
sJ. Electrical Systems 20-11s (2024): 2954-2960 

2954 

1 Taisuke Iwabuchi 

2 Tomoaki 

Hashimoto 

Nonlinear Model Predictive 

Control for Landing Guidance of 

Reusable Rocket Using Thruster 

Inputs 
  

Abstract: - This paper proposes a control system design method based on nonlinear model predictive control for automatic landing 

of reusable rockets with considering the thruster inputs and the manipulation of gimbal angles and aerodynamic coefficients. Model 

predictive control is a kind of optimal feedback control in which the control performance over a finite future is optimized and its 

performance index has a moving initial time and a moving terminal time. This paper provides a numerical solution method based on 

the C/GMRES algorithm to solve the nonlinear model predictive control problem of automatic landing of reusable rockets. The 

effectiveness of the proposed method is verified by numerical simulations. 
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I.  INTRODUCTION 

Launch rockets have an important role in space missions, especially in the field of space science and engineering. 

Space technology has a crucial role in our standard services like communication, weather forecasting, remote 

sensing, etc. The cost to access the space is one of the factors which holds back space utilization [1]. In recent years, 

the idea of the reusable rocket has attracted much attention in space engineering.  

The development of reusable rocket has expected to save the space mission cost. However, the technological 

complexities make it challenging to implement. Especially, the technology of control and guidance of vertical 

landing needs to be developed. Thus, this paper examines the design problem of the control system for automatic 

landing of rocket.  

Model predictive control (MPC), also known as receding horizon control [2]-[7], is a useful control methodology 

where the control input is determined at each sampling time so as to minimize a given performance index. MPC is 

a useful control method that enables a control performance to be optimized with considering some constraints on 

the system state and the control inputs [8]-[11]. MPC method for the automatic landing of nonlinear rotational 

dynamics of rocket has been proposed in [12]. However, the dynamics of landing rocket was restricted to the plane 

motion. The dynamical complexities make it challenging to implement. Apart from [12], this paper considers the 6 

degree of freedom (6-DoF) motion for the system model of rocket. To be more specific, 6-DoF system model of 

landing rocket is addressed with considering the thruster inputs and the manipulation of gimbal angles and 

aerodynamic coefficients. Thus, the nonlinearity and time-variance of rocket dynamics are considered to design the 

control system.  

The objective of this paper is to propose a control system design method based on nonlinear model predictive 

control for automatic landing of reusable rockets with considering the thruster inputs and the manipulation of gimbal 

angles and aerodynamic coefficients. This paper provides a numerical solution method based on the C/GMRES 

algorithm to solve the nonlinear model predictive control problem of automatic landing of reusable rockets. The 

effectiveness of the proposed method is verified by numerical simulations. 

II. NOTATIONS AND SYSTEM MODEL 

In this section, we introduce the system model [13] that represents the dynamics of a rocket capable of vertical 

take-off and landing. The notations used in this study are defined in Table 1. The motion of the rocket is expressed 

using a ground-fixed coordinate system and a body-fixed coordinate system, as illustrated in Fig. 1. The origin of 

the body-fixed coordinate system is set at the rocket’s center of mass. In the following, we derive the system model 

for the rocket.  

Considering the rotation of the rocket, the application of Newton’s second law yields the translational equations 

of motion: 
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𝝂̇ =
1

𝑚
(𝑭𝒈 + 𝑭𝒑 + 𝑭𝒂) − 𝝎 × 𝝂 (1) 

where 𝝂 = [𝑈 𝑉 𝑊]T represents the velocity vector in the rocket’s body-fixed frame, and 𝝎 =

[𝑝 𝑞 𝑟]T  represents the angular velocity vector. 𝑭𝒈, 𝑭𝒑, 𝑭𝒂  denote gravitational force, propulsion force, and 

aerodynamic force, respectively, given by: 

𝑭𝒈 = 𝑨𝒆𝒃⃗⃗⃗⃗  ⃗ [
−𝑚𝑔

0
0

] (2) 

𝑭𝒑 = [

𝑇 cos𝜂𝑝 cos𝜂𝑦

−𝑇 cos𝜂𝑝 sin𝜂𝑦

−𝑇 sin 𝜂𝑝

] (3) 

𝑭𝒂 =

[
 
 
 
 
 −

1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑥𝐶𝐴

−
1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑦𝐶𝑁

−
1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑧𝐶𝑁]
 
 
 
 
 

(4) 

Here, 𝑨𝒆𝒃⃗⃗⃗⃗  ⃗  denotes the transformation matrix from the Earth-fixed coordinate system to the body-fixed 

coordinate system. The airspeed 𝑉𝑡𝑜𝑡𝑎𝑙  is given by: 

𝑉𝑡𝑜𝑡𝑎𝑙 = √𝑈2 + 𝑉2 + 𝑊2 (5) 

The rotational equation of motion for the rocket is given by: 

𝑴𝒂 + 𝑴𝒑 = 𝑱𝝎̇ + 𝝎 × 𝑱𝝎 (6) 

where 𝑱  is the inertia matrix, and 𝑴𝒂 , 𝑴𝒑  represent the moments generated by aerodynamic forces and 

propulsion force, respectively, where 𝑴𝒑 is the moment caused by the thrust from both the engine and gas thrust, 

expressed as: 

𝑱 = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] 

=

[
 
 
 
 
 
 
1

8
𝑚𝑑2 0 0

0 𝑚 (
𝑑2

16
+

𝑙2

12
) 0

0 0 𝑚 (
𝑑2

16
+

𝑙2

12
)
]
 
 
 
 
 
 

(7) 

𝑴𝒂 =

[
 
 
 
 
 
1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑥𝑑𝐶𝑙

1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑦𝑑𝐶𝑚

1

2
𝜌𝑉𝑡𝑜𝑡𝑎𝑙

2𝑆𝑧𝑑𝐶𝑚]
 
 
 
 
 

(8) 

𝑴𝒑 = [

0
−𝑇 sin 𝜂𝑝 (𝑥𝑔 − 𝑥𝑐𝑔) + 𝑇𝑔𝑦(𝑥𝑐𝑔 − 𝑥𝑔)

𝑇 cos𝜂𝑝 sin 𝜂𝑦 (𝑥𝑔 − 𝑥𝑐𝑔) + 𝑇𝑔𝑧(𝑥𝑐𝑔 − 𝑥𝑔)
] (9) 

To express the position and attitude of the rocket, the velocity and angular velocity in the body-fixed coordinate 

system need to be transformed into the Earth-fixed coordinate system. Thus, the translational velocity of the rocket 

is given by: 
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[
𝑥𝑒̇

𝑦𝑒̇

𝑧𝑒̇

] = 𝑨𝒃𝒆⃗⃗⃗⃗  ⃗ [
𝑈
𝑉
𝑊

] (10) 

where 𝑨𝒃𝒆⃗⃗⃗⃗  ⃗ is the transformation matrix from the body-fixed coordinate system to the Earth-fixed coordinate 

system, defined as the transpose of 𝑨𝒆𝒃⃗⃗⃗⃗  ⃗. The angular 

velocity of the rocket is expressed as: 

[

𝜑̇

𝜃̇
𝜓̇

] = [

1 sin𝜑 tan𝜃 cos𝜑 tan𝜃
0 cos𝜑 −sin𝜑

0 sin𝜑 cos𝜃⁄ cos𝜑 cos𝜃⁄
] [

𝑝
𝑞
𝑟
] (11) 

Let the state vector 𝒙(𝑡) consist of position, velocity, angles, angular velocity, and mass, while the control input 

𝒖(𝑡) comprises propulsion force, gimbal angles, and aerodynamic coefficients. Thus, using the equations 

of motion derived above, the system model for the rocket can be described by equation (12). For notational 

convenience, the trigonometric functions sin, cos, and tan are represented as s, c, and t, respectively: 

𝒙(𝑡) = [𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 , 𝑈, 𝑉, 𝑊, 𝜑, 𝜃,𝜓, 𝑝, 𝑞, 𝑟]T 

𝒖(𝑡) = [𝑇, 𝜂𝑝, 𝜂𝑦 , 𝑇𝑔𝑦 , 𝑇𝑔𝑧 , 𝐶𝐴, 𝐶𝑁 , 𝐶𝑙 , 𝐶𝑚]
T
 

 𝒙̇(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡)) 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c𝑥8
c𝑥9

)𝑥4 + (s𝑥7
s𝑥8

s𝑥9
− c𝑥7

s𝑥9
)𝑥5 + (c𝑥7

s𝑥8
s𝑥9

+ s𝑥7
s𝑥9

)𝑥6

(c𝑥8
s𝑥9

)𝑥4 + (s𝑥7
s𝑥8

s𝑥9
+ c𝑥7

c𝑥9
)𝑥5 + (c𝑥7

s𝑥8
s𝑥9

− s𝑥7
c𝑥9

)𝑥6

(−s𝑥8
)𝑥4 + (s𝑥7

c𝑥8
)𝑥5 + (c𝑥7

c𝑥8
)𝑥6

−𝑔c𝑥8
c𝑥9

−
𝜌𝑆𝑥𝑢6

2𝑚
𝑉𝑡𝑜𝑡𝑎𝑙

2 +
𝑢1

𝑚
c𝑢2

c𝑢3
− 𝑥11𝑥6 + 𝑥12𝑥5

−𝑔(s𝑥7
s𝑥8

c𝑥9
− c𝑥7

s𝑥9
) −

𝜌𝑆𝑦𝑢7

2𝑚
𝑉𝑡𝑜𝑡𝑎𝑙

2 −
𝑢1

𝑚
c𝑢2

s𝑢3
− 𝑥12𝑥4 + 𝑥10𝑥6

−𝑔(c𝑥7
s𝑥8

c𝑥9
+ s𝑥7

s𝑥9
) −

𝜌𝑆𝑧𝑢7

2𝑚
𝑉𝑡𝑜𝑡𝑎𝑙

2 −
𝑢1

𝑚
s𝑢2

− 𝑥10𝑥5 + 𝑥11𝑥4

𝑥10 + (𝑥11s𝑥7
+ 𝑥11c𝑥7

)t𝑥8

𝑥11𝑐𝑥7
− 𝑥12𝑠𝑥7

1

𝑐𝑥8

(𝑥11𝑠𝑥7
+ 𝑥12𝑐𝑥7

)

𝐽𝑥
−1 (

𝜌𝑆𝑥𝑑𝑢8

2
𝑉𝑡𝑜𝑡𝑎𝑙

2)

𝐽𝑦
−1 (

𝜌𝑆𝑦𝑑𝑢9

2
𝑉𝑡𝑜𝑡𝑎𝑙

2 − 𝑢1𝑠𝑢2
(𝑥𝑔 − 𝑥𝑐𝑔) + 𝑢4(𝑥𝑐𝑔 − 𝑥𝑔) − 𝑥12𝑥10(𝐽𝑥 − 𝐽𝑧))

𝐽𝑧
−1 (

𝜌𝑆𝑧𝑑𝑢9

2
𝑉𝑡𝑜𝑡𝑎𝑙

2 + 𝑢1𝑐𝑢2
𝑠𝑢3

(𝑥𝑔 − 𝑥𝑐𝑔) + 𝑢5(𝑥𝑐𝑔 − 𝑥𝑔) − 𝑥10𝑥11(𝐽𝑦 − 𝐽𝑥))
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(12) 

 
Fig. 1 (a) Body-fixed and (b) inertial reference frames 
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Table I. Definition of Notations 

Definition Symbol Unit 

Position 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒  m 

Position (body axis) 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 m 

Speed 𝑈, 𝑉, 𝑊 m/s 

Airspeed 𝑉𝑡𝑜𝑡𝑎𝑙  m/s 

Angle 𝜑, 𝜃, 𝜓 rad 

Angular velocity 𝑝, 𝑞, 𝑟 rad/s 

Gravitational acceleration 𝑔 m/s2 

Body mass 𝑚 kg 

Density of air 𝜌 kg/m3 

Body cross-sectional area 𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧 m2 

Body diameter 𝑑 m 

Overall length 𝑙 m 

Engine thrust 𝑇 N 

Gimbal angle 𝜂𝑝, 𝜂𝑦 rad 

Gas thrust 𝑇𝑔𝑦 , 𝑇𝑔𝑧  N 

Moment of inertia 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧 kg ∙ m2 

Gimbal position 𝑥𝑔 m 

Center of gravity 𝑥𝑐𝑔 m 

Aerodynamic force coefficient 𝐶𝐴, 𝐶𝑁 − 

Aerodynamic moment coefficient 𝐶𝑙 , 𝐶𝑚 − 

III. MODEL PREDICTIVE CONTROL 

In this section, the nonlinear model predictive control problem of system model (12) is considered. First, the 

optimal control problem of nonlinear vehicle dynamics is considered. The control input at each time 𝑡 is determined 

so as to minimize the following performance index:  

𝐽 =
1

2
(𝑥T(𝑡 + 𝑇)𝑃𝑥(𝑡 + 𝑇)) 

+∫
1

2
{𝑥T(𝜏)𝑄𝑥(𝜏) + (𝑢(𝜏) − 𝑢𝑓)

T
𝑅(𝑢(𝜏) − 𝑢𝑓)}𝑑𝜏

𝑡+𝑇

𝑡

, (13) 

where 𝑇  is the evaluation interval of the performance index, and 𝑃, 𝑄, 𝑅  are weighting coefficients. The 

optimization problem of (12) subject to equality constraint (13) can be reduced to minimizing the following 

performance index 𝐽 ̅introduced by using the costate λ associated with the equality constraint.  

𝐽 ̅ =
1

2
(𝑥T(𝑡 + 𝑇)𝑃𝑥(𝑡 + 𝑇)) 

+∫ {𝑥T(𝜏)𝑄𝑥(𝜏) + (𝑢(𝜏) − 𝑢𝑓)
T
𝑅(𝑢(𝜏) − 𝑢𝑓)

𝑡+𝑇

𝑡

+ 𝜆T(𝜏)(𝑓(𝑥, 𝑢) − 𝑥̇)}𝑑𝜏. (14) 

On the basis of the variational principle, we obtain the necessary conditions for a stationary value of 𝐽 ̅over the 

horizon (𝑡 ≤ 𝜏 ≤ 𝑡 + 𝑇) as follows.  

𝑥̇(𝜏) = 𝑓(𝑥(𝜏), 𝑢(𝜏)) (15) 

𝜆̇(𝜏) = −(
∂𝐻

∂𝑥
)

T

(16) 

𝜆(𝑡 + 𝑇) = (
∂𝜑

∂𝑥
)

T

(17) 

∂𝐻

∂𝑢
= 0 (18) 
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Conditions (15)-(18) are called the stationary conditions or Euler-Lagrange equations that must be satisfied for 

the performance index (14) to be minimized. A well-known difficulty of the nonlinear optimal control is that it 

results in a nonlinear two-point boundary-value problem that cannot be solved analytically in general. Then, a fast 

algorithm, called the C/GMRES, for numerically solving stationary conditions has been proposed in [14]. In this 

study, we apply the C/GMRES algorithm to solving the obtained stationary conditions. 

IV. NUMERICAL SIMULATION 

In this section, an illustrative example is provided to verify the effectiveness of the proposed method. We 

consider the situation where a rocket lands perpendicular to the ground at the origin of the ground-fixed coordinate 

system. The simulation parameters used here are listed in Table 2, where “diag” denotes a diagonal matrix.  

In the following, we provide the simulation results to verify the effectiveness of the proposed method. Figs. 2-7 

show the time responses of state variables using nonlinear model predictive control based on the C/GMRES method. 

It is seen that all state variables converge to the target state. Figs. 8-12 show the time responses of control inputs 

and optimality error. It is seen that the control input and optimality error converge to target input and zero, 

respectively. Consequently, the effectiveness of the proposed method was verified by the simulation results. 

TABLE II. Simulation Parameters 

Symbol Value 

𝑔 9.81 m/s2 

𝜌 1.251 kg/m3 

𝐽𝑥 24.5 kg ∙ m2 

𝐽𝑦 , 𝐽𝑧 220.5833 kg ∙ m2 

𝑆𝑥 1.5394 m2 

𝑆𝑦 , 𝑆𝑧 7 m2 

𝑑 1.4 m 

𝑥𝑔 5 m 

𝑥𝑐𝑔 3.25 m 

𝑇(𝑡) 1.2 − 𝑒−0.5𝑡  

𝑥(0) [300, 185, 185, −1, 0, 0, 0, 0, 0, 0, 0, 0]T 

𝑥𝑓 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T 

𝑢(0) [0, 0, 0, 0, 0, 0, 0, 0, 0]T 

𝑢𝑓 [𝑚𝑔(1 − 𝑒−0.14𝑡), 0, 0, 0, 0, 0, 0, 0, 0]T 

𝑃 100 ∙ diag[3, 2.4, 2.4, 90, 45, 30, 0, 300, 300, 0.1, 600, 600] 

𝑄 1000 ∙ diag[3,2.4, 2.4, 90, 45, 30, 0, 300, 300, 0.1, 600, 600] 

𝑅 10 ∙ diag[2, 1000, 1000, 10, 10, 10000, 10000, 10000, 10000] 

 

Fig. 2 Time responses of 𝑥1(𝑡) and 𝑥2(𝑡). 

 

Fig. 3 Time responses of 𝑥3(𝑡) and 𝑥4(𝑡). 
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Fig. 4 Time responses of 𝑥5(𝑡) and 𝑥6(𝑡). 

 
Fig. 5 Time responses of 𝑥7(𝑡) and 𝑥8(𝑡). 

 

Fig. 6 Time responses of 𝑥9(𝑡) and 𝑥10(𝑡). 

 

Fig. 7 Time responses of 𝑥11(𝑡) and 𝑥12(𝑡). 

 
Fig. 8 Time responses of 𝑢1(𝑡) and 𝑢2(𝑡). 

 

Fig. 9 Time responses of 𝑢3(𝑡) and 𝑢4(𝑡). 

 

Fig. 10 Time responses of 𝑢5(𝑡) and 𝑢6(𝑡). 
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Fig. 11 Time responses of 𝑢7(𝑡) and 𝑢8(𝑡). 

 

Fig. 12 Time responses of 𝑢9(𝑡) and Optimality error. 

V. CONCLUSIONS 

In this study, 6-DoF system model of landing rocket was introduced with considering thruster inputs and the 

manipulation of gimbal angles and aerodynamic coefficients. Thus, the nonlinearity and time-variance of rocket 

dynamics were considered to design the control system. The control system design method based on nonlinear 

model predictive control for automatic landing of reusable rockets with considering thruster inputs and the 

manipulation of gimbal angles and aerodynamic coefficients has been established. The numerical solution method 

based on the C/GMRES algorithm to solve the nonlinear model predictive control problem of automatic landing of 

reusable rockets was provided. The effectiveness of the proposed method was verified by numerical simulations. 
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