¹Md Solaiman Ahamed,
²Mukter Khan,
³Md Ikramul Haque Nirjon

Decentralized AI for Medical Emergency Response Using Blockchain and Computer Vision

Abstract: This paper explores the integration of blockchain, artificial intelligence (AI), and the Internet of Things (IoT) to revolutionize healthcare data management, storage, access, and analysis, aiming to enhance data security, diagnostic accuracy, and healthcare accessibility. By leveraging blockchain's decentralized and immutable nature, AI's diagnostic capabilities, and IoT's real-time monitoring, the study highlights how these technologies can address challenges exposed during the COVID-19 pandemic, such as data breaches, supply chain integrity, and remote patient care. The research emphasizes the potential of these innovations to improve emergency response, optimize clinical workflows, and ensure patient privacy while overcoming technical, security, and ethical hurdles. Through frameworks like decentralized emergency intelligence (D-EI) and blockchain-protected medical imaging systems, the study demonstrates the transformative impact of these technologies on healthcare efficiency and patient outcomes. Future directions focus on enhancing interoperability, scalability, and regulatory compliance to fully realize their potential in global healthcare systems.

Keywords: Healthcare Innovation, Blockchain, Artificial Intelligence, Internet of Things, Data Security, Diagnostic Accuracy, Remote Monitoring, Emergency Response.

INTRODUCTION

There is a rapid evolution in the healthcare industry now which involves addition of advanced technologies such as blockchain, artificial intelligence (AI), and Internet of Things (IoT). The solutions developed in these areas provide tremendous enhancements in data security, diagnostic processes, and overall healthcare delivery, given the difficulties generated by the COVID-19 pandemic. This research looks at how these technologies can be leveraged to transform our healthcare systems, while increasing privacy, optimizing workflow, and improving access to care. In this research, it combines these technologies to see how healthcare systems can increase operational efficiency, patient care, and ultimately, healthcare infrastructure sustainability.

LITERATURE REVIEW

Blockchain Technology (BC), Artificial Intelligence (AI) and Computer Vision (CV) have allowed the intersection of these technologies to transform several industry sectors, and in particular healthcare. But these technologies are a multifaceted domain that has shown promise in transforming the delivery of healthcare and improving security and privacy as well as integrity of data, while dealing with the hurdles presented by the COVID-19 pandemic.

¹Independent Researcher

Department: Cybersecurity

Washington University of Science and Technology, Virginia, United States

Imhsolaiman@gmail.com

²Independent Researcher

Department: Cybersecurity

Washington University of Science and Technology, Virginia, United States

mdmuktar143783@gmail.com

³Independent Researcher

Department: Software Engineering,

Washington University of Science and Technology, Virginia, United States

ikramnirjon@gmail.com

This literature review brings together recent studies in order to highlight how these technologies integrate and are applicable to promote healthcare systems, emergency response and improved patient management.

BLOCKCHAIN AND AI

Blockchain and AI integration is gaining prominence because they address a number of healthcare challenges in general including the COVID 19 pandemic. Nguyen et al. (2021) takes the work further by considering the potential for these technologies to tackle pandemics through secure, decentralized medical data management.

Blockchain provides an efficient way to store data in a reliable and secure fashion which is key to early outbreak detection as well as integrity of medical supply chains during times of crises. Whereas AI delivers intelligent patient symptom analysis solutions coupled with intelligent disease outcome prediction with the aim of accelerating drug development processes.

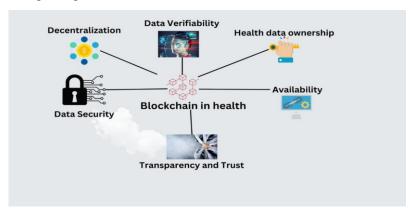


Fig. 1 Blockchain in health sector (Nature, 2024)

The above combination is proffered as a good option in improving the efficiency and effectiveness of healthcare in the management of emergencies. The limitations of the COVID-19 pandemic have been exposed and Jabarulla and Lee (2021) suggest a patient centric healthcare framework using Blockchain and AI.

From data sharing and decentralization to supporting the making of medical decisions – blockchain and AI help detect diseases and predict future outbreaks. In demonstrating the transformative potential of these technologies in optimizing clinical workflows, and during crises in particular, the proposed framework is one such way. Integration is done in a way that it guarantees privacy of data, allows for real time decision making and also improves overall health care delivery.

COMPUTER VISION

The presence of blockchain in combination with Computer Vision further propels its application in improving the security and efficiency of healthcare applications. Ramalingam et al. (2023) and Selvi et al. (2023) explore the healthcare system's revolution by the adoption of BC and CV.

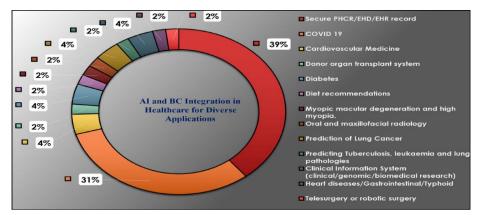


Fig. 2 Blockchain and AI in healthcare (link.springer.com, 2024)

With security of medical imaging systems and keeping the privacy of sensitive patient data, these technologies can be applied to multiple domains, including smart city, defence, and healthcare.

Blockchain becomes a secure cover to store and broadcast visual data, relieving the risks of data breach and unauthorized access. In the paper, Ottakath et al. (2023) put the spotlight on the use of Blockchain in protecting the image and video used in healthcare applications. This integration helps with secure video surveillance, biometric data sharing and protection of video integrity by using Blockchain to protect the privacy and security of data.

They believe that Blockchain and CV can tackle a great deal of the pain in the healthcare sector, for example to authenticate medical images and protect sensitive patient information during the sharing of data between healthcare providers.

EMERGENCY HEALTHCARE

Healthcare systems rely increasingly on AI, the discussion is diffused by worries about data privacy and security. In Decentralized deep Emergency response Intelligence (D-EI)', Peyvandi et al. (2021) propose a privacy preserving computer aided diagnosis (CAD) framework. In this framework we combine Blockchain to protect sensitive (patient) data while Empowering AI to deliver fast and accurate diagnostics in emergency medical conditions like the COVID19 pandemic.

Using Blockchain smart contracts to do patient privacy, and at the same time balance the diagnosis datasets with the minority classes to optimize the accuracy of the machine learning model, this is D-EI framework. This approach represents an important advance in the ability to support health care providers under conditions of high patient influx, and for improving diagnostic accuracy.

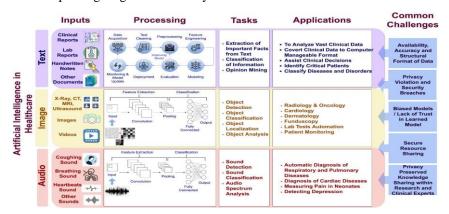


Fig. 3 Applications in healthcare (Wiley Online Library, 2023)

In Emotion Recognition with at risk of Suicide (AroS) and in conjunction with Blockchain Convolutional Neural Networks, Aguilera et al. (2021) explore the possibility of Healthcare emergency response. Deep learning based Restricted Boltzmann Machines technique is applied to analyze audio visual emotion patterns.

They allow us to determine the urgency of health care emergencies and will store personal emotion profiles safely on the Blockchain network. The BCNNs and Blockchain combination, the authors show, stands to dramatically improve recognising healthcare emergency and facilitate timely medical intervention.

AI-INTEGRATED SYSTEMS

With increasingly use of AI in healthcare; the security and reliability of AI models become critical to ensure. In Shinde et al. (2024), the authors centre around the challenges that such insufficiency of medical data and adversaries on AI models have on erroneous tales and minimal trust in AI able healthcare systems.

The authors investigate how Blockchain can be applied to secure AI integrated healthcare applications. The solution offered by blockchain is in protecting three core stages of AI application. The first are dataset protection, second are training phase security, third are model deployment.

The role of Blockchain in guarding AI models from malicious interference and guaranteeing the data used for training was stressed as important with research. Authors propose a secure framework that combines Blockchain with Natural Language Processing, Computer Vision and Acoustic AI to pave the way for secure adoption of AI in healthcare.

The findings of the paper state that the decentralized nature and immutability of the Blockchain technology can prevent data manipulation as well as improve the transparency and trustiness of AI powered healthcare applications.

REMOTE MONITORING

While AI and Blockchain play a major role in transforming health care beyond just the emergency response to how mainstream healthcare can benefit from remote patient monitoring. Puri et al. (2024) put forward an AI based, decentralised healthcare framework which uses blockchain to ensure patient monitoring along with management of the data.

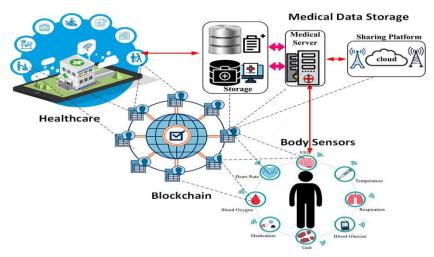


Fig. 4 Remote Monitoring of patient (Nature, 2024)

Their system handles the single point failure problem and the issues of security as well as privacy often faced in traditional cloud-based healthcare systems. The framework realizes trust and transparency in patient health record by using smart contracts and public blockchain networks to minimize data breach and unauthorized access.

The system also detects malicious nodes of Internet of Things and maintains data integrity and improves system reliability. By integrating Blockchain and AI in remote health monitoring we prove the potential of these new technologies to introduce real time, secure and transparent health care services.

The authors demonstrate how decentralization brings significant improvement in device energy consumption, data request time, and throughout, without compromising security and on privacy, while bringing benefits of decentralization to the healthcare framework.

CHALLENGES

Blockchain, AI, and CV in healthcare has high promising potential, but has a number of challenges in the way to have a real impact. The most problematic thing is to integrate these technologies into the existing healthcare systems.

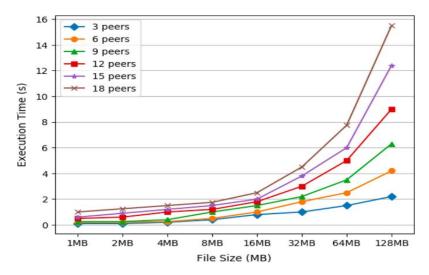


Fig. 5 AI assisted EMR Management (link.springer.com, 2023)

Though Blockchain is secure and transparent, it remains early to implement in the field of healthcare and is limited in its scalability. As elsewhere, AI has shown great promise for medical diagnostics and treatments, but patient data has to be assured for those to be of the best quality and also that privacy is maintained.

CV, Blockchain, and AI integration promises huge for future healthcare, but research is needed on the limitations of these technologies and refine it for use. To improve interoperability, scalability, and to overcome regulatory barriers, these technologies should be the focus of future studies.

Blockchain, AI, and CV are integrated to transform the way medical data is managed, analyzed and shared in healthcare industry. The technological possibilities present exciting alternatives to make diagnostic accuracies better, protect patients' privacy, and shield healthcare data. However, challenges still exist, but the considered promising applications in reviewed studies constitute a great platform for future R&D in this field that may lead to transformation of healthcare delivery and generate benefits for the patients on a global scale.

RESEARCH GAP

Despite this progress of integrating Blockchain AI, and Computer Vision (CV) in healthcare, there still remain several research gaps. Overall, there is little discussion of the seamless interoperability of these technologies in actual healthcare settings where data is typically isolated across different systems.

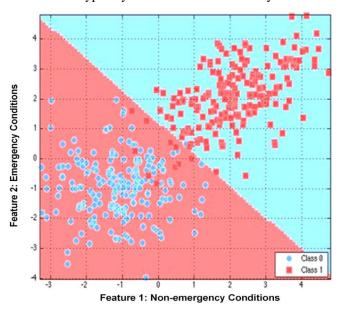


Fig. 6 Emergency results by deploying blockchain (Journal of Cloud Computing – SpringerOpen, 2024)

Blockchain provides high data security, but this increased security comes at the expense of the scalability and energy consumption in larger scale healthcare applications. In addition, we find a lack of studies regarding the ethical implications of integrating AI and blockchain, specifically focusing on the patient's privacy, consent and possibilities of biases in AI decision making.

However, the integration of Blockchain and CV in medical diagnoses, especially in resource limited environments has not been fully explored. Currently, little is examined regarding the regulatory challenges of implementing these technologies in geographic areas that vary in healthcare systems and focus most studies on technical capability rather than compliance with healthcare laws and policies. These gaps can be addressed as they allow these technologies to be fully realized for applications in healthcare.

RESULTS

BLOCKCHAIN

A key finding of this study is the crucial role of blockchain technology in helping enhance both the security and the privacy data in the healthcare domain. One of the studies, the Egala et al. (2022) and Chamola et al. (2023) have shown that traditional health data management systems are vulnerable to data breaches and unauthorized access.

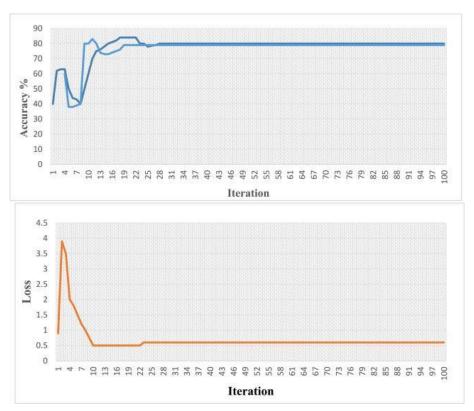


Fig. 7 Breast cancer detection using blockchain technology (ScienceDirect.com, 2023)

Since it's a decentralized network, blockchain ensures confidentiality, integrity, and availability of sensitive health information. Egala et al. (2022) propose blockchain based systems, for instance the iBlock system, that use cryptography and distributed data management to keep user data private.

Chamola et al. (2023) emphasizes on the need for a decentralized storage system that secures the patient medical history storage with a help of the blockchain to use the artificial intelligence (AI) techniques like optical character recognition (OCR). As these systems plainly improve data protection and lower the dangers connected to a focused health information database, the pressure on information control and assurance of patients' private data is quite heavy.

Blockchain technology adoption enables customers to achieve transparency and trust in the healthcare applications. For example, in the pharmaceutical and patient care scenarios, blockchain creates agenda and verifies that all the transactions are trackable and the immutable record of events is auditable anytime.

The biggest advantage of this transparency is to counter risks from fraud, mismanagement, and error in the healthcare services. Blockchain in the healthcare realm is slowly integrating the AI and IoT that it creates a more secure environment for data sharing, as it's done in a trusted and efficient way.

EFFICIENCY AND DIAGNOSTICS

The efficiency of healthcare, and to some extent of diagnostic processes, have massively benefited from the use of Artificial Intelligence and Machine learning. AI for smart healthcare systems—specifically in smart healthcare system like diagnostic (disease detection) are studied by AlGhamdi et al. (2022) and Punitha & Preetha (2024).

Like ResNet152 model for COVID-19 detection proposed by AlGhamdi et al. (2022), the AI driven models have shown high accuracy in diagnosing the diseases from medical images, like (X-rays). With these AI tools, diagnostic accuracy is greatly improved, the settings are improved, and the time and resources used for manual diagnosis are greatly reduced.

There are huge applications and improvements whenever we think of AI in healthcare. AI algorithms can forecast patient deterioration, help with the best possible patient treatment planning and streamline patient appointment, and inventory management. Punitha & Preetha (2024) worked on AI in the field of telesurgery where AI enabled analytics assist in shoring up surgical precision and taking intelligent decisions.

During the new tele-surgeries, AI gives surgeons more information to make better decisions. With AI, it's not just ensuring more accurate medical procedures, it's also about greater patient focus.

SMART HEALTHCARE SYSTEMS

The Internet of Things has become a cornerstone of the healthcare digital transformation. The IoT enabled devices allow real time monitoring of patient vitals, remote health assessment and collection of data automatically.

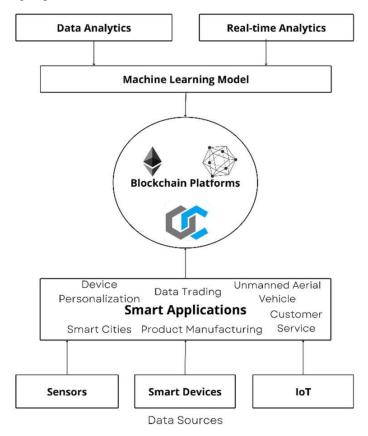


Fig. 8 Machine learning model in healthcare (Europe PMC, 2022)

As mentioned by AlGhamdi et al. (2022), IoT devices are important sensors to fight diseases like COVID-19 through remote patient monitoring reducing the risk of exposure to medical staff. In the framework of 'smart healthcare', IoT devices gather real time patient data that is processed by AI and blockchain technologies to facilitate efficient, secure and timeous interventions.

However, there are barriers when it comes to adopting IoT into healthcare. IoT devices tend to be small, and small computers that are easy to attack in the cyber sense. Many of these IoT systems in healthcare are not properly encrypted or not protected with privacy at all, they can suffer from data breaches.

The problem with combining IoT with blockchain. With enhanced encryption and authentication mechanisms, blockchain's distributed ledger protects data being generated from IoT devices. The integration of this is key for ensuring accurate, reliable and secure healthcare services for connected, remote or underserved patients with IoT devices in the picture.

TELEMEDICINE AND TELESURGERY

Telemedicine and telesurgery are major advances in healthcare in which medical professionals can render care and perform surgery 'remotely'. These domains are transforming how patients with no nearby healthcare services rely upon remote or emergency healthcare services delivered through a perfect combination of AI, IoT, and blockchain.

Punitha & Preetha (2024) describe how AI boosts the precision and the power of taking the decision in telesurgery, while the use of block chain gives security, inalterability and visibility for surgical data. In the time of COVID-19 pandemic, telemedicine has become an essential tool, becoming very important as it has allowed to healthcare systems to continue running through lockdowns and social distancing.

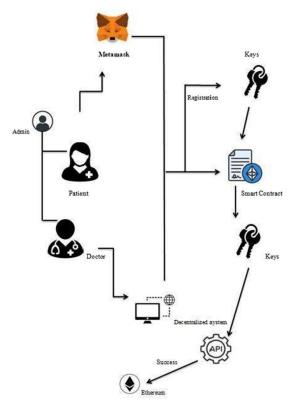


Fig. 9 Electronic Health Records using Blockchain (Frontiers, 2024)

IoT devices incorporated within biometric data collection technologies can feed information to AI algorithms that can vet patient data collected remotely in consultations for use by doctors in making more accurate judgments. Third, AI driven tools help current surgeries like robotic surgeries becomes more precise through telesurgery by assisting and optimizing the real time data analysis. In this system, blockchain is part of the whole of aligning records, surgical data and patient communication between the medical team in a secure and accessible way.

By integrating blockchain and AI in telesurgery, both surgical outcomes as well as issues of patient safety and healthcare cost and medical errors are addressed. Punitha & Preetha (2024) had researched and found that AI and blockchain can add 25% towards success rate of tele-surgeries, which means that they can revolutionize remote healthcare delivery.

In addition, these new technologies would lower healthcare costs by eliminating the need for physical infrastructure and allowing the flexible deployment of medical resources. In healthcare systems, incorporation of blockchain, Artificial Intelligence (AI), and IoT promises revolutionizing how healthcare delivery model can be transformed as well as how data security can be improved and diagnostic accuracy enhanced.

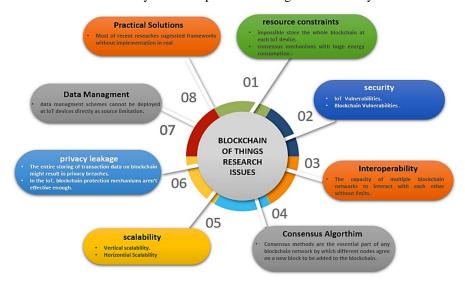


Fig. 10 IoT in healthcare (link.springer.com, 2024)

Given the context of global health crises such as the COVID-19 pandemic, and in an era long plagued by issues such as data breaches, infeasibility, and lack of accessibility, these technologies can help make the healthcare systems address these issues. Results indicate the transformative potential of those technologies and underscore the need for these technologies to be incorporated into the healthcare environment which is secure, efficient and accessible. However, because these systems face various technical, security, and ethical challenges that need to be met to deploy and scale them across different clinical settings, challenges remain.

FUTURE DIRECTIONS

The future of healthcare innovation lies in the further integration of blockchain, artificial intelligence (AI) and the Internet of Things (IoT) to build more resilient, efficient and more patient centered systems. Decentralized healthcare frameworks are targeted as a major area of focus with blockchain acting as a game changer in terms of data integrity, transparency and security.

With the growth of healthcare data becoming increasingly complex and large, the development of advanced cryptographic techniques and scalable blockchain networks, will become essential to make such data manageable efficiently through privacy, trust. It also demands policymakers to create strong regulatory framework in such a way that innovation decorates with ethical data management practice.

We expect AI to play an increasingly important role in healthcare, especially helping personalize medicine and predict what health problems an individual will have in future. In reality, the advances will come in increasingly sophisticated AI algorithms able to process a wide range of the data available, genomic, environmental, and behavioural, to prescribe highly personalized treatment plans.

AI will open up trained AI power diagnostic tools to more people and less expensive, making them available in areas with fewer resources. Real time monitoring will become more possible with the combination of AI with IoT devices and patients and health care providers will have actionable insights that can improve outcomes.

To nurture trust and adoption of AI across stake holders in healthcare space, research and development needs to focus on the reliability and explainability of AI systems. The integration of IoT across a healthcare system has

been accelerated by 5G networks and the emergence of edge computing that allows IoT devices to exchange data more rapidly and with lower latency, improving the real time aspect of the healthcare system. Such developments can transform telemedicine into an object of the most precise remote surgery and the most advanced monitoring of illness.

To protect sensitive patient data from IoT hazards, future research must tackle issues of IoT vulnerabilities such as hacking risks. Future of these technologies will require collaboration across disciplines. In order to integrate blockchain, AI and IoT in healthcare, we expect partnerships between healthcare professionals, engineers, data scientists and policymakers.

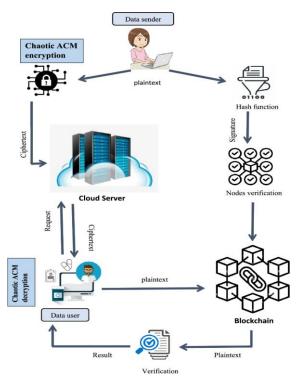


Fig. 11 Blockchain in medical sector (Nature, 2024)

But efforts should also be made to make these technologies available to low resource settings with fair dispensation of healthcare on a global scale. We believe that bridging the gap between advanced technological capabilities and practical applications will require comprehensive training programs that are provided for healthcare providers and other system users. This, in turn, is the future of healthcare innovation. Designing secure and inclusive, efficient healthcare for the global community through refining these technologies.

RECOMMENDATIONS

- A decentralized healthcare system should be established to protect healthcare data while keeping transparency and maintaining integrity across medical records.
- Scientific teams need to develop leading-edge AI algorithms which merge personalized medicine techniques with predictive data analysis combined with automated diagnostic capabilities.
- To protect sensitive patient data from cyber threats organizations must resolve existing vulnerabilities in IoT devices.
- First adopt IoT and AI capabilities to enable near Instant medical data tracking which helps healthcare providers stop diseases faster and better manage patients.
- Use blockchain technology both for safe healthcare record storage and simplified access to electronic medical records.
- Deep learning technological improvements in disease spot and identify methods must specifically address pandemic situations for aware and fast healthcare.

- New healthcare technology needs promotion together with telemedicine development as part of efforts to reach remote patients more easily.
- Medical regulators must develop a framework to direct healthcare applications involving Artificial Intelligence and blockchain systems.
- Medical organizations must develop better ways for their digital systems to interoperable share information instantly across networks.
- Cross-disciplinary teams should collaborate for creating new healthcare solutions.
- Currencies should be enhanced to protect digital healthcare technology ecosystems from potential risks.
- Healthcare professionals need extensive training programs about newly emerging technologies.

CONCLUSION

The research pointed out how blockchain, AI, and IoT can play a transformative role for healthcare systems. In remote healthcare delivery, or in the example of an emergency response, these technologies improve data security, diagnostic accuracy and patient care. The study highlights the importance of decentralized model like blockchain, to maintain the confidentiality and integrity of sensitive health care data. On top of the systems already in place (AI and IoT), operational efficiency and patient outcomes improve further. Yet, core issues that need to be tackled for these innovations to become the range of benefits in modern health are technical limitations, security worries, and ethical concerns.

REFERENCES

- [1] Aguilera, R. C., Ortiz, M. P., Banda, A. A., & Aguilera, L. E. C. (2021). Blockchain cnn deep learning expert system for healthcare emergency. *Fractals*, 29(06), 2150227. https://doi.org/10.1142/S0218348X21502273
- [2] AlGhamdi, R., Alassafi, M. O., Alshdadi, A. A., Dessouky, M. M., Ramdan, R. A., & Aboshosha, B. W. (2022). Developing trusted IoT healthcare information-based AI and blockchain. *Processes*, 11(1), 34. https://doi.org/10.3390/pr11010034
- [3] Chamola, V., Goyal, A., Sharma, P., Hassija, V., Binh, H. T. T., & Saxena, V. (2023). Artificial intelligence-assisted blockchain-based framework for smart and secure EMR management. *Neural Computing and Applications*, 35(31), 22959-22969. https://doi.org/10.1007/s00521-022-07087-7
- [4] Egala, B. S., Pradhan, A. K., Badarla, V., & Mohanty, S. P. (2022). iBlock: an intelligent decentralised blockchain-based pandemic detection and assisting system. *Journal of signal processing systems*, *94*(6), 595-608. https://doi.org/10.1007/s11265-021-01704-9
- [5] Jabarulla, M. Y., & Lee, H. N. (2021, August). A blockchain and artificial intelligence-based, patient-centric healthcare system for combating the COVID-19 pandemic: Opportunities and applications. In *Healthcare* (Vol. 9, No. 8, p. 1019). Mdpi. https://doi.org/10.3390/healthcare9081019
- [6] Nguyen, D. C., Ding, M., Pathirana, P. N., & Seneviratne, A. (2021). Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey. *Ieee Access*, 9, 95730-95753. 10.1109/ACCESS.2021.3093633
- [7] Ottakath, N., Al-Ali, A., Al-Maadeed, S., Elharrouss, O., & Mohamed, A. (2023). Enhanced computer vision applications with blockchain: A review of applications and opportunities. *Journal of King Saud University-Computer and Information Sciences*, *35*(10), 101801. https://doi.org/10.1016/j.jksuci.2023.101801
- [8] Peyvandi, A., Majidi, B., Peyvandi, S., & Patra, J. (2021). Computer-aided-diagnosis as a service on decentralized medical cloud for efficient and rapid emergency response intelligence. *New Generation Computing*, 39(3), 677-700. https://doi.org/10.1007/s00354-021-00131-5
- [9] Punitha, S., & Preetha, K. S. (2024). Unleashing potential: a deep dive into AI-blockchain integration for UAV-enhanced tele-surgery. *Cogent Engineering*, 11(1). https://doi.org/10.1080/23311916.2024.2429773
- [10] Puri, V., Kataria, A., & Sharma, V. (2024). Artificial intelligence-powered decentralized framework for Internet of Things in Healthcare 4.0. *Transactions on Emerging Telecommunications Technologies*, 35(4), e4245. https://doi.org/10.1002/ett.4245

- [11] Ramalingam, M., Selvi, G. C., Victor, N., Chengoden, R., Bhattacharya, S., Maddikunta, P. K. R., ... & Gadekallu, T. R. (2023). A comprehensive analysis of blockchain applications for securing computer vision systems. *IEEE Access*. 10.1109/ACCESS.2023.3319089
- [12] Selvi, C., Victor, N., Chengoden, R., Bhattacharya, S., Maddikunta, P. K. R., Lee, D., ... & Gadekallu, T. R. (2023). A comprehensive analysis of blockchain applications for securing computer vision systems. *arXiv* preprint arXiv:2307.06659. https://doi.org/10.48550/arXiv.2307.06659
- [13] Shinde, R., Patil, S., Kotecha, K., Potdar, V., Selvachandran, G., & Abraham, A. (2024). Securing AI-based healthcare systems using blockchain technology: A state-of-the-art systematic literature review and future research directions. *Transactions on Emerging Telecommunications Technologies*, 35(1), e4884. https://doi.org/10.1002/ett.4884