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Abstract: - Federated Learning (FL) is a machine learning technique that enables multiple devices to train a shared global model 

collaboratively without compromising privacy. In FL, data remains on each device, and models are trained locally using that data. The 

local model updates are then aggregated to update a global model, representing all devices. Since only model updates are shared with the 

server, privacy is maintained. FL offers numerous benefits, including privacy-preserving, lower communication costs, better scalability, 

and more. It can be applied in various applications such as natural language processing, computer vision, personalized recommendations, 

etc. However, FL also poses challenges, particularly model poisoning attacks. Model poisoning occurs because of FL's decentralized and 

privacy-preserving nature, where the central server does not have direct access to the participants' data and updates, making it difficult to 

detect when malicious participants send manipulated updates that can degrade or maliciously influence the global model. This vulnerability 

is especially concerning as FL is increasingly adopted in sensitive fields like medicine and finance. Thus, understanding var ious model 

poisoning attacks and their impact on the global model’s performance is critical. This paper highlights the need for a new robust aggregation 

method to handle a wider range of attacks by analyzing various model poisoning attacks and countermeasures. 

Keywords: Federated Learning (FL), Model Poisoning attacks, Defense, Global Model  

I.  INTRODUCTION 

In the era of global digitization, huge amounts of data are produced every day. Different machine learning 

techniques are developed to extract valuable insights from this data. This vast data may be spread over multiple 

devices and comprise important private data, making central machine learning difficult. To solve this issue, a new 

machine learning technique has been proposed called FL, in which an initial global model is broadcasted to all 

client devices. 

A central server frequently collects updates (weights or gradients) that the clients’ compute by training this model 

using their local private data. These gradients from multiple clients are aggregated using different aggregation rules 

(AGR) and are used to train the shared global model jointly trained FL model. This updated server’s model is sent 

to all clients participating in the FL training [1]. This entire process is repeated until there is no change in the global 

model’s performance. This FL architecture is shown in fig. 1(a).  

 

(a) (b) 

Fig. 1. (a) FL Architecture (b) Model Poisoning in FL 
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This collaborative approach can also make FL vulnerable to various attacks like backdoor attacks, data 

reconstruction attacks, model stealing attacks, model inversion attacks, differential privacy attacks, Sybil attacks, 

poisoning attacks, etc. Poisoning attacks include Data poisoning attacks, where attackers inject malicious or invalid 

data into the training data to corrupt the local model's learning, and Model poisoning attacks, where attackers make 

efforts to degrade the effectiveness of the resulting server’s model by manipulating updates (malicious inputs) to 

the global model through the FL training, as shown in fig. 1(b). The model poisoning attacks are of two types: 

untargeted attacks and targeted attacks. In untargeted attacks [2][3][4][5], the attacker’s objective is to decline the 

accuracy of the global model on any test data, and in targeted attacks [6][7], the attacker’s objective is to decline 

the accuracy on specific test data. 

In model poisoning attacks [2][3][4][6][7][8], the attackers can change the gradients directly on compromised 

devices and then send them to the server in each iteration. With data poisoning attacks [9][10], the attacker indirectly 

manipulates the gradients of compromised clients by poisoning data used for training. As a direct change in the 

gradients is possible in model poisoning attacks, it strongly impacts FL. So, to understand the risk severity in FL, 

we focus on the untargeted model poisoning attacks and their remedies. 

The remaining paper is organized as follows: Section 2 describes existing methods for untargeted model poisoning 

attacks, followed by the countermeasures against them, and Section 3 analyses and compares different untargeted 

model poisoning attack and defense methods. Finally, Section 4, summarizes the work and provides some promising 

future research directions. 

II. RELATED WORK 

A. Model Poisoning Attacks 

They are categorized into targeted attacks and untargeted attacks. Different methods in the literature that can induce 

untargeted poisoning attacks in FL are studied, as shown in fig. 2. Here, the unauthorized user aims to decrease the 

global model's overall performance. 

a) LIE [3] (Little is Enough): Here, the adversary computes and sends the malicious updates using the 

average and standard deviation of known benign gradients without any knowledge of AGR at the server. The small 

but well-crafted changes to the data or model parameters are sufficient to compromise the accuracy of the shared 

trained model.  

b) Additive Noise attack [17]: This attack adds Gaussian noise to local model updates to make it malicious 

and then sends it to the FL server during the training [18][19].  

c) Sign-flipping attacks [18]: It flips the sign of malicious model updates without knowing other benign 

client updates [19][20]. Hard-thresholding-based defense fails since the magnitude of the local model updates 

remains the same [17][21].  

 

Fig. 2. Untargeted Model poisoning attacks 
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d) Exploitation Untargeted Poisoning Attack: Poisons the FL model so that it can be used for illegal purposes.  

▪ Free rider attack [22]: Here attacker masks as a benign client and receives the model from 

the server free of cost without making any changes to the gradient. This does not impact the effectiveness of the 

model, but hampers model convergence speed. 

▪ Covert Channel attack [23]: This attack successfully established a secret communication of 

1-bit among two clients with the help of poisoning attacks by turning FL systems into covert channels to execute a 

stealth communication arrangement. A malicious sender can poison the global model by submitting purposely 

crafted examples. Although this attack has less impact on the aggregation model and other participants, it can be 

observed by a malicious receiver and used to transmit the data. 

e) Inner Production manipulation attack [24]: Here, the gradient descent algorithm is made effective 

during the training, so that the direction of the true gradient should be the same as that of the direction of the 

aggregation vector i.e., their inner product must be non-negative. 

f) Model Poisoning Attack based on Fake Clients (MPAF) [25]: The attacker uses free software [26][27] 

or open-source projects [28] to generate fake clients. In each epoch, these clients calculate the fake model update’s 

direction from the current server’s model and the randomly initialized (base) model and scale it up.  

g) Voting Attack [29]: It compresses the local model updates using SignSGD (a gradient compression 

technique that uses the sign of each coordinate of the stochastic gradient vector) before sending them to the FL 

server. The FL server calculates the position-wise summation of all input gradients, and the summation’s sign is 

used to decide the global model updates.  

h) Byzantine Attacks: Here, some clients can be malicious, They manipulate the parameters (gradients or 

weights), and then send them to the FL server to reduce the global model’s training accuracy. 

▪ Fang attack [4]: It generates a corrupted local model to diverge the parameters of a global 

model in the reverse direction of the updates of a global model. The attack has control over less than 50% of the 

devices in the FL system and has complete information about the server’s AGR, client dataset, client model, and 

ML algorithm used for training. Attack impact is greater on Krum and Bulyan AGR, but less on Mkrum, Trimmed-

mean, and Median AGR [1].  

▪ Manipulating the Byzantine [1]: It uses the information about some benign client updates. 

The attacker evaluates the reference benign updates and uses it to generate a malicious update to divert benign 

aggregate in the malicious direction.  

➢ AGR-tailored attacks are the attacks, where various optimization techniques are applied 

to break the state-of-the-art aggregation rules. It increases the perturbation to a reference benign update so that it 

will not be detected by robust AGRs. 

➢ AGR-agnostic attacks use l2-norm space within which all the benign gradients lie and 

decide the upper bound on perturbation. These attacks search for malicious gradients based on the distance 

calculations of benign inputs. 

o Min-Max attack calculates the distance between the benign inputs. The highest and lowest distance 

among benign inputs defines the malicious input.  All malicious inputs should be closer to maximize the attack 

impact  [1][29]. 

o Min-Sum attack ensures that the sum of squared distances of the malicious inputs from all the benign 

inputs is the maximal sum of squared distances among any benign inputs. As a result, malicious inputs and benign 

gradients lie closer.  

i) Federated Multi-Armed Bandit (FMBA) attack [30]:  Here a group of learners have various models 

locally and play a multi-armed bandit game. The users utilize and send their gathered demerits to the service 

provider to study more about the global feedback model. If more benign members are in the group, then that is easy 

to make more accumulation unable to do. To minimize the risk from Byzantine attackers, it uses robust statistics 

and presents a defensive method called Fed-MoM-UCB using an estimator based on the median. 



J. Electrical Systems 20-3 (2024): 8684-8696 

 

 

8687 

   

B. Defense against Untargeted Model Poisoning Attacks 

In literature, different defense methods are proposed to mitigate the effect of model poisoning attacks. These 

methods are categorized as statistical-based aggregation and criteria-based aggregation methods as shown in fig. 3.  

a) Statistical-based aggregation: These aggregation methods reduce the influence of statistical outliers 

among the local model updates which helps to reduce the impact of model poisoning attacks. 

i) FedAvg [31] finds the dimension-wise average of all weights received from the clients and then applies it 

to the global model, effectively updating it based on the knowledge gained from the local models across the devices. 

The performance of FedAvg under the AGR-agnostic attack on the MNIST dataset is better as compared to the 

AGR-tailored attack (AGR-updates) on the CIFAR10 [1] dataset. 

 

Fig. 3. Defense methods against untargeted model poisoning attacks in FL 

ii) Krum [11] selects the gradient from the input set that is close to its n - 2 - m adjacent gradients in the 

squared Euclidean norm space, where n denotes the number of client devices and m is the number of attackers. It 

may be affected by some abnormal model parameters since individual local model updates may have an impact on 

the Euclidean distance between two local models [2]. 

iii) MKrum [11] applies Krum to select gradients from all gradients received from clients and adds them to 

a set of selected gradients. Selects k gradients by applying Krum such that (n – k) > (2m + 2), and then the average 

of all gradients is input to the global model. MKrum increases global model accuracy much better than Krum, but 

under an AGR-tailored attack, performance is very poor [1]. 

iv) GeoMed [17] calculates the geometric median of all model updates received, which might include 

malicious updates. The geometric median may not match any local model update. GeoMed AGR is strong against 

the additive noise attack. With a sign-flipping attack, the global updates generated deviate from benign updates. It 

also fails with the backdoor attack [20]. 

v) Trimmed-Mean [5] sorts each dimension of all input gradients, removes m highest and lowest values, 

and takes the median of each dimension, where m is the number of attackers.  

vi) Median [13] aggregates all input by taking dimension-wise median. This method returns the median for 

every coordinate of the local updates. The median is stronger than the mean AGR, the resultant model is less inclined 

by malicious clients.  

vii) Bulyan [2] selects k gradients from all input gradients such that k <= n - 2 using MKrum and then 

calculates the Trimmed-mean of these gradients.  
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viii) Adaptive Federated Averaging (AFA) [32] calculates cosine similarity between each of 

the input model updates and the weighted average. It discards the gradients based on mean, median, or standard 

deviation of the similarities.  

ix) Robust Federated Averaging (RFA) [33] proposed the aggregation built using the geometric median 

based on the Weiszfeld method. RFA beats the classical aggregation methods in terms of robustness, but it is 

completely uncertain to the actual corruption level. RFA preserves privacy as compared to other robust methods. 

b) Criteria-based aggregation: Here, the evaluation of local model updates is done based on some criteria 

like trust score [34], reliability score [35], error rate [4], etc. In the aggregation process, criteria are used as the 

weights of local model updates. All local models, that do not satisfy criteria are detected as malicious inputs and 

removed from the aggregation process, so these methods help to detect poisonous model updates. 

i) Spectral Anomaly Detection with Variational Autoencoder [17] detects attackers by embedding 

updates from local models into their low-dimensional latent space using an encoder that removes noisy and 

redundant features from the dataset, which helps to identify normal or abnormal data. Then the decoder module 

uses these embeddings to reconstruct the original data and find reconstruction errors. In each FL round, the dynamic 

threshold is computed by taking the mean of entire the rebuilt errors. Remove model updates that have a high 

dynamic threshold as they are malicious, and the remaining benign updates are used in the aggregation process.  To 

optimize the parameters of the encoder-decoder, reconstruction error is used model until convergence. Due to the 

dynamic thresholding policy, this defense is stronger. 

ii) FLTrust [34] allocates a Trust Score (TS) to the client’s update depending upon its similarity in direction 

to the server’s model update in each round. A TS of a client is a similarity of the ReLU-truncated cosine similarity 

to the model updates at the server.  The server stores a small data set corresponding to the learning algorithm for 

validation purposes. A smaller TS value indicates a larger inclination of the client model. The server normalizes 

each local model update and takes their average as weighted by their trust score. FLTrust outperforms statistics-

based aggregation methods [37]. 

iii) Robust-Fed [35] evaluates the reliability score for all model updates using an optimization-based truth 

inference method that minimizes the deviation of weight from the true aggregated parameters. Based on the model 

updates submitted in the current and earlier rounds, the reliability score is calculated. Clients with low reliability 

scores are treated as attackers and removed from the aggregation process. 

iv) Sparse-Fed [36], the server calculates the aggregation of only high topk magnitude elements.  It decreases 

the certified radius. The certified radius is the maximum distance between a benign model and a poisoned model. 

This reduces the impact of an attacker on the model. This defense mitigates attacks where multiple clients participate 

in the training phase. 

v) Ensemble Learning [4], the server randomly forms groups of all clients. Each group trains a model. A 

server records predictions made by each model. It removes the local model that has negative effects on the error 

rate - Error Rate-based Rejection (ERR) and loss - Loss Function-based Rejection (LFR) for the validation dataset 

of the global model. Finally, the server selects models whose predictions are the same as those of benign models 

and uses them as input to a global shared model. With 1,000 clients on the MNIST dataset, model accuracy is 

greater than 80% with less than 40 malicious clients. 

vi) Gradient Aggregation Agent (GAA) [38] on the server receives the updated model inputs from clients, 

and based on this, the server assigns a credit score to each client, which determines the weight of each client. Based 

on these weights, global model parameters are computed. Client with high scores indicates high-performing clients. 

The validation dataset helps in identifying benign or poisoned clients. Model accuracy with GAA is 80% when the 

Byzantine ratio is 0.5, which is near 84.5% when the system is under no attack. 

vii) Attested-FL [39] uses various methods to determine if a client is benign or not. Firstly, remove clients 

whose model looks untrained using their history. Secondly, the server calculates the cosine similarity of successive 

local updates and removes an abnormal client’s input that is not exhibiting correlation over time. Finally, with the 

help of the validation dataset, the server identifies the effect of model updates on the rate of error, and clients with 
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a high negative impact are removed. Clients with a smaller error rate difference in successive iterations are treated 

as reliable clients. 

viii) DnC [1] picks up a subset of a few indices from all dimensions of input updates and sorts 

each dimension. The dimension-wise mean is computed to get a centered subsampled set. Then compute the 

centered gradient’s projections along with the top right singular eigenvector, evaluate the outlier score vector, and 

eliminate the gradient with a high score. All remaining gradients are considered valid and averaged. DnC increases 

model accuracy under Adaptive attack, Fang, LIE, AGR-tailored, and AGR-agnostic attacks on the CIFAR10 and 

MINST datasets.   

ix) FLCert [40] trains the global model on multiple groups, which consist of multiple clients. The grouping 

strategies FLCert-P and FLCert-D are proposed, utilizing random grouping and hashing based on client IDs, 

respectively. Based on the majority vote, the labels of the test inputs are predicted. If the number of attackers is 

controlled, then the output of the global model will not change under any attack. FLCert effectively defends against 

poisoning attacks but cannot identify attackers. 

III. RESULTS AND DISCUSSION 

A. Comparative analysis of Untargeted attacks 

Different model poisoning attack methods are studied and analyzed based on several parameters, like the percentage 

of attackers, the machine learning model used, the dataset used, and the effectiveness of the attack, as mentioned in 

Table 1. The impact of the attack is illustrated by comparing the model's accuracy before and after the attack. 

Table 1: Untargeted Model Poisoning Attacks 

Attack Method 
#Clients/ 

Attackers 
ML Model/Dataset Attack Effectiveness 

LIE [1][3] 51, 10-12  
FC/MNIST, 

CNN/CIFAR10 

MNIST→ Krum (88.6% vs 76.2), Trimmed-mean-(96.2% vs 

89.8%), Bulyan (95.4% vs 86.2%), MKrum (96.1% vs 90%) 

CIFAR10→Krum (59.60% vs 35.50%), Trimmed-mean 

(75.50% vs 47.10%), Bulyan (75% vs 38.60%), MKrum 

(75.40% vs 51.80%) 

Sign-flipping [18]         70, 20 DNN/MNIST 

Mean→SGD (97.0% vs 0.11%), BSGD (98.6% vs 0.16%), 

and SAGA (96.5% vs 0.12%) 

GeoMed→BSGD (98.0% vs 90.3%), SAGA (96.3% vs 

86.4%) 

Additive Noise 

[17] 
70, 20 CNN/MNIST 

Mean→SGD/BSGD (98.6% vs 36.3%), SAGA (96.5% vs 

14.5%) 

GeoMed→SGD (92.5% vs 92.3%), BSGD (98.0% vs 

98.0%), SAGA (96.3% vs 96.4%) 

Fang [1] [4] 100, 20 

DNN, AlexNet, FC, 

CNN, CIFAR10, 

MNIST, FEMNIST, 

Purchase, 

MNIST/DNN→Krum (89% vs 25%), LR ( 86% vs 28%)  

CIFAR10/AlexNet→Krum (53.5% vs 31.7%). 

Purchase/FC→Bulyan (91.3% vs 70.4%). 

MNIST/DNN →Trimmed-mean (94% vs 86%), Median (87% 

vs 81%)  

Purchase/FC→Median (87.4% vs 87.2%).   

CIFAR10/VGG11→Mkrum (75.4% vs 66.9%). 

AGR-tailored and 

AGR-agnostic 

(Min-Max and 

Min-Sum attack) 

[1] 

 

50-100, 10-

20 

Alexnet/CIFAR10, 

VGG11/CIFAR10, 

CNN/FEMNIST,  

FC/MNIST,  

FC/Purchase 

CIFAR10/AlexNet→ Bulyan 

AGR-tailored attack (66.9% vs 21.3%), 

AGR-agnostic attack: Min-Sum (66.9% vs 22.4%), 

CIFAR10/AlexNet → Trimmed-Mean  

AGR-tailored attack (67.7% vs 21.9%), 

AGR-agnostic attack: Min-Max (67.7% vs 26.1%), 

For Cross-device setting:  

CIFAR10/AlexNet→ Krum (53.9% vs 44.4%), 
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 MKrum (64.5% vs 49.9%), 

MPAF [25] 

1000, 100 

(Fake 

Clients) 

CNN/MNIST, 

CNN/FEMNIST, 

FC/Purchase 

Purchase/FC→Trimmed-mean (85% vs 68% for 10% Fake 

clients), (85% vs 51% for 25% Fake clients),  

Voting Attack [29] 100, 50  
CNN/CIFAR10, 

CNN/FEMNIST 

CIFAR10→ FedAvg (51% vs 30%). 

FEMNIST→ FedAvg (90% vs 85%). 

DNY-OPT [41] 24, 8 
CNN/FEMNIST, 

Alexnet/CIFAR10 
FEMNIST→ FedDet (52% vs 41%) 

RL-based attack 

[43] 
100, 10 

RL, MNIST, Fashion 

MNIST, EMNIST, and 

CIFAR-10 

MNIST→Krum 50%  

Poisoned FL [44] 200, 1-40 

MNIST, FEMNIST, 

Purchase, CIFAR-10 

and FEMNIST 

Purchase→ TrMean (91.65% vs 46.14%) 

FEMNIST→FLDetector `(69.98% vs 8.75%)  

VGAE-MP attack 

[47] 

100-300, 

100 

MNIST, FEMNIST and 

CIFAR-10 

FEMNIST→32.3% 

MNIST→27.4% 

CIFAR-10→24.9% 

FC: Fully Connected Network, CNN: Convolution Neural Network, DNN: Deep neural networks, 

LR: Multi-class logistic regression, SGD: Stochastic Gradient Descent, SAGA: Stochastic Average Gradient 

Algorithm, BSGD: Byzantine attack resilient distributed SGD, RL-Reinforcement learning,  

VGAE-MP Adversarial variational graph autoencoder model poisoning attack 

The impact of the LIE [3] attack is more significant with Krum [11], Trimmed-mean [5], and Bulyan [13] 

aggregation methods on CIFAR10 [14] as compared to MNIST [15], but it is weak against MKrum [11]. Adding 

noise helps to preserve data privacy, but with more noise, model performance decreases [17]. Additive noise attack 

is effective against Mean aggregation, but GeoMed [17] and Spectral Anomaly detection methods are robust against 

Additive noise attack. Sign-flipping [18] attack is strong against Mean aggregation, but it is weak against GeoMed. 

Sign-flipping attack is stronger than Additive noise attack [17].  

With AGR-tailored attack and AGR-agnostic attack, model accuracy drop is high on Bulyan AGR with CIFAR10 

as compared to Fang [4] and LIE [3] (Fang-11.8%, LIE-30.0%, AGR-tailored - 45.6% and Min-Sum AGR-agnostic 

- 44.5%). The same is true for Trimmed-mean aggregation, but their impact is low in cross-device settings and more 

in cross-silo settings. The attack impact reduces with Krum and MKrum aggregation by 9.5% and 14.6%, 

respectively [1]. Hence, for Bulyan, Trimmed-Mean, and Krum AGR, AGR-agnostic attacks reduce model 

accuracy much more than Fang and LIE attacks.  

For MPAF [25], the test accuracy drop is very high for Trimmed-mean (32% to 49%) with the Purchase dataset as 

compared to Gaussian noise attack (4%). Under norm clipping, when the norm threshold is around 100, the test 

accuracy drop is 17% (85% vs 68%), but as the norm threshold decreases, the effect of an attack is small since more 

fake local model updates are clipped. Without knowing the hyperparameters of FL, it reduces model accuracy 

significantly under Trimmed-mean and norm-clipping defense. MPAF does not work with defense methods against 

targeted poisoning attacks. 

The impact of the Voting attack on the model test accuracy on the CIFAR10 dataset with FedAvg AGR is high i.e., 

21% in the presence of 20% malicious clients whereas with FEMNIST it is only 5%. The decrease in model 

accuracy with Fang, LIE, rescaling attack, Min-sum, and Min-Max attacks is negligible when model compression 

is applied using SignSGD based on quantization [29]. 

Under DNY-OPT attack, FedDet is more robust than the Trimmed-Mean aggregation method and outperforms 

Krum aggregation [41]. Under a Poisoned FL [44] attack, it is harder for an attacker to compromise genuine clients 

or inject fake clients into such a cross-silo FL system. The malicious models are easily detected and eliminated 

under VGAE-MP attack [47]. 
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B. Comparative analysis of Defense methods against Untargeted attacks 

Various defense or aggregation methods have been studied and analyzed based on different parameters, such as the 

technique used, type of attack defended, machine learning model used, the dataset used, and performance 

evaluation. The performance of the AGR is assessed based on the effect of the attack on the model accuracy, 

comparing values before and after the attack. Table 2 represents an analysis of Statistical-based aggregation 

methods; Table 3 represents an analysis of criteria-based aggregation methods. 

Krum is a strong aggregation method against Min-Max AGR-Agnostic attack as the model accuracy decreases only 

by 0.7%, but weak against AGR-tailored attack as the accuracy drops is 33.9% for MNIST dataset [1]. MKrum is 

a strong aggregation method against LIE attack (accuracy drops by 3.3%) and weak against AGR-tailored (accuracy 

drops by 18.6% for MNIST and 36.8 % for CIFAR10 dataset) and Min-Max AGR agnostic attack (accuracy drops 

by 31.7% for CIFAR10 dataset) [1].  

Trimmed Mean aggregation is strong against Fang and LIE attacks as the attack impact is only 1.6% and 1.9% 

respectively for the Purchase dataset [1][5].  Under an AGR-agnostic attack, the performance of Trimmed Mean is 

better as compared to an AGR-tailored attack (AGR - updates) [1]. The Median is less affected by outliers and 

performs better than the mean, but its performance is poor under an AGR-tailored attack [13]. Under the AGR-

agnostic attack, Median performs better than AGR-tailored attack (AGR - updates) [1]. 

Bulyan aggregation is strong against Min-Max AGR agnostic attack (accuracy drops by 4.8%) but weak against 

AGR tailored attack (accuracy drops by 8.2%) and LIE attacks (accuracy drops by 9.2%) for MNIST dataset. It is 

also weak for CIFAR10 dataset as the model accuracy drops by 53% for AGR-tailored attack and 44.5% for AGR 

-agnostic attack. Thus, after the AGR-tailored attack on MNIST, the performance of Bulyan is better but not with 

the CIFAR10 dataset under the AGR-tailored (AGR-updates) attacks [1]. Bulyan performs Krum multiple times, 

making it non-scalable [1][2]. Adaptive Federated Averaging (AFA) performs better with the AGR-agnostic attack 

on MNIST, but not with the AGR-tailored attack (AGR - updates) on FEMNIST [1]. 

The efficiency of Krum, MKrum, and Bulyan algorithms is limited by the need for the server to calculate pairwise 

distances among each client, which becomes computationally expensive with many clients. 

Table 2. Defense Methods: Statistical-based Aggregation Methods 

Defense 

Method 

Aggregation 

Strategy 

Attack 

Mitigated  

ML Model 

/Dataset 
Performance Evaluation 

Krum 

[1][11] 

Euclidean Distance Byzantine, 

Backdoor, 

AGR-Agnostic 

Min-Max 

ANN, FC and 

CNN 

MNIST, 

FEMNIST 

MNIST/FC → Min-Max attack (88.6% vs 87.9%) 

FEMNIST/CNN → AGR-tailored attack (agr-only) (69.3% vs 

66.4%) 

MNIST/FC → AGR-tailored (agr-updates) attack (88.6% vs 

54.7%) 

FEMNIST/ CNN AGR-tailored (agr-updates) attack (69.3% 

vs 39.3%)  

MKrum 

[11] 

Select k input 

gradients using Krum 

and their average 

Byzantine, 

Backdoor, LIE  

ANN, FC and 

CNN  

CIFAR10, 

MNIST, 

FEMNIST 

 

MNIST/FC →  LIE attack (96.1% vs 92.8%) 

MNIST/FC →  AGR-tailored attack (agr-updates) (96.1% vs 

77.5%) 

CIFAR10/AlexNet→AGR-tailored attack (agr-updates) 

(67.6% vs 30.8%) 

Trimmed 

Mean 

[5] 

 

Remove m largest 

and smallest 

gradients after sorting 

each dimension and 

avg 

Fang, LIE  FC/Purchase/ 

MNIST, 

Alexnet/   

CIFAR 10 

Purchase/FC→Fang attack (92.0% to 90.4%)   

Purchase/FC→LIE attack (92.0% to 90.1%) 

MNIST/FC → Min-Max AGR-agnostic attack (96.2% vs 

84.6%) 

CIFAR10/Alexnet → AGR-tailored (agr-updates) attack 

(67.7% to 21.9%)   
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Median 

[13] 

Median of values of 

each dimension for all 

input gradients. 

Fang and LIE 

-FC/Purchase   

[1] 

FC/Purchase/ 

MNIST, 

Alexnet/ 

CIFAR10 

MNIST/FC →  AGR-agnostic attack (93.2% vs 89.8%) 

CIFAR10/Alexnet → AGR-tailored attack (agr - updates) 

(65.5% vs 24.6%) 

FEMNIST/CNN → AGR-tailored attack (agr - updates) 

(77.1% vs 46.9%) 

Bulyan 

[2] 

Selects k gradients 

same as MKrum 

followed by Trimmed-

mean  

Min-Max 

attack  

FC/MNIST, 

CNN/ CIFAR10  

 

MNIST/FC → Min-Max AGR-agnostic attack (updates-only) 

(95.4% vs 90.4%) 

MNIST/FC → AGR-tailored (agr-updates) (95.4% vs 87.2%) 

MNIST/FC → LIE (updates-only) (95.4% vs 86.2%) 

CIFAR10/ VGG11→ AGR-tailored (agr-updates) attack 

(75% vs 22%)  

AFA [32] Cosine similarity and 

range function (mean, 

median, and standard 

deviation) 

Fang – 

MNIST/FC   

FC/MNIST, 

CNN/ FEMNIST 

MNIST/FC → AGR-agnostic attack (96.5% to 94.9%) 

FEMNIST/ CNN → AGR-tailored (AGR - updates) attack 

(84.6% Vs 7.6%) 

RFA [33] Geometric median, 

computed using   the 

Weiszfeld algorithm 

        - CNN/FMNIST, 

Shakespeare/ 

LSTM,  

Sent140/LR 

FEMNIST/ FedAvg → Data poisoning (52.8% vs. 41.2%) 

FEMNIST/ FedAvg → No Data poisoning (64.3% vs. 62.9%) 

Sent140 / FedAvg → No Data poisoning (65.0% vs. 64.7%) 

LoMAR 

[45] 

 

Two-phase defense 

algorithm 

Stealthy 

model 

poisoning 

attack and 

Label flipping 

attack 

MNIST, KDD, 

Amazon and 

VGGface2 

LoMAR / Amazon  → Label Flipping attack (96.0% to 98.8%.) 

 

FLAIR 

[46] 

 

Reputation-based 

scheme and FL 

Directed 

deviation 

attack 

MNIST, CIFAR-

10, FEMNIST 

and 

Shakespeare 

MNIST/DNN→Full Krum attack (92.52% vs 87.73%) 

MNIST/DNN→Full Trim attack (92.52% vs 90.55%) 

FEMNIST/DNN→Full Krum attack (83.58% vs 80.19%) 

FEMINIST/DNN→Full Trim attack (83.58% vs 82.51%) 

CIFAR10/AlexNet→Full Krum attack (66.92% vs 61.26%) 

Full-Krum Attack is tailored to deceive the Krum algorithm (and transferable to Bulyan). 

Full-Trim Attack is tailored to deceive the Trimmed Mean aggregation (and transferable to the Median). 

RFA is more robust than the median, norm clipping, and trimmed mean, but MKrum is more robust than RFA. The 

communication cost of RFA is higher due to multiple Weiszfeld iterations, although its accuracy is comparable to 

FedAvg [33]. FLAIR [46] is more robust to Full-Trim attack (accuracy drops by 1.97%) and Full-Krum attack 

(accuracy drops by 5.66%) for MNIST and FMNIST datasets, but for CIFAR10 dataset its performance is poor 

(accuracy is 66.92% without attack). It offers a malicious client percentage of 45%, which gives byzantine 

robustness. The model is limited to the synchronous setting without gradient encryption, which is less relevant in 

cross-device because of its computational overhead. 

As shown in Table 3, the Spectral Anomaly Detection method performs better against additive noise attacks and 

sign-flipping attacks compared to backdoor attacks. FLTrust converges quickly, similar to FedAvg, and provides 

better model accuracy with 60% malicious clients [37]. However, a clean validation dataset is required on the server. 

RobustFed is robust against label flipping, noisy data, and Byzantine attacks on the MNIST and FEMNIST datasets, 

but not on the CIFAR10 dataset [35]. SparseFed outperforms other defense methods, but Trimmed-mean performs 

better with 20% attackers on the CIFAR dataset [36]. 

Table 3. Defense Methods:  Criteria-based Aggregation Methods 

Defense 

Method 

Aggregation 

Strategy 
Attack Mitigated  

ML Model 

Type/Dataset 
Performance Evaluation 

Spectral 

Anomaly 

The mean value 

of all the 

Additive noise 

attack, Sign-

LR/MNIST, 

CNN/ 

MNIST→ Sign-flipping attack (f1 score: 0.97),  

                 Backdoor attack (f1 score: 1), 
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Detection 

[17] 

reconstruction 

errors 

flipping attacks, 

Backdoor attack 

FEMNIST, 

RNN/ 

Sentiment140 

                 additive noise attack (f1 score: 1) 

FEMNIST → Sign-flipping attack (f1 score: 0.99), 

                       Backdoor attack (f1 score: 0.87), 

                       additive noise attack (f1 score: 1) 

Sentiment140→ Sign-flipping attack (f1 score: 1), 

                           Backdoor attack (f1 score: 0.93), 

                           additive noise attack (f1 score: 1) 

FLTrust 

[34] 

cosine similarity 

score clipped 

using ReLU and 

then find an 

average of 

weights  

Fang attack, 

Adaptive attack 

CNN/MNIST, 

ResNet20/ 

FEMNIST,   

ResNet20/ 

CIFAR10,   

MNIST/CNN→Krum attack: FLTrust (96% vs 96%), 

FedAvg (96% vs 90%), Krum (90% vs 10%), Trim-

Mean/Median (94% vs 93%) 

CIFAR10/ ResNet20→Krum attack: FLTrust (82% 

vs 82%), FedAvg (84% vs 76%), Krum (46% vs 

10%), Trim-Mean (76% vs 48%), Median (75% vs 

36%),  

RobustFed 

[35] 

Reliability score 

 

Byzantine attack, 

Data poisoning 

attack- label 

flipping and noisy 

data 

CNN,  

VGG-11, 

MNIST, 

FMNIST, 

CIFAR10 

MNIST→ Byzantine attack (99.32% vs 98.34%), 

label flipping (99.32% vs 96.34%), noisy data attack 

(99.32% vs 96.82%) 

CIFAR10→ Byzantine attack (69.75% vs 54.67%), 

label flipping (99.32% vs 51.10%) 

Ensemble 

FL [4] 

Train model on k 

groups of clients. 

Removes model 

that negatively 

impacts ERR, 

LFR and their 

union (ERR 

+LFR) 

Fang attack 

 

DNN, 

ResNet20 

CH-MNIST-,  

Multiclass LR, 

MNIST, and 

FMNIST, 

Breast Cancer 

Wisconsin  

 

MNIST/DNN→ Trimmed mean with LFR (88%), 

                           Trimmed mean with ERR (79%)  

MNIST/LR→ Krum with union (LFR+ ERR) (52%), 

                        Krum with LFR (42%), 

                         

 

GAA [38] 

 

Credit points and 

each client's 

updated 

parameters 

Static attack, 

Randomized 

attack, Byzantine 

attack 

CNN, 

MNIST, CIFAR-

10, Yelp 

reviews 

MNIST/CNN→Randomized attacks (96.4% vs 90%)  

Yelp/CNN→Randomized attacks (84.5% to 83%)  

 

DnC [1] singular feature 

vector’s 

projection in the 

direction of the 

gradient features 

and average  

Fang, LIE 

Byzantine attack, 

AGR-agnostic, 

and AGR-tailored 

attack, Adaptive 

attack 

CNN- AlexNet, 

VGG11, FC, 

MNIST, 

CIFAR10, 

FEMNIST, 

Purchase 

MNIST/FC→ Adaptive attack (96.2% vs 94.3%) 

CIFAR10/Alexnet→ AGR-tailored attack (67.6% vs 

32.5%) in cross-silo FL.  

CIFAR10/Alexnet→ AGR tailored attack (64.6% vs. 

61.2%) in cross-device FL.    

 

FLCert [40] Ensemble 

learning and 

majority voting 

Untargeted 

attacks 

CNN, MNIST, 

DNN, Human 

Activity 

Recognition 

(HAR) 

MNIST→ 88% vs 83% (with 1% malicious clients) 

 

Krum attack:  Untargeted local model poisoning attack optimized for the Krum aggregation rule, ERR: Error Rate-

based     

Rejection, LFR: Loss Function based Rejection, LR: Multi-class logistic regression, GAA: Gradient Aggregation 

Agent 

In Ensemble learning [4], LFR is weaker than the union of ERR and LFR when Krum AGR is used, and ERR 

defense is weak compared to LFR with Trimmed mean. Therefore, none of the methods outperforms all AGR. This 

approach assumes a small percentage of malicious clients among all clients. It maintains the model accuracy greater 

than 80% with malicious clients less than 4% on MNIST. For more than 4% of malicious clients, this defense is 
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weak. Additionally, maintaining validation datasets at the server may not be feasible with data-sensitive 

applications.  

For Gradient Aggregation Agent (GAA) [38], the model accuracy drops by 6.4% on the MNIST dataset and by 

1.5% on the Yelp dataset, but under randomized attack for the MNIST dataset, with Byzantine ratio(β) =26/50, it 

assigns rewards to both Byzantine and benign workers, so they cannot be distinguished. Also, GAA has computation 

overheads.  

In AttestedFL [39] AGR, the model accuracy increases by an average of 50%, and the model convergence is 

increased by 12% to 58%. AttestedFL has no upper bound on the malicious nodes and has a high success rate, but 

it has more computation complexity. 

With DnC, the maximum impact of the attack is limited to 12.7% and the highest accuracy achieved by the global 

model is 73.9%, but the model accuracy in cross-device FL is less [1]. In comparison, Krum, which is considered 

the most robust among existing aggregation algorithms, achieves a maximum accuracy of only 66.4%.  

In FLCert [40], the certified accuracy of the ensemble FedAvg drops to 0% when up to 6.1% and 30% of the clients 

are malicious in the MNIST and HAR datasets, respectively. It does not require any clean training data and can 

train too many global models in practice, but it does not provide a provable security guarantee against fake clients. 

It is unable to identify the attackers [42]. 

IV. CONCLUSION 

Among the aggregation methods studied, FedAvg, Krum and MKrum are popular choices as they are Byzantine-

robust, efficient for execution, and relatively easy to implement compared to other aggregation methods. However, 

these methods are not without their limitations. They are vulnerable to certain types of Byzantine attacks, and new 

attack methods to poison the FL model are constantly being developed. 

The need for stronger aggregation methods is evident for several reasons. Firstly, the existing aggregation methods 

are not perfect, and there is a demand for more robust defense mechanisms against evolving attack techniques. 

Secondly, as the FL is being used in sensitive applications, a new robust aggregation method is in demand which 

can handle various types of attacks. 

Finally, the computational complexity of the defense methods is an important consideration. There is a demand for 

strong defense methods that can handle model poisoning attacks with less computational overhead. As a result, 

more advanced aggregation techniques are required to address these challenges and ensure the security and 

reliability of Federated Learning systems. 
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