J. Electrical Systems 20-3 (2024): 8440-8447

LAbdelaziz FPGA-Based implementation of

Kerbouche Block Cipher Security Using @

* Hamimi Chemali Electronic Codebook Mode Gournal of

¥ Mouloud Ayad (gectrlca(
ystems

Abstract: - This paper presents FPGA implementation of the Advanced Encryption Standard using Electronic Codebook Mode. Block
ciphers, a cornerstone of cryptographic systems, are employed to encrypt fixed-size blocks of data, ensuring confidentiality in
communication. The FPGA platform is utilized to optimize the encryption process, leveraging its parallel processing and high-speed
capabilities. The design incorporates the key components of the block cipher algorithm, ensuring efficient execution of encry ption process.
The implementation is evaluated for its performance, highlighting its potential for real-time secure communication in constrained
environments. Two implementation methods are employed for the ECB mode: parallel and pipeline. The parallel method achieved a
maximum frequency of 264 MHz, while the pipeline system reached a maximum frequency of 189 MHz.

Keywords: Advanced Encryption Standard (AES), Electronic Codebook (ECB), Encryption algorithm, Field Programmable
Gate Array (FPGA), Embedded systems.

l. INTRODUCTION

In secure communication systems, cryptographic techniques are indispensable for protecting sensitive data from
unauthorized access. Among these techniques, block ciphers stand out as robust algorithms that encrypt fixed-size
blocks of plaintext into ciphertext, ensuring confidentiality and integrity during data transmission. The Electronic
Codebook (ECB) mode is a basic operational mode for block ciphers, where each plaintext block is encrypted
independently using the same key. This independence makes ECB straightforward to implement and capable of
achieving high-speed encryption, especially in hardware systems. Field-Programmable Gate Arrays (FPGAS) offer
a compelling platform for implementing cryptographic algorithms like block ciphers. Their reconfigurable nature
allows for flexible designs, while their inherent parallelism and hardware-level processing enable high-speed and
low-latency operations. These features make FPGAs particularly suited for real-time and resource-constrained
applications requiring secure data encryption. In the literature, several works based on FPGA implementation are
presented [1-4].

In the past few years, there has been a significant increase in researches on the cipher blocks implementation using
different modes. For example, in [5] Wu et al presented a crypto engine in ECB mode for hard-disk data encryption,
with a stable speed adapted to read and write throughput of SATA interface. In [6] Al-wattar designed an image
encryption approach using AES-ECB mode, and based on DNA alteration, the author presented also some limitation
of the ECB mode especially for image encryption. Authors in [7] designed an AES-ECB and AES-CTR (counter
mode) on GPU (Graphics Processing Unit). This proposed design achieved high speed due to parallel processing,
mainly the table-based approach. Based on Intel core i7 and Intel core 2, authors in [8] present a fast implementation
of AES-CTR. The software implementation of this approach (FACE) uses the bitsliced method. The obtained results
show 15%-20% more efficiency compared to other works. In another filed of application, a satellite image
encryption approach is presented in [9] using CTR mode for AES algorithm. The authors proposed a modification
in the counter mode, aiming the enhancement of performance, along with the high level of security, through
combining GEFFE generator with AES.

As described above, block cipher algorithms are commonly used in different operation mode, in this work we
propose the implementation of a cipher block algorithm, namely the AES, using ECB mode. The aim is providing
a continues mode of data encryption for communication purposes using AES-based cipher block. The whole of the
paper is presented as follow: In section 2, an overview of functioning mode of cipher blocks is presented. The

1 PhD Student, L.C.C.N.S Laboratory, Department of Electronics, University of Ferhat Abbas Sétif 1, Algeria. Email:
abdelaziz.kerbouche@univ-setif.dz

2 Professor, Department of Electronics, University of Ferhat Abbas Sétif 1, Algeria. Email: hamimi.chemali@univ-setif.dz
3 * Professor, Department of Electronics, University of Ferhat Abbas Sétif 1, Algeria. Email: m.ayad@univ-setif.dz
Copyright © JES 2024 on-line: journal.esrgroups.org

8440

mailto:hamimi.chemali@univ-setif.dz

J. Electrical Systems 20-3 (2024): 8440-8447

description of the proposed approach and discussion of results are presented in Section 3. Finally, the conclusion is
given.

Il. BLock CIPHERS MODE OF OPERATION

In order to encrypt Information, numerous techniques can be used to transform plaintext into ciphertext, these
techniques can be categorized as stream cipher and block cipher. With stream ciphers, data is encrypted and stored
one byte at a time, which allows a high-speed encryption, however, it also requires a complex hardware or CPU
(Central Processing Unit) infrastructure [10]. This technique uses usually symmetric encryption, where a single key
is used for encryption and decryption. One of the challenges of stream ciphers is randomization, where the next
byte is unknown until it arrives. this challenge is especially highlighted if multiple identical bytes are input into the
stream, resulting to identical bytes on the encrypted side. That’s why stream cipher uses an initialization vector
(IV), that is added to the stream cipher to introduce some randomization to the encryption process.

The second technique is the block cipher; as the name implies, a block cipher is encrypting a fixed length block of
information at a time. so instead of taking a single byte, it takes a block of bytes and encrypt it at one time, where
the size of that block has a fix length.

There are several encryption modes of information, each mode has a specific processing method. The basic principle
is dividing large data into smaller fixed length blocks before passing through the encryption process.

One of the common modes of operation is the Electronic Codebook (ECB). It consists on performing exactly the
same encryption for every block in the series separately, using the same key. The outputs are then concatenated
together to get the encrypted data. Based on the definition of this mode, the presence of identical plaintexts, results
to identical ciphertext, which makes ECB not adapted to many cases of use such as image encryption. The ECB
encryption mode is presented in Fig. 1.

Plaintext Plaintext Plaintext
HERERR HEREERN LIT T T 1]
' + '
kwg’{ Block Cipher kayg.{ Block cipher kayA’{ Block Cipher ‘
Encryption Encryption Encryption
| ' }
LITTTT] LITTTT] LIT T T
Ciphertext Ciphertext Ciphertext

Fig. 1. The Electronic Codebook mode.

Another common operation mode is Cipher Block Chaining (CBC). This mode adds some randomization, to the
output, where each block is XORed with the previous ciphertext block, except for the first plaintext in the process
is XORed with an initial vector (IV) since there is no ciphertext before. The overall process of encryption is similar
to ECB mode, with the simple difference of driving the ciphertext of each block to be mixed with the next plaintext.
The CBC encryption mode is presented in Fig 2.

8441

J. Electrical Systems 20-3 (2024): 8440-8447

Monce Counter Nonce Counter Monce Counter
C59bc35... 0000000 C58bc35... 0000000 C59bc35... 0000000
HEEEEN HEEEEE LI T T TT]
' } l
key —»| Blockcipher key __,| Block cipher key —» Block cipher
encryption encryption encryption
Plaintext g% Plaintext A% Plaintext —%
[TTT1] LI T T TT] LITTTT]
HEEREN HEEEEN LITTTT]
Ciphertext Ciphertext Ciphertext

Fig. 2. Cipher Block Chaining mode.

The counter mode (CTR) is another common chaining mode. It uses an incremental counter to be able to add
randomization to the encryption process. With counter mode, the incremental counter is encrypted with the block
cipher encryption, and the result is then XORed with the plaintext to create finally the ciphertext. In the next block,
instead of using ciphertext of the previous block, the counter is incremented and used as in the first block to perform
the encryption operation. The CTR mode is presented in Fig. 3.

Plaintext Plaintext Plaintext
EEEEEE (T MTTTTT]
Initialization Vectar (IV) ’L
HEEREE P >
key ——» Blockcfp.rher 0oy —| Block cip.har key — ol Blockcl'p!her
encryption encryption encryption
— — ¢
LT T TTT] HEERER LITTTT]
Ciphertext Ciphertext Ciphertext

Fig. 3. Counter mode CTR.
11, IMPLEMENTAION OF AES ALGORITHM UNSING ECB MODE

The Advanced encryption standard AES is one of the most commonly used encryption algorithms due to its
robustness, security, and ease of implementation in hardware and software. AES is a symmetric block cipher that
encrypts 128-bits in a single pass, and it supports 128, 192 and 256-bits key size [11]. It was developed by Joan
Daemen and Vincent Rijmen, and is a commonly used algorithm especially in wireless communication. the AES
consists of 10 rounds in case of 128 key length, but the number of rounds is 12 and 14 in case of 192-bits and 256-
bits respectively. The Round in AES signifies iteration, and each iteration is a set of operations, namely the
AddRoundKey SubBytes, ShiftRows, and MixColumns. These operations are executed in every round, except for
the last round where there is no MixColumns operation. The AddRoundKey operation is a XOR of the output from
the previous operation and the subkey of the active round. This subkey is generated through the Key generation
process, or also known as Key expansion. This process uses the initial key to generate a subkey for each round
through some mathematical operations.

In this project, we designed two methods for the AES using ECB mode. The first method uses a single AES unit
with an input module to divide original data into vectors, and output module to concatenate ciphertext to generate
encrypted data. The overall structure of the first method uses an inner pipelining system, while the AES unit itself
is an outer-round pipelining, this combination allows achieving a maximum throughput with an optimized area.

8442

J. Electrical Systems 20-3 (2024): 8440-8447

The second method uses a similar inner-round pipelining system, but defer in the overall structure, where it uses a
parallel data processing instead. The generated ciphertexts are concatenated using a buffer positioned in the output.
The diagram of AES module for both methods is illustrated in Fig. 4.

Several implementation techniques of the AES algorithm exist, but not all of them are adapted to chaining mode,
since it requires a steady dataflow to guarantee data fluidity and avoid latency. Therefore, pipeline structure is the
most convenient for chaining, as it can achieve high performance. The diagram of AES module for both methods

is illustrated in Fig. 5

As illustrated in Fig. 5, registers are positioned between rounds for synchronization purpose. The diagram of the
first method of AES-ECB is illustrated in Fig. 6.

The encryption unit in Fig. 6 shows the AES-128 module with data formatting units in the input and output to ensure
a steady data feeding to the encryption process. The data formatting at the output concatenates ciphertext before
generating the encrypted data. The second method of implementation in this project is illustrated in Fig. 7.

Cipherkey Plaintext
LY

Key Expansion SubByics

Round key

Round_key | ShiitRows |M:lin rounds
MixColumns i=1 = Nr-1

Round key ¢ l—‘ AddRoundkey

‘li
SubByies
ShifiRows
AddRoundkey

Cipher text

Fig. 4 Advanced encryption algorithm.

Plaintext —
Round 0 Round n Ciphertext
Key —

Fig. 5. Advanced encryption standard structure.

1315160y
1915168y

Input data Data formatting
; ; Data
E t t
neryption uni formatting — Encrypted Data
Key ;L
Fig. 6. AES Electronic Codebook mode
Original data
Encryption Encryption Encryption
unit unit unit

Encrypted data

Fig. 7. Parallel AES-ECB mode.

8443

J. Electrical Systems 20-3 (2024): 8440-8447

The input data in this method is driven directly to the encryption units without data formatting. It consists of several
encryption modules where each module processes a part of the input data.

The development process of this project pass through several phases, starting from the AES modules, progressing
toward the top-level structure, using a Hardware Description Language (HDL). The development process is
illustrated in Fig. 8.

[S-BOX function 1

v

v

v

SubBytes
module

[

Key Generation
module

I

[ShiftRows module][

MixColumns
module

I

AddRoundKey
module

J

J

v

v

A

Y

Unit test

[Integration test

v

AES-ECB Parallel

{

v

[

AES-ECB

J

Each module in the AES is tested separately (unit test) before the assembly of the

structure Pipeline structure
[Functional and timing test]

Fig. 8. Development process of the proposed approach.

structure. The schematic of the round unit is presented in Fig. 9.

round unit and the overall

round)
@, e
- . Pa_ound ey mg{1271]
kegen i b
g >t
a 7ot e WA Y
o k177 | PRt | sow: bgfrar ey 11
mnr gl
Wyl amon stew 040§ o
e ® -
=) seie_out o170
WLk %
-z
= 1. fowm o,
addroundhey,inst o
sboyes inst shitows_nat muroumes_inst [+] |
‘L [+] T 3 23 %‘
e {127 st figr) s el 37 - .qn:-ql - s {179 v 1 e
k= e S AFFCrRey

Fig. 9. Round unit schematic.

The Round unit consists of output buffers along with the main operations modules to handle the inner-round
pipelining of the AES. The schematic of the AES-ECB pipeline system is illustrated in Fig. 10.

8444

J. Electrical Systems 20-3 (2024): 8440-8447

keylnaro) [y AES_mod

(=1

oy 13704

plairtax]1278:0]
i [» -
N

mork{ 1 2704

Ciphertecd] 1278 0]

Fig. 10. Pipeline system schematic.

The inputs and outputs of the AES-ECB pass through registers for synchronization. The AES unit processes a new
input and generates an output every clock cycle. While the parallel structure processes all the input data
simultaneously, where each block is processed with a dedicated AES module. The parallel structure is illustrated in
Fig. 11.

AES_Gen[1].AES_mod

ck[> .
key(127:01 [—eeheted(1270) I iphertext[1279:0]
plaintext(1279:0] [
st[>
AES
AES_Gen[2]. AES_mod
clk|
key[127:0! ciphertext{127:0) ki
laintext[127-0!
rst
gE———
AES

AES_Gen[9].AES_mod

clk
key[127:0] ciphertext{127:0 L

laintext[127:0;

rst
|]
AES

AES_Gen[10).AES_mod

ciphertexi[127:0)

Fig. 11. The parallel structure schematic.
V. VALIDATION

Both methods parallel and pipeline uses the same AES module with a different overall structure, aiming to ensure
a meaningful comparison at the end, as both structures share the same fundamental module.

The maximum frequency Fmax Of a design is computed through running the synthesis and implementation and
increasing the timing constraint until getting the smallest Slack violation (WNS <0) in the timing analyses report.
The Fmax is calculated using the following equation:

8445

J. Electrical Systems 20-3 (2024): 8440-8447

@)

F.ox (MHZ) = max _1000
T—-WNS

Where T is the target clock period (ns) and WNS is the worst negative slack (ns) of the target clock.

The throughput is calculated using the Frnax, number of clock cycles, and data length. The throughput is defined by
the following equation:

S(Mbps) = (F"WTXO"))

Where, Frnax is the maximum frequency of the design (MHz).
dl = 128 is the block size (bits).
n Number of clock cycles
The resource utilization and throughput of proposed methods is represented in Table 1.

Tab. 1. Resource utilization of proposed methods.

Frequency

Method (MH2)

Throughput LUT FF

Parallel structure 264 39.16 28868 7296

Pipeline structure 189.5 24 11328 2503

The parallel design uses 3 AES units as example, but more modules can be placed depending or resources
availability in the FPGA used.

The simulation results of parallel and pipeline structures are illustrated in Fig. 12, and Fig. 13 respectively. The
pipeline structure processes the first input in 10 clock cycles, while one plaintext is loaded every clock cycle. The
parallel structure processes several inputs simultaneously; therefore, it achieves a high throughput at the cost of
high resource utilization.

RES_Parallelwcty —oDax
Q MW a @ 3 o MM exr T o
Name Value
W ak 0
Urst 0
W plainte{12790] D0112233445566778899¢ | ooy, hd 12345670987654021 assee tesddecn
> W keyl127:0) 00010203040506070808C 000:
» W cipherte{1279:0) UUUUUUUUUUUULULY (o 507 783 1a5b02651025a694c 72 156170235 44 LaBEbOdE 4B TATEA080655ds 740340
» W plainte12790] 00112233445566778890: [Go1122554a o0 Y ancastoiz 1734ce783a7654321 334as5es tesddcen
W ciphertex1279:0] UUUUUUUUUUUULUUY [oommarnmmm 70 X 78344368 Sobicllafb02651028a89dc721bEL a0
W plainte(12790] D0112233445566778899¢ | ooy, b 4 FYTTRITIALITEETY ttesddecd
> W cipherad1279:0) UUUUUUULUUUUUUUY Ty 74 783 1 1be1 o
» W plaintet(1279:0] 00112233445566778899: | Do11220544s5667 0 Y avcastoz 1z34teveaaTEs4a21 3345566 tasddcen
W ciphertext{1279:0] UUUUUUUUUUUULUUY | Rrmasannne X éScie0disaThod3048cdb?8070 X Ebeldebebial 37831436 £ 5chcll abb02651025a69de T2 10817023 4877 8¢ a1
W plainted(12790] D0112233445566778899: | o011, ¥ 1234567890768 4321 13445566 tesddecn
> W ciphened(1279:0) UUUUUUULULLULULY X X 783 1asb 261]
» W plainted(12790] D0112233445556779890¢ | 00112253445566770059aabbell), abcdet0123456789abede 101234 5679907654521 3344556677089 100 tesddccl
W diphertext{1279:0] UUUUUUUULUUULULL X 7a X 78: 11 721681702 o
W plaintex{1279:0] 001122334455867738902 | 001122334455667788 3% aabb k abcde 012345678 %abode 01234 5679987654321 fadcbalfSP654321 fodchalSL 12233448864 77885%aabbocddeet 1001 feeddecl]
» W ciphened(1279:0] UUUUUUULUUDULUUY [UmRRnmug K 9o e0dasarbod 104ecdb76070 X Ghe0iabeltald Lashi b6
» W plaintex12790] 001122334455667788994 | oorv o) 1z3asevesaTEseaEL 348 tesaseen
W dpherter(1279:0] UUUUUUUUUULUUULY [Rmnnsn 65c4a0aa6a750430482db76070 f Eba0oabebEal 3783 £4365chIc] | ath02651025a694c72 bE 1702350 £ 4e £a00b0 dba d407a 704000695833 4esde]
» W plaintext{1279:0] 00112233445566TT3890: | 0011223344 556677889%aabbcl f abcdef012345678%abode £01234 5878987684321 fadcbad38765432 1 fedchbabS1 12233445564 7788%3 anbbooddee £ 1001 feeddoch
W ciphetext1279:0) UUUUUUUUUUUUUUUU X i 1uShozes 1b61
» W plainle1279.0) 001122334455667789992 [ooxy X e €03, 4321 tadsbad a0 aabbscddent 100¢taeddcsd
» W cipherat{1279:0] UUUUUUUUUUUUUUUY | ommusiums ¥ 69c4s0a96a 504 3049c 575070, 65a094abc06a1 37832436 £ 5ebaell Ine170z EErTErT
W plainte{12780] D0112233445566778800: | o011, = ¥ Tz3ase7esaTeENszL 334astee feaddean
» W ciphertext{1279:0) UUUUUUUIUUUUUUIUY 69cieldd6aTb0430d8cdb 78070 X EbeldebcOEaliT831436¢5chdcllalbi2651029a69dc 2161702330 f4e feBBbOdbeddBTaTBd0aes$Sde I3 deF4dD

Fig. 13. Simulation results of parallel structure

8446

J. Electrical Systems 20-3 (2024): 8440-8447

AES_128_Pipeline.wclg

Name
Mk
Mest
W plaintet]127.0)
W ey 127:0]
W ciphertex]127.0
W state_in 1127:01
W state_out 1[127:0]
W state_in 2112701
W state_out 2{127:0]
W state_in 312701
W state_out 3{127:0]
W stale_in 4[127:0]
W state_out 4{127:0]
W stale_in 5[127.01
W state_out §{127:0]
W stale_in 6[127.0]
W state_out 6{127:0]
W stale_in 7[127.0]

Q W aa

pone . psa Jpo ns

—oax

[

[
Heeddecbbaatiss

Efavddocbband8087766554439221100

20a7250cA062274

Drosnd0eOl)

Z9aTaicci0eiTibeTa i bacTelb 140

e

MBR00CcDDIITIES

Efesadecti 7766554435221100

#0e030c00a0908

£0a0d0c0E0a080807060804050£01000

71b3018dbedba

316301 8dbcdb0aliat0r2ecet (05Eded

7103018dbedo0at {o)(sen ¥(an X

71b3018dbCab0aTBAB0TZEC RZ 105 dud

ob7888ce088cTa

Eb76teeeditctTacdiands f4ebleal 08

bb7686ee068cTa (wowwo Yo (a0 X

ED768644960CE7acaBA 43546011508

0373378001001 { ARG

Ga73e3178bdldclE5EEatalatiie 737

0aT3e37B0d14¢H {

0a73e3178b4ldcl La3at3361737

£c330:20088327¢ AR

ac33dci0dnE32 766620 Shh0atTEIRAZ

330c20488327 {wwvUUUUUTITI Y510 X 28 X,

838MSCEMAndRaz

§3831508 (666danRRIE20T2an0alatlE

B3835c5MIGdea: {{muuuUUUIIIIUUIITID X 30 X <80

8383155 1086,

W state_out 7(127:0] 4
> W state_in 8[127.0] 41620b0db0de568! (v
W state_out 8(127:0] b 91a

va0 o taser
o5 (ZeansacEaTl 4432 (39468560005
> W stale_in 9[127:0] ebtzeasddchadid az
W state_out 9{127:0] 0539106538 1300t
W state_in 10{127:0] 053010653013k 344821354309 1bdcIalbd
W state_out 10{127.0] 0D2De86100931CH & 7138
W state_in[127:0] 4 Ob2beBé1ddsIlcT0285¢98bced 17130
W state_ou(127.:0]

416aSD0ADSasEEE004 07 ThAZAE 4321

45351nEE7el 38421304309 1b4e7alnd

2937350CI066274 Z3aTaSccs0Ee2TAEA7ATETIASTAIB 140

Fig. 14. Simulation results of pipeline structure.
V. CONCLUSION

This work demonstrates the implementation of the Advanced Encryption Standard (AES) in Electronic Codebook
(ECB) mode using FPGA technology. Two different methods were implemented to achieve continuous data
encryption (parallel and pipeline). The parallel method proved more efficient, achieving a maximum frequency of
264 MHz, compared to 189 MHz for the pipeline system, highlighting the potential of FPGA-based solutions for
high-speed encryption applications.

REFERENCES

[1]1 V. Dahiphale, & al. "Securing loT devices with fast and energy efficient implementation of PRIDE and PRESENT
ciphers", Cyber Security and Applications, Vol. 3 (2025): 100055.

[21 M. O. A Al-Shatari, & al. "FPGA-based lightweight hardware architecture of the PHOTON hash function for IoT edge
devices", IEEE access, Vol. 8 (2020): pp. 610-618.

[31 A. Poojary, V. G. Kiran Kumar, and H. R. Nagesh. "FPGA implementation novel lightweight MBRISI cipher", Journal
of Ambient Intelligence and Humanized Computing, Vol. 14, no. 9 (2023): pp. 625-637.

[4] M.Madani and C. Tanougast, "FPGA implementation of an enhanced chaotic-KASUMI block cipher", Microprocessors
and Microsystems, vol. 80 (2021): 103644.

[51 F.Wu, L. Wang, and Jiguang Wan. "A low cost and inner-round pipelined design of ECB-AES-256 crypto engine for
Solid State Disk", 2010 IEEE Fifth International Conference on Networking, Architecture, and Storage. IEEE, 2010.

[6] A. H. Al-Wattar, "A new approach for the image encryption using AES cipher in ecb mode." Turkish Journal of
Computer and Mathematics Education (TURCOMAT), vol. 14 (2023), no .2: pp. 1061-1074.

[71 Park, Jin Hyung, and Dong Hoon Lee. "FACE: Fast AES CTR mode encryption techniques based on the reuse of
repetitive data", IACR Transactions on Cryptographic Hardware and Embedded Systems, (2018): pp. 469-499.

[8] J.H.ParketD.H. Lee, "FACE: Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data",
TCHES, p. 469-499, 2018.

[9] E. H. Bensikaddour & al., "Satellite image encryption method based on AES-CTR algorithm and GEFFE generator", in
IEEE 2017 8th Int. Conf. on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 2017, p. 247-252.

[10] W.-K. Lee, & al., "Speed Record of AES-CTR and AES-ECB Bit-Sliced Implementation on GPUs", EEE Embedded
Systems Letters, vol. 16, no 4, p. 481-484, déc. 2024, doi: 10.1109/LES.2024.3409725.

[11] J. Daemen et V. Rijmen, "The design of Rijndael”, Vol. 2. New York: Springer-verlag, 2002.

8447

