuracy of 83%, which is higher than the accuracies
reported by Liu F. et al. (75.7%), Ras-Carmona A et. al. (72.54%), Khanna D. et. al. (76.6%), Maximilian Collatz
et. al. (69.00%), and Qi Y. et. al. (67.00%). Similarly, the precision, recall, and F1-score of the proposed model are
also higher compared to the existing methods, indicating that the proposed Dilated 1D-CNN model is more
effective in classifying epitope and non-epitope regions in the dataset.

Iv. CONCLUSION AND FUTURE SCOPE

In this study, we addressed the challenge of accurately identifying linear B-cell epitopes in protein sequences
related to Zika and Dengue viruses. We introduced a Gaussian-based dilated 1-D CNN model, aiming to improve
epitope prediction, a critical step in peptide vaccine design and immunodiagnosis. Our model, trained on the
Immune Epitope Database (IEDB) containing 1741 and 7020 epitopes for Zika and Dengue dataset, respectively,
achieved high accuracy score of 83.00% and 85.00%, precision of 87.00%, recall of 83.00% and 85.00%, and an
F1-score of 84.00% and 86.00% over the Zika and Dengue datasets. The results indicate the effectiveness of our
model in classifying epitopes and non-epitopes, outperforming existing methods. For future research, we plan to
enhance the model by exploring advanced deep learning pretrained techniques such as Resnet, LSTM, Mobilenet
etc. and implements optimization techniques such as PSO, GA, Jelly Fish optimizer etc. to extract the optimal
feature and also incorporating experimental data for validation, thereby further improving epitope prediction
accuracy and expanding the model's applicability to other viruses and organisms.
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