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Abstract: - The integration of renewable energy sources in DC microgrids presents significant challenges in maintaining stable voltage 

regulation and efficient power management. Existing control approaches struggle to handle the inherent variability of renewable sources 

while maintaining optimal system performance. This paper presents an Adaptive Sinh Cosh Optimizer (ASCHO) integrated with cascade 

Fractional Order Proportional-Integral (FOPI) control to address these challenges. ASCHO enhances the original SCHO algorithm through 

dynamic parameter updating and improved exploration-exploitation mechanisms. The proposed control system demonstrates significant 

performance improvements, with ASCHO achieving a fitness value of superior to conventional approaches' values. In practical 

implementation, the system maintains voltage regulation within ±5V of the reference value and achieves a 70\% reduction in steady-state 

error (3.15V vs 10.39V) compared to SCHO. The method was extensively validated through 23 benchmark functions comprising 

unimodal, multimodal, and fixed-dimension multimodal functions, with ASCHO outperforming other algorithms in 17 functions. 

Comprehensive testing validates the system's robustness under varying solar irradiance, wind speed, and load demands. The results 

demonstrate faster rise times (0.00208s vs 0.00209s) and improved power management capabilities, while maintaining battery state of 

charge variations within 0.003%. The successful implementation establishes ASCHO as an effective solution to optimize DC microgrid 

control systems with high penetration of renewable energy. 

Keywords: DC microgrids; metaheuristic optimization; renewable energy integration; fractional order control; voltage 

regulation; power management 

 

 

I. INTRODUCTION 

The evolution of DC microgrids has emerged as a critical development in modern power distribution systems, 

particularly due to their advantages in integrating renewable energy sources and reducing conversion losses [1], 

[2]. These systems offer enhanced efficiency and reliability compared to traditional AC architectures, especially 

in applications with high penetration of DC-based renewable sources and loads [3]. However, the increasing 

complexity of DC microgrids, coupled with the inherent variability of renewable energy sources, presents 

significant challenges in maintaining stable operation and optimal performance [4]. 

Control system optimization in DC microgrids represents a critical challenge, particularly in maintaining stable 

voltage regulation while managing power distribution among multiple sources [5]. Traditional control 

approaches often struggle to achieve optimal performance across varying operational conditions, leading to 

increased interest in advanced control strategies such as fractional-order controllers [6]. These controllers offer 

enhanced flexibility and improved performance compared to conventional approaches, but their effective 

implementation requires sophisticated parameter optimization techniques [7]. 

Meta-heuristic optimization algorithms have demonstrated significant potential in addressing complex control 

system optimization challenges [8]. However, existing approaches often exhibit limitations in their ability to 

maintain balanced exploration and exploitation capabilities, particularly when dealing with the dynamic nature 
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of renewable-based microgrids [9]. The recent introduction of the Sinh Cosh Optimizer (SCHO) has shown 

promise in optimization applications, but its fixed parameter structure limits its adaptability to varying system 

conditions [10]. 

To address these limitations, this research introduces the Adaptive Sinh Cosh Optimizer (ASCHO), a novel 

algorithm that enhances the original SCHO through dynamic parameter updating and improved exploration-

exploitation mechanisms [11], [12]. The proposed approach integrates advanced optimization techniques with 

cascade Fractional Order Proportional Integral (FOPI) control, creating a comprehensive framework for DC 

microgrid voltage regulation and power management. This integration addresses critical challenges in renewable 

energy integration while maintaining system stability and performance across various operational scenarios [13], 

[14]. 

II. Contributions 

This research presents three significant contributions to the field of DC microgrid control optimization: 

1) An integrated cascade FOPI control framework optimized using SCHO for DC microgrid voltage 

regulation. This framework combines fractional-order control with SCHO optimization to achieve improved 

voltage regulation and power management compared to conventional control approaches. The integration 

demonstrates enhanced stability and performance in managing DC microgrid operations. 

2) Development of the Adaptive Sinh Cosh Optimizer (ASCHO) that enhances the original SCHO 

through dynamic parameter updating and improved exploration-exploitation mechanisms. ASCHO introduces 

adaptive parameter control and dual-phase search strategies, achieving significantly faster convergence and 

better optimization results compared to existing meta-heuristic algorithms. 

3) Implementation of the cascade FOPI control framework optimized using ASCHO, creating a 

comprehensive solution for DC microgrid control. This integration demonstrates superior steady-state error, rise 

time, and settling time performance across multiple operational scenarios, while maintaining robust power 

management under varying renewable generation and load conditions. 

III. LITERATURE SURVEY 

The evolution of DC microgrid control systems has highlighted significant limitations in current meta-heuristic 

optimization approaches. While conventional algorithms have demonstrated basic functionality, they often 

struggle with achieving optimal performance across varying operational conditions [15], [16], [17]. Recent 

studies have shown that existing meta-heuristic algorithms frequently fall short in maintaining balanced 

exploration and exploitation capabilities [18], [19], [20], [21]. 

The implementation of traditional optimization approaches in DC microgrids has revealed significant constraints 

in their ability to handle complex, multi-objective control requirements [22], [23], [24], [20]. These limitations 

become particularly evident in systems with high renewable energy penetration, where dynamic operating 

conditions demand more sophisticated optimization strategies [25], [26], [27], [28]. 

Control optimization challenges are further compounded by the integration of renewable energy sources and 

energy storage systems [29], [30], [31]. Research has demonstrated that conventional meta-heuristic approaches 

often struggle with premature convergence and local optima trapping [32], [33], [34], [31]. This challenge is 

especially pronounced in DC microgrid applications where multiple control objectives must be balanced 

simultaneously [35], [36], [37], [38]. 

Recent investigations into voltage regulation and power quality improvement have revealed additional 

limitations in existing optimization approaches [39], [40], [41]}. The challenge of maintaining stable operation 

under varying load conditions requires more sophisticated control strategies than traditional methods can 

provide [20], [42], [43]. 

The recent introduction of hyperbolic function-based optimization algorithms, while promising, remains largely 

unexplored in the context of DC microgrid control [40], [44], [45]}. These emerging approaches offer potential 

advantages in terms of search strategy but require further development for practical implementation in power 

systems control [46], [47], [48]. 
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Furthermore, studies investigating the integration of energy storage systems and renewable sources have 

highlighted the need for more adaptive optimization approaches [49], [50], [51]. The complexity of managing 

multiple power sources while maintaining system stability presents challenges that exceed the capabilities of 

conventional optimization methods [45], [23], [34]. 

As presented in Table 1, a comprehensive analysis of recent metaheuristic optimization algorithms reveals 

significant patterns in algorithmic development and application capabilities. The comparison of 14 algorithms 

developed between 2018 and 2023 shows that while all algorithms implement basic exploration and exploitation 

mechanisms, only three algorithms (QCBOA [18], Border Collie [21], and LMHHO [52]) feature dynamic 

exploration capabilities, and merely two (m-MRFO [23] and Improved Binary Butterfly [53]) incorporate 

dynamic exploitation mechanisms. Furthermore, only five algorithms have been specifically applied to DC 

microgrid optimization: Red Panda [38], Clouded Leopard [19], m-MRFO [23], Border Collie [21], and Jaguar 

Algorithm  [54]. This distribution highlights a critical gap in the field where the combination of dynamic 

exploration and exploitation capabilities remains largely unexplored, particularly in DC microgrid applications. 

For instance, while m-MRFO implements dynamic exploitation and has been applied to DC microgrids, it lacks 

dynamic exploration capabilities. Similarly, Border Collie, despite its DC microgrid application and dynamic 

exploration features, does not include dynamic exploitation mechanisms. This analysis underscores the necessity 

for developing more sophisticated algorithms that integrate both dynamic exploration and exploitation 

capabilities while specifically addressing the unique challenges of DC microgrid optimization, thereby justifying 

the development of enhanced approaches such as ASCHO to bridge these technological gaps.The primary 

research gap lies in the absence of an integrated framework that combines dynamic parameter updates with 

double exploration-exploitation mechanisms. Current optimization approaches predominantly employ static 

parameter settings [39], [32], which significantly limits their ability to adapt to varying operational conditions in 

DC microgrids. This limitation is particularly evident in systems with high renewable energy penetration [45], 

where system dynamics can change rapidly and unpredictably. Furthermore, existing metaheuristic optimization 

algorithms typically focus on either exploration or exploitation phases separately [16], [18], lacking the 

capability to perform simultaneous local and global searches. This limitation results in suboptimal controller 

performance, especially in complex cascade FOPI control structures where multiple parameters need to be tuned 

simultaneously [35], [36].The integration challenge is further compounded by the absence of robust frameworks 

that can effectively combine dynamic parameter updates with double exploration-exploitation mechanisms [22], 

[23]. Current approaches fail to provide comprehensive solutions that address both the need for adaptive 

parameter tuning and efficient search strategies [24]. This gap becomes particularly significant in systems with 

varying operational conditions [25], where maintaining optimal performance requires continuous adaptation of 

controller parameters.Recent studies have also highlighted the limitations of existing approaches in handling 

multiple optimization objectives simultaneously [26], [27]. The lack of multi-objective optimization frameworks 

that can effectively balance various performance criteria while maintaining system stability represents a 

significant research gap. This deficiency is particularly evident in cascade FOPI controllers, where the 

interaction between multiple control loops adds additional complexity to the optimization problem [40].These 

research gaps suggest significant opportunities for advancing the field of FOPI controller optimization in DC 

microgrid applications. Addressing these limitations requires the development of novel optimization approaches 

that can effectively combine dynamic parameter updates with double exploration-exploitation mechanisms 

while maintaining system stability and performance across various operating conditions. 

Algorithm Year Exp EXT D-Exp D-Ext DC-MG Ref. 

Red Panda (RPO) 2023 √ √ × × √ [20] 

OSPO 2021 √ √ × × × [16] 

QCBOA 2021 √ √ √ × × [18] 

Clouded Leopard 2022 √ √ × × √ [19] 

Giant Trevally 2022 √ √ × × × [20] 

m-MRFO 2021 √ √ × √ √ [23] 

Border Collie 2020 √ √ √ × √ [21] 

EAOA 2021 √ √ × × × [43] 
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Tasmanian Devil 2022 √ √ × × × [46] 

LMHHO 2019 √ √ √ × × [52] 

Imp. Binary Butterfly 2023 √ √ × √ × [53] 

Binary Seagull 2021 √ √ × × × [38] 

SSALEO 2022 √ √ × × × [55] 

Jaguar Algorithm 2018 √ √ × × √ [54] 

Exp: Exploration, Ext: Exploitation 

D-Exp: Double Exploration, D-Ext: Double Exploitation 

DC-MG: DC Microgrid Application 

√: Feature present, ×: Feature absent 

IV. METHODOLOGY 

The methodology of this research centers on developing and implementing an enhanced optimization framework 

for DC microgrid control systems. The approach integrates two key components: a cascade Fractional Order 

Proportional-Integral (FOPI) control architecture and an Adaptive Sinh Cosh Optimizer (ASCHO). The FOPI 

control system manages voltage regulation and power distribution through dual control loops, while ASCHO 

provides dynamic parameter optimization to maintain optimal performance under varying operating conditions. 

The methodology encompasses comprehensive algorithm development, control system integration, and 

experimental validation through both benchmark functions and practical scenarios. The following subsections 

detail the problem formulation, algorithm development, control architecture, optimization framework, and 

implementation approach. 

A. Problem Formulation 

The DC microgrid control optimization encompasses two key parameter sets that require simultaneous 

optimization: 

Control System Parameters:The voltage control optimization aims to minimize voltage deviations through FOPI 

controller parameters by minimizing ∫ |𝑒(𝑡)𝑑𝑡 where 𝑒(𝑡) represents the difference between reference and 

actual voltage. 

The cascade FOPI control employs a controller transfer function  

GFOPI(s) = Kp +
Ki

sλ
 where Kp, Ki, and λ are the proportional gain, integral gain, and fractional order 

respectively.Optimization Algorithm Parameters: The parameter adaptation implements dynamic updates 

through 𝑝𝑖(𝑡 + 1) = 𝑁(𝑝𝑖𝑜 , 𝜎𝑖(𝑡)) where 𝑝𝑖  represents the algorithm's control parameters including temperature 

(𝑇), boundary size (𝐵𝑆), and exploration-exploitation coefficients(𝑢, 𝑚, 𝑛, 𝛼, 𝛽, 𝑝, 𝑞). The improvement 

metric is calculated by 𝐼(𝑡) =
(𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡−1))− 𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡)))

𝑓(𝑋{𝑏𝑒𝑠𝑡}(𝑡−1))
. The standard deviation for parameter updates is bounded 

by 𝑝𝑖0 /100 ≤  𝜎𝑖(𝑡) ≤  2𝑝𝑖0/3 to ensure controlled adaptation. The switching mechanism between exploration 

and exploitation is governed by  

𝐴 =

(

 
 
𝑝 − 𝑞 × (

𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

cosh(
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

sinh(
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

)

 
 
× 𝑟13 (IV.1) 

These interdependent parameter sets must be optimized to achieve robust microgrid performance under varying 

renewable generation and load conditions, while maintaining system stability and efficient power management. 

We present our discussed DC-microgrid in Fig 1. It illustrates the fundamental architecture of the DC microgrid 

system under investigation. The system integrates multiple renewable energy sources, including wind turbine 

and solar PV arrays, connected to a common 270V DC bus through their respective power electronic interfaces. 

The wind turbine utilizes an AC/DC converter while the solar PV system employs a DC boost converter for 
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voltage regulation. A bidirectional DC buck-boost converter interfaces the battery storage system, enabling both 

charging and discharging operations to maintain power balance. The microgrid supplies power to two primary 

loads through dedicated DC/DC converters, with the entire system designed to maintain stable voltage 

regulation despite the inherent variability of renewable sources. This configuration presents significant control 

challenges due to the dynamic interactions between different power sources and the need to maintain consistent 

voltage levels across the DC bus. 

 

Figure 1 DC microgrid system architecture with renewable energy integration for case reference voltage 

is 270 [V] 

B. Sinh Cosh Optimizer and Its Adaptive Variant 

The Sinh Cosh Optimizer (SCHO) [10] differed from other metaheuristics by incorporating hyperbolic sine and 

cosine functions; this optimizer has four primary sub-processes that are continuously coordinated to achieve the 

trade-off between exploration and exploitation during the optimization process. The general framework of the 

algorithm consists of a switching mechanism that decides on exploration or exploitation in each step. During 

exploration, SCHO employs two phases: the first phase focuses on refining solutions near the current best, and 

the second phase performs a deeper local search. Also, there are two phases of the exploitation phase; the first 

phase concentrates on the improvement of the solutions in the locale of the best-known solution while the 

second phase performs a deeper local search. Furthermore, SCHO includes a bounded search strategy where 

solutions are redistributed after a certain time within the confined promising region of the search space. Such 

components, regulated by the hyperbolic functions and the parameters that are adapted during the iteration 

process, make it possible to implement the SCHO method for efficient solution search in complex optimization 

problems; they also help to avoid entrapment into local optima and achieve global optimal solutions. The 

pseudocode of SCHO is presented in Algorithm 1 

Algorithm 1 Sinh Cosh Optimizer (SCHO) 

Require: Problem dimension, Population size, Maximum iterations, Objective 

function 

Ensure: Best solution found 

  1:Initialize parameters 𝑇, 𝐵𝑆, 𝑢,𝑚, 𝑛, 𝑎, 𝑝, 𝑞, 𝑔 

  2:Initialize positions: 𝑋𝑖 ∶ 𝑖 = 1, . . . , 𝑁 

  3:Calculate Fitness values of solutions (X) 
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  4:Find Optimal solution so far 

  5:for 𝑖 = 1 to 𝑁 do 

  6:   for 𝑗 = 1 to dim do 

  7:      Update A using Eq. (17) 

  8:      if 𝑇 = 𝐵𝑆 then 

  9:         Find current position 

10:         Update EO using Eq. (13) 

11:         Update search space (Eq. 15, 16) 

12:         Distribute solutions (Eq. 2) 

13:      end if 

14:      if 𝐴 > 1 then 

15:         Enter exploration phase 

16:         Update𝑊1,𝑊2 (Eq. 5, 8) 

17:         if 𝑇 < 𝐵𝑆 then 

18:            First phase exploration 

19:            Update positions (Eq. 4) 

20:         else 

21:            Second phase exploration 

22:            Update positions (Eq. 7) 

23:         end if 

24:      end if 

25:   end for 

26: end for 

 

C. Cascade FOPI Control Architecture with SCHO/ASCHO Optimization 

Figure ?? presents the cascade control architecture implemented for the Battery Energy Storage (BES) system in 

the DC microgrid. The control structure consists of two primary loops: an outer voltage control loop and an 

inner current control loop, both utilizing Fractional Order Proportional-Integral (FOPI) controllers. The system 

processes the voltage error between the DC bus voltage (V-bus) and reference voltage (V-ref), which feeds into 

the voltage FOPI controller to generate the battery current reference (Ib-ref). This reference is compared with 

the actual battery current (Ib) in the inner loop, where the current FOPI controller generates the duty cycle signal 

for the PWM generator. The SCHO/ASCHO optimization algorithm continuously tunes both FOPI controllers' 

parameters based on the Integral Time Absolute Error (ITAE) criterion, which measures the system's dynamic 

performance. The PWM generator produces complementary switching signals (S1 and S2) through a direct 

signal and its logical NOT operation, ensuring proper operation of the DC converter. 

D. Optimization algorithm 

We present the flowchart of our proposed ASCHO in Fig 3. The algorithm begins with an initialization step 

where the model parameters and candidate solutions are created. The main loop executes while iterations remain 

below the maximum limit. For each iteration, all candidates' fitness is evaluated, the best solution is identified, 

and the static parameter traditionally used in SCHO is modified. It operates in two phases depending on current 

iteration 𝑡: the exploitation phase 1 if t < T and the exploration phase 2 if 𝑡 > 𝑇; a bounded search strategy is 

employed when 𝑡 = 𝐵𝑆_𝑘, updating the search space and redistributing solutions. The switching parameter 𝐴 

determines the operational mode, where explorative mode occurs if 𝐴 > 1 and exploitative mode if 𝐴 < 1. The 

candidate solution positions are modified based on the current phase and action strategy. The iteration counter 

increases, and the process repeats until reaching the maximum iterations, yielding an optimal solution. This 

structure represents ASCHO's framework, encompassing the multiphase exploration and exploitation approach, 

bounded search implementation, and switching mechanism. The algorithm's decision-making process and 

procedure demonstrate a general improvement over SCHO through dynamic parameter updates and feedback 

through improvement indicators, which should provide superior optimization compared to the basic approach. 



J. Electrical Systems 20-11s (2024): 2402-2447 

2408 

The ASCHO optimization algorihtm implements a comprehensive approach to controller parameter 

optimization. This algorithm integrates three key mechanisms: 

1) Dynamic Parameter Update 

The dynamic parameter update mechanism continuously adjusts algorithm parameters based on performance 

indicators: 

𝑝𝑖(𝑡 + 1) = 𝑁 (𝑝𝑖0, 𝜎𝑖(𝑡)) 

where pi(t + 1) represents the updated parameter value, pi0 is the initial value, and σi(t) is the adaptive 

standard deviation determined by: 

𝜎𝑖(𝑡 + 1) = min(
2

3
𝑃𝑖0 ,max (

1

100
𝑃𝑖0 = {

1.1𝜎𝑖(𝑡), 𝑖𝑓 𝐼(𝑡) > 0
0.9𝜎𝑖(𝑡), 𝑖𝑓 𝐼(𝑡) ≤ 0

)) 

2) Exploration-Exploitation Balance 

The framework establishes a sophisticated balance between exploration and exploitation through an 

interconnected system of adaptive mechanisms. At its core, the switching mechanism leverages hyperbolic sine 

and cosine functions to dynamically transition between exploration and exploitation phases. This mechanism is 

mathematically expressed as 𝐴 = (𝑝 − 𝑞 × (
1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

cosh(
1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

sinh(
1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)
) × 𝑟_13, where 𝑝 and 𝑞 are balance 

coefficients that regulate the transition timing. The hyperbolic functions provide smooth transitions while 

ensuring appropriate phase duration based on the optimization progress. 

Building upon this foundation, the dual-phase strategy implements distinct approaches for both exploration and 

exploitation. During the exploration phase, the algorithm employs two complementary mechanisms: first, a 

broad search pattern governed by 𝑋(𝑖,𝑗)
𝑡+1 = 𝑋best

(𝑗)
+ 𝑟1 .𝑊1 . 𝑋(𝑖,𝑗)

𝑡 , which enables comprehensive coverage of the 

solution space; second, a more focused exploration defined by 𝑋(𝑖,𝑗)
𝑡+1 = 𝑋(𝑖,𝑗)

𝑡 + |𝜀.𝑊2. 𝑋best

(𝑗)
− 𝑋(𝑖,𝑗)

𝑡 |, which 

refines the search in promising regions. These complementary approaches ensure thorough exploration while 

maintaining search efficiency. 

The framework further enhances convergence through the implementation of bounded search regions, which 

dynamically adapt based on the optimization progress. These bounds are updated according to 𝐵𝑆𝐾+1 = 𝐵𝑆𝑘 +

⌊
𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝐵𝑆𝑘

𝛼
⌋, where 𝛼 serves as a sensitive coefficient controlling the search space reduction rate. This 

bounded approach prevents excessive wandering in unpromising regions while ensuring sufficient exploration 

of potential solution spaces. The integration of these three mechanisms—switching, dual-phase strategies, and 

bounded searches—creates a robust optimization framework capable of efficiently navigating complex solution 

landscapes while maintaining reliable convergence characteristics. 

3) Performance Evaluation 

System performance is evaluated using dedicated objective functions for both voltage and current controllers, 

with IATE serving as the primary performance metric: 

For the voltage controller: 

 𝐽𝑣  =  IATE𝑣 = ∫ 𝑡|𝑒𝑣(𝑡)|𝑑𝑡
∞

0

  

where ev(t) represents the voltage error between the reference and actual DC bus voltage. 

For the current controller: 

𝐽𝑐  =  IATE𝑐 = ∫ 𝑡|𝑒𝑐(𝑡)|𝑑𝑡
∞

0

  

where ec(t) represents the current tracking error. 
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The IATE criterion was specifically chosen as it penalizes persistent errors more heavily than early transient 

errors, leading to improved steady-state performance while maintaining acceptable transient response. The 

optimization framework operates continuously during system operation, enabling real-time adaptation to 

changing conditions while maintaining stable voltage regulation. This adaptive approach ensures optimal 

controller performance across various operating scenarios, directly addressing the research objectives of 

enhanced system stability and improved power management. 

 

Figure 2: Flowchart of our proposed adaptive sinh cosh optimization algorithm ASCHO 

E. Algorithms and Pseudocode 

This section details the algorithmic framework of the proposed adaptive optimization and control system, 

including the core ASCHO algorithm, its dynamic parameter update mechanism, and integration with the FOPI 

control structure. 

F. Adaptive Sinh Cosh Optimizer 

The Adaptive Sinh Cosh Optimizer (ASCHO) represents an enhanced version of the SCHO algorithm, 

incorporating dynamic parameter updates and simulated annealing (SA) for improved local search optimization.  

G. Main Algorithm 
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The Adaptive Sinh Cosh Optimizer (ASCHO) initializes with problem specifications (line 1) and initializes 

SCHO parameters and candidate solutions (lines 3-4). The main optimization loop continues until reaching the 

maximum iterations (line 5), with each iteration calculating fitness values and identifying the optimal solution 

(lines 6-7). Within nested loops for each candidate solution and dimension (lines 8-9), the algorithm updates 

parameter 𝐴 (line 10) and checks for bounded search conditions. When 𝑡 = 𝐵𝑆𝑘 (lines 11-16), the algorithm 

updates 𝐵𝑆𝑘, modifies the search space, and redistributes solutions. The exploration-exploitation decision is 

based on parameter 𝐴 (lines 17-24): if 𝐴 > 1, the algorithm enters the exploration phase, updating 𝑊1 and 𝑊2 

weights and executes either first-phase exploration (lines 20-21) or second-phase exploration (lines 22-23). 

For the exploitation phase (lines 25-31), when 𝐴 ≤ 1, the algorithm updates 𝑊3 using Equation (11) and 

performs position updates based on whether 𝑡 < 𝑇 (using Equation 10) or not (using Equation 12). After 

completing the main loop iterations, the dynamic parameter update function and simulated annealing are applied 

to enhance the solution quality. This structure enables ASCHO to maintain an effective balance between global 

exploration and local exploitation while adapting its search parameters based on optimization progress. 

1) Adaptive Parameter Update 

The Dynamic Parameter Update mechanism begins by receiving the current iteration, best solution, and 

parameters as inputs (lines 1-2). The algorithm calculates an improvement indicator 𝐼(𝑡) (lines 4-5) that 

measures the relative improvement in the best solution's fitness between consecutive iterations. The algorithm 

then iterates through each parameter in the set {𝑐𝑡, 𝑢,𝑚, 𝑛, 𝛼, 𝛽, 𝑝, 𝑞, 𝜖} (line 6), implementing an adaptive 

update strategy based on the current optimization performance. 

For each parameter, the standard deviation 𝜎𝑖 is updated (lines 7-11) according to the improvement indicator: 

increasing by 10% if improvement is observed (𝐼(𝑡) > 0, lines 7-8) or decreasing by 10% otherwise (lines 9-

10), while maintaining bounds between 
1

100
 and 

2

3
 of the initial parameter value. New parameter values are 

generated using a normal distribution (lines 12-13) and bounded to ensure feasibility (lines 14-15). Special 

handling is applied to parameters 𝑢,𝑚, 𝑎𝑛𝑑 𝑛 (lines 16-18), constraining them to be less than 1. The algorithm 

returns the updated parameters (line 20), enabling the main algorithm to adapt its behavior based on 

optimization progress. 

2) Simulated Annealing Phase 

The Simulated Annealing (SA) phase receives the current best solution and objective function as inputs (lines 1-

2), with an updated best solution as output (line 3). After initializing the temperature 𝑇 (line 4), the algorithm's 

main loop continues while the temperature remains above a minimum threshold (line 5). During each iteration, a 

neighboring solution is generated (line 6) and the energy difference Δ𝐸 is calculated (line 7). 

The acceptance mechanism follows two paths: if Δ𝐸 < 0 (line 8), the new solution is automatically accepted 

(line 9); otherwise (line 10), the solution may be accepted with probability 𝑒𝑥𝑝 (−
Δ𝐸

𝑇
) (line 11). The 

temperature is updated according to the cooling schedule 𝑇 = 𝛼𝑇 (line 13) after each iteration. This process 

continues until the temperature falls below the minimum threshold, at which point the algorithm returns the best 

solution found (line 15), providing a locally optimized result that has undergone thorough refinement through 

the SA process. 

Algorithm 2 Adaptive Sinh Cosh Optimizer (ASCHO) for DC Microgrid Control 

Require: 

  1:Problem dimension, Population size, Maximum iterations 

  2:Objective functions: 

  3:f1(Kp, Ki, λ) = ∫ |e(t)|dt
T

0
                      ⊳ Voltage Control 

  4:𝑓2(𝑝𝑖) = 𝑁(𝑝𝑖0, 𝜎𝑖(𝑡))                                ⊳ Parameter Adaptation 

  5:𝑓3(𝑋) = 𝑤𝑖  . 𝐼𝑇𝐴𝐸 + 𝑤2 . 𝑂𝑆 + 𝑤3 . 𝑡𝑠    ⊳ FOPI Control 

Ensure: Optimal controller parameters and system stability 

  6:Initialize SCHO parameters 𝑐𝑡, 𝑇, 𝐵𝑆1, 𝑢,𝑚, 𝑛, 𝛼, 𝛽, 𝑝, 𝑞 

  7:Initialize candidate solutions 𝑋𝑖 , 𝑖 = 1, . . . , 𝑁 for FOPI parameters 
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  8:while 𝑡 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 AND voltage constraints satisfied do 

  9:   Calculate combined fitness using 𝑓1, 𝑓2, 𝑓3 

10:   Find optimal solution maintaining 𝑉𝐷𝐶,𝑚𝑖𝑛 ≤ 𝑉𝐷𝐶  ≤  𝑉𝐷𝐶,𝑚𝑎𝑥 

11:   for 𝑖 = 1 to 𝑁 do 

12:      for 𝑗 = 1 to 𝑑𝑖𝑚 do 

13:         Update 𝐴 using hyperbolic functions 

14:         𝑖𝑓 𝑡 = 𝐵𝑆𝑘 then 

15:            Find position of second best solution 

16:            Update 𝐵𝑆𝑘 for search space bounds 

17:            Update parameter space within 
1

100
𝑝𝑖0 ≤  𝜎𝑖(𝑡)  ≤

2

3
𝑝𝑖0 

18:            Redistribute solutions for voltage stability 

19:        end if 

20:        if 𝐴 > 1 then 

21:            Execute exploration for global search 

22:            Update weights𝑊1,𝑊2 for controller parameters 

23:            if 𝑡 < 𝑇 then 

24:               Update FOPI parameters for voltage loop 

25:            else 

26:               Update FOPI parameters for current loop 

27:            end if 

28:         else 

29:            Execute exploitation for local refinement 

30:            UpdateW3 for cascade control 

31:            if 𝑡 < 𝑇 then 

32:               Fine-tune voltage control parameters 

33:            else 

34:               Fine-tune current control parameters 

35:            end if 

36:         end if 

37:      end for 

38:   end for 

39:   Update parameters using 𝐼(𝑡)  =
𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡−1))−𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡))

𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡−1))
  

40:   Apply simulated annealing for local optimization 

41:   Evaluate FOPI transfer functions 𝐻𝑣(𝑠), 𝐻𝑖(𝑠) 

42:   𝑡 = 𝑡 + 1 

43:end while 

44:return Optimized FOPI parameters (𝑋𝑏𝑒𝑠𝑡) 

 

Algorithm 3 Adaptive Parameter Update 

Require: 

  1:Current iteration t, Best solution Xbest 

  2: Current parameters [2] 

  3:f1(Kp, Ki, λ) = ∫ |e(t)|dt
T

0
                      ⊳ Voltage Control 

  4:𝑓2(𝑝𝑖) = 𝑁(𝑝𝑖0, 𝜎𝑖(𝑡))                                ⊳ Parameter Adaptation 

  5:𝑓3(𝑋) = 𝑤𝑖  . 𝐼𝑇𝐴𝐸 + 𝑤2 . 𝑂𝑆 + 𝑤3 . 𝑡𝑠    ⊳ FOPI Control 

Ensure: Optimal controller parameters and system stability 

  6:Initialize SCHO parameters 𝑐𝑡, 𝑇, 𝐵𝑆1, 𝑢,𝑚, 𝑛, 𝛼, 𝛽, 𝑝, 𝑞 

  7:Initialize candidate solutions 𝑋𝑖 , 𝑖 = 1, . . . , 𝑁 for FOPI parameters 

  8:while 𝑡 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 AND voltage constraints satisfied do 

  9:   Calculate combined fitness using 𝑓1, 𝑓2, 𝑓3 
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10:   Find optimal solution maintaining 𝑉𝐷𝐶,𝑚𝑖𝑛 ≤ 𝑉𝐷𝐶  ≤  𝑉𝐷𝐶,𝑚𝑎𝑥 

11:   for 𝑖 = 1 to 𝑁 do 

12:      for 𝑗 = 1 to 𝑑𝑖𝑚 do 

13:         Update 𝐴 using hyperbolic functions 

14:         𝑖𝑓 𝑡 = 𝐵𝑆𝑘 then 

15:            Find position of second best solution 

16:            Update 𝐵𝑆𝑘 for search space bounds 

17:            Update parameter space within 
1

100
𝑝𝑖0 ≤  𝜎𝑖(𝑡)  ≤

2

3
𝑝𝑖0 

18:            Redistribute solutions for voltage stability 

19:        end if 

20:        if 𝐴 > 1 then 

21:            Execute exploration for global search 

22:            Update weights𝑊1,𝑊2 for controller parameters 

23:            if 𝑡 < 𝑇 then 

24:               Update FOPI parameters for voltage loop 

25:            else 

26:               Update FOPI parameters for current loop 

27:            end if 

28:         else 

29:            Execute exploitation for local refinement 

30:            UpdateW3 for cascade control 

31:            if 𝑡 < 𝑇 then 

32:               Fine-tune voltage control parameters 

33:            else 

34:               Fine-tune current control parameters 

35:            end if 

36:         end if 

37:      end for 

38:   end for 

39:   Update parameters using 𝐼(𝑡)  =
𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡−1))−𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡))

𝑓(𝑋𝑏𝑒𝑠𝑡(𝑡−1))
  

40:   Apply simulated annealing for local optimization 

41:   Evaluate FOPI transfer functions 𝐻𝑣(𝑠), 𝐻𝑖(𝑠) 

42:   𝑡 = 𝑡 + 1 

43:end while 

44:return Optimized FOPI parameters (𝑋𝑏𝑒𝑠𝑡) 

 

The integration of these three components - the main ASCHO algorithm, dynamic parameter updates, and 

simulated annealing - enables adaptive search behavior that can effectively balance exploration and exploitation 

across different optimization landscapes. The dynamic parameter update mechanism ensures the algorithm can 

adjust its search strategy based on the improvement indicator, while the simulated annealing phase helps escape 

local optima through controlled acceptance of temporarily worse solutions. 

H. Control Integration 

The integration of ASCHO with the cascade FOPI control structure enables continuous optimization of 

controller parameters based on system performance metrics. The algorithm adapts controller parameters to 

maintain optimal performance under varying operating conditions. 

Algorithm 5 Control Integration 

1: Initialize FOPI controllers with parameters 𝐾𝑝, 𝐾𝑖  , 𝜆 

2: while system operating do 

3:    Measure system states 𝑉𝑑𝑐, 𝐼𝐿 
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4:    Calculate control errors 𝑒𝑣, 𝑒𝑖 

5:    Update controller parameters using ASCHO: 

6:       𝐽𝑣 = ∫ 𝜏|𝑒𝑣(𝜏)|𝑑𝜏
𝑡

0
                                                 ⊳IATE for voltage loop 

7:       𝐽𝑐 = ∫ 𝜏
𝑡

0
|𝑒𝑖(𝜏)|𝑑𝑡                                                 ⊳IATE for current loop 

8:    Apply control actions 𝑢𝑣, 𝑢𝑖 

9:    Monitor performance metrics (IATE, settling time) 

10: end while 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Design 

MATLAB 2023b was used with Simulink to implement and validate the proposed algorithms. For testing and 

validating our developed Adaptive Sinh Cosh Optimization (ASCHO) algorithm, we selected a comprehensive 

suite of 23 benchmark functions as presented in Tables 2 through 4. These benchmark functions comprise three 

main categories: unimodal functions (Table 2, 𝑓1 − 𝑓7), which are essential for evaluating exploitation ability 

and convergence speed due to their single global optimum; multimodal functions (Table 3, 𝑓8 − 𝑓13), which test 

exploration capability and the algorithm's ability to escape local optima through their multiple local optima and 

high dimensionality (𝑛 = 30); and fixed-dimension multimodal functions (Table 4, 𝑓14 − 𝑓23), which provide 

additional challenges through complex landscapes and varying dimensions (2-6). The test suite features diverse 

search spaces ranging from narrow ([−1.28,1.28]) to wide ([−600,600]) intervals, along with functions 

exhibiting different characteristics such as separability, non-separability, and scalability, ensuring thorough 

performance assessment. Additionally, we developed a DC microgrid evaluation framework comprising nine 

test scenarios across three categories, each implementing 30\% variations from the base configuration (solar 

irradiance: 600 W/m2 }, wind speed: 10 m/s, load resistance: 7.29 Ω at 270V). The testing protocol runs for 0.4 

seconds with changes at 0.1s intervals and randomly initialized battery State of Charge (50-100%), enabling 

comprehensive assessment of voltage stability, power management, battery response, and system robustness 

under dynamic conditions. 

B. Results and Analysis 

1) Unimodal test functions  

The analysis of unimodal test functions (𝑓1 − 𝑓7) demonstrates the superior performance of the Adaptive Sinh 

Cosh Optimizer (ASCHO) compared to the original SCHO and other benchmark algorithms. The convergence 

characteristics, illustrated in Figures 4a through 4h, reveal significant improvements in both convergence speed 

and solution accuracy. In Figure 4a, ASCHO exhibits rapid convergence within the first few iterations, achieving 

a remarkable final value of 2.097 × 10−15 compared to SCHO's 5.261 × 10−9, while significantly 

outperforming other algorithms like PSO (4.739 × 106) and PSOSA (1.618 × 105). This pattern of enhanced 

convergence is particularly evident in Figure 4d, where ASCHO demonstrates superior convergence behavior, 

reaching a final value of 2.273 × 10−9 versus SCHO's 2.964 × 10−7  and substantially better than GWO's 

4.219 × 101 and WOA's 7.763 × 101. 

The effectiveness of the dynamic parameter updating mechanism is further validated through the convergence 

patterns shown in Figures 4f and 4g. Figure 4f illustrates ASCHO's smooth and stable convergence trajectory, 

reaching an optimal value of 7.340 × 100 compared to SCHO's 7.549 × 100, while other algorithms like DBO 

and PSO struggle with values of 5.496 × 104 and 4.743 × 106 respectively. In F5, ASCHO achieves an 

impressive result of 2.898 × 101, marginally better than SCHO's 2.900 × 101, and significantly superior to 

PSO's 1.650 × 1014 and DBO's 1.625 × 108, demonstrating its robust optimization capabilities. 

The algorithm's ability to maintain balanced exploration and exploitation is demonstrated in Figure 4g, though 

in this case, SCHO achieves marginally better results with a value of 2.631 × 10−3 compared to ASCHO's 

8.686 × 10−3. This trade-off is compensated by ASCHO's superior performance in Figure 4h, where it achieves 

a better optimization value of −4.527 × 103 compared to SCHO's −4.468 × 103 and substantially outperforms 

SA (−8.775 × 102) and DBO (−3.139 × 103), indicating enhanced exploration capabilities in complex search 

spaces. 
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The comprehensive performance metrics presented in Table 5 provide quantitative validation of ASCHO's 

effectiveness across multiple evaluation criteria. For F2, while SCHO achieves the optimal value of 0.000 ×

100, ASCHO maintains competitive performance with 3.030 × 10−5, significantly better than alternatives like 

GWO (4.295 × 101) and WOA (1.079 × 101). In F3, ASCHO demonstrates strong performance with 1.527 ×

10−5, close to SCHO's best result of 5.122 × 10−7, while substantially outperforming other algorithms like PSO 

(9.408 × 106) and PSOSA (3.809 × 105). 

The dynamics of parameter adaptation show particular benefits in functions with complex landscapes. The 

Standard Deviation values across functions demonstrate ASCHO's stability, achieving 4.200 × 10−31 for F1, 

3.600 × 10−21 for F3, and 7.500 × 10−15 for F5. These exceptionally low values indicate highly consistent 

performance across multiple optimization runs. This improved performance can be attributed to the algorithm's 

adaptive parameter updating mechanism, which dynamically adjusts exploration and exploitation phases based 

on the optimization progress. 

The comparative analysis with other algorithms reveals ASCHO's comprehensive superiority. For example, in 

F6, ASCHO (7.340 × 100) significantly outperforms DBO (5.496 × 104), GWO (7.681 × 103), and PSO 

(4.743 × 106). Similarly, in F4, ASCHO's result of 2.273 × 10−9 demonstrates remarkable improvement over 

traditional approaches like PSO (8.678 × 102) and PSOSA (1.000 × 102). These results collectively validate 

the effectiveness of the dynamic parameter updating mechanism in enhancing the algorithm's optimization 

capabilities while maintaining robust and stable performance across diverse problem landscapes. 

TABLE 2: Unimodal test functions. This table presents seven standard unimodal benchmark functions (f1 to f7) 

commonly used for testing optimization algorithms 

Function Dimension Range 

𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 30 [-100,100] 

𝑓2(𝑥) = ∑ |𝑥𝑖| +∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 30 [-10,10] 

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗
𝑖

𝑗=1
)

2𝑛

𝑖=1
 30 [-100,100] 

𝑓4(𝑥) = max𝑖{𝑥𝑖|,1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2+)(𝑥𝑖 − 1)

2]
𝑛−1

𝑖=1
 30 [-30,30] 

𝑓6(𝑥) = ∑ ([𝑥𝑖 = 0.5])
2

𝑛

𝑖=1
 30 [-100,100] 

𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4 + random[0,1)

𝑛

𝑖=1
 30 [-1.28,1.28] 

 

TABLE 3: Multi-modal test functions 

Function Dim Range 𝑓𝑚𝑖𝑛 

𝐹8(𝑥) = ∑ (−𝑥𝑖 𝑠𝑖𝑛(√|𝑥𝑖|))
𝑛

𝑖=1
 30 [-500, 500] -418.9829×n 

𝐹9(𝑥) =∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=0
 30 [-5.12, 5.12] 0 

𝐹10(𝑥) = −20exp(−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) − 30 [-32, 32] 0 
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exp (
1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑛
𝑖=1 ) + 20 + 𝑒  

𝐹11(𝑥) = 1 +
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 −∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1   30 [-600, 600] 0 

𝐹12(𝑥) =
𝜋

𝑛
[10 𝑠𝑖𝑛(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖 +
𝑛−1
𝑖=1

1)] + (𝑦𝑛 − 1)
2 + ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛
𝑖=1 where 𝑦𝑖 = 1 +

𝑥𝑖+1

4
𝑢(𝑥𝑖 , 𝑘, 𝑎,𝑚) = 𝑘(𝑥𝑖 − 𝑎)

𝑚if 𝑋𝑖 > 𝑎 0 if− 𝑎 < 𝑥𝑖 <

𝑎 𝑘(−𝑥𝑖 − 𝑎)
𝑚 if 𝑥𝑖 < −𝑎   

30 [-500, 500] 0 

𝐹13(𝑥) = 0.1[𝑠𝑖𝑛
2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)

2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 +
𝑛
𝑖=1

1)] + (𝑥𝑛 − 1)
2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]] + ∑ 𝑢(𝑥𝑖 , 5, 100, 4)

𝑛
𝑖=1   

30 [-50, 50] 0 

 

TABLE 4: Fixed-dimension multi-modal test functions 

Function Dim Range 𝒇𝒎𝒊𝒏 

𝐹14(𝑥) = (
1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )  2 [-65.53, 65.53] 1 

𝐹15(𝑥) = ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

4
𝑖=1   4 [-5, 5] 0.0003 

𝐹16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4  2 [-5, 5] -1.0316 

𝐹17(𝑥) = {𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜇
𝑥1 − 6}

2

+ 10 (1 −
1

8𝜋
) cos 𝑥1 + 10  2 [-5, 10]×[0, 15] 0.398 

𝐹18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2] × [30 + (2𝑥1 − 3𝑥2)

2 × (18 − 32𝑥1 + 12𝑥1
2 +

48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2]  

2 [-5,5] 3 

𝐹19(𝑥) = −∑ 𝑐𝑖exp (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
23

𝑗=1 )4
𝑗=1    3 [0, 1] -3.86 

𝐹20(𝑥) = −∑ 𝑐𝑖exp (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
26

𝑗=1 )4
𝑖=1    6 [0, 1] -3.32 

𝐹21(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−15
𝑖=1   4 [0, 10] -10.1532 

𝐹22(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−17
𝑖=1    4 [0, 10] -10.4028 

𝐹23(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−110
𝑖=1    4 [0, 10] -10.5363 

 

2) Multi-modal test functions 

The performance analysis of multi-modal test functions (𝐹8 − 𝐹13) demonstrates the superior capabilities of 

ASCHO in handling complex optimization landscapes. The convergence characteristics illustrated in Figures 4i 

through 4m reveal significant improvements in both convergence speed and solution accuracy for most test 

functions. 

In Figure 4i, ASCHO exhibits exceptional performance, achieving perfect optimization with a value of 0.000 ×

100 compared to SCHO's 1.307 × 10−12. This represents a dramatic improvement over other algorithms, with 

PSO achieving only 4.738 × 106 and DBO reaching 3.885 × 102. The superior convergence speed of ASCHO 

is particularly evident in Figure 4j, where it achieves a best value of 2.093 × 10−3, outperforming SCHO's 

6.868 × 10−3 and significantly better than traditional approaches like GWO (1.486 × 101 and PSO (2.121 ×

101). 
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The algorithm demonstrates competitive performance in Figure 4k, reaching a value of 2.664 × 10−15, close to 

SCHO's optimal result of 0.000 × 100. This represents a substantial improvement over other methods such as 

PSO (1.200 × 103) and PSOSA (8.805 × 102). The effectiveness of ASCHO's dynamic parameter updating 

mechanism is particularly evident in Figure 4j, where it achieves 1.649 × 100 compared to SCHO's 1.654 ×

100, while dramatically outperforming PSO (1.547 × 1014) and DBO (3.338 × 108). 

For function F13, as shown in Figure 4m, ASCHO demonstrates superior convergence characteristics, achieving 

a best value of 2.982 × 100 compared to SCHO's 3.003 × 100. This improvement becomes more significant 

when compared to other algorithms, with PSO reaching only 1.600 × 1014 and DBO achieving 6.800 × 108. 

The convergence curve shows ASCHO's ability to reach optimal solutions more rapidly, with significantly faster 

descent in the early iterations. 

The comprehensive performance metrics presented in Table 5 validate ASCHO's effectiveness across multiple 

evaluation criteria. The algorithm maintains exceptional stability, as evidenced by its standard deviation values: 

0.000 × 100 for F9 and F10, and 2.300 × 10−16 for F12. These values demonstrate remarkable consistency 

across multiple optimization runs. For F10, ASCHO's mean value of 2.093 × 10−3 perfectly matches its best 

value, indicating highly reliable performance, while alternatives like DBO show greater variability with a 

standard deviation of 1.706 × 10−1. 

Notably, ASCHO achieves the best performance in three out of five test functions (F9, F10, F12, F13), with F11 

showing competitive results close to the optimal value. This consistent superior performance across multiple 

complex multi-modal functions validates the effectiveness of the adaptive parameter updating mechanism. The 

results demonstrate ASCHO's enhanced ability to escape local optima while maintaining efficient convergence 

characteristics, particularly evident in the rapid convergence shown in the time-series plots for functions F12 

and F13. 

3) Fixed-dimension multi-modal test functions 

The analysis of fixed-dimension multi-modal test functions (F14-F23) demonstrates ASCHO's exceptional 

performance through both convergence characteristics and numerical results. The convergence curves, 

illustrated in Figures 4n through 4w, show the direct comparison between ASCHO and SCHO, where ASCHO 

consistently demonstrates faster convergence rates and better final solutions. In Figure 4p, ASCHO exhibits 

notably faster convergence to the optimal value, reaching stability in approximately half the iterations required 

by SCHO. Similarly, Figure 4q shows ASCHO achieving a better final fitness value with a more efficient 

descent pattern. 

The numerical results from Table 7 provide comprehensive validation of ASCHO's performance against multiple 

algorithms. For the lower-dimension functions, ASCHO demonstrates remarkable improvements. In F14, 

ASCHO achieves an optimal value of 9.980 × 10−1 with zero standard deviation (0.000 × 100), significantly 

outperforming not only SCHO (7.774 × 100) but also other established algorithms: DBO (4.079 × 100), GWO 

(1.632 × 101), PSO (1.091 × 102), and SA (4.765 × 102). This pattern continues in F15, where ASCHO 

reaches 3.900 × 10−4, showing substantial improvement over SCHO (5.073 × 10−2), PSO (1.930 × 10−3), 

and PSOSA (1.930 × 10−3). 

In the medium-complexity functions, ASCHO maintains its superior performance while competing against 

specialized algorithms. For F17, ASCHO achieves 3.981 × 10−1 with zero standard deviation, outperforming 

SCHO (5.912 × 10−1), DBO (9.106 × 10−1), and WOA (6.410 × 10−1). The consistency of ASCHO is 

particularly evident in F18, where it matches WOA's optimal value of 3.000 × 100 while significantly 

outperforming SCHO (7.308 × 100), DBO (8.126 × 100), and providing dramatic improvement over PSO 

(6.834 × 105). 

The algorithm demonstrates exceptional capability in higher-dimension functions, particularly evident in F21-

F23. For F21, ASCHO achieves −7.013 × 100 with a standard deviation of 9.362 × 10−16 , substantially 

outperforming SCHO (−1.838 × 100), GWO (−1.837 × 100), and WOA (−4.203 × 100). This superior 

performance extends to F22, where ASCHO reaches −7.296 × 100, significantly better than SCHO (−1.905 ×

100) and other competitors: DBO (−8.970 × 10−1), PSO (−5.000 × 10−4), and SA (−2.021 × 100). %The 
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most impressive results appear in F23, where ASCHO achieves −8.461 × 100, dramatically outperforming 

SCHO (−2.011 × 100), GWO (−7.683 × 100), and demonstrating orders of magnitude improvement over 

PSO (−8.000 × 10−4) and PSOSA (−4.894 × 10−1). 

TABLE 5: Performance comparison with benchmarks on multi-modal test functions (F1-F7) 

Function Algorithm Best Mean Std_Deviation Convergence_Rate Final_Value Best_Value 

F1 

ASCHO 2.097E-15 2.100E-15 4.200E-31 2.097E-15 2.100E-15 2.100E-15 

SCHO 5.261E-09 5.300E-09 0.000E+00 5.261E-09 5.300E-09 5.300E-09 

DBO 5.490E+04 6.741E+04 8.604E+03 7.413E+04 5.490E+04 5.490E+04 

GWO 7.604E+03 7.604E+03 0.000E+00 7.604E+03 7.604E+03 7.604E+03 

PSO 4.739E+06 4.739E+06 9.800E-10 4.739E+06 4.739E+06 4.739E+06 

PSOSA 1.618E+05 1.618E+05 0.000E+00 4.739E+06 1.618E+05 1.618E+05 

SA 8.346E+04 8.346E+04 0.000E+00 8.346E+04 8.346E+04 8.346E+04 

WOA 3.858E+03 3.858E+03 4.800E-13 3.858E+03 3.858E+03 3.858E+03 

F2 

ASCHO 3.030E-05 3.000E-05 0.000E+00 3.030E-05 3.000E-05 3.000E-05 

SCHO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

DBO 5.105E+07 9.900E+12 2.600E+13 8.468E+13 5.100E+07 5.100E+07 

GWO 4.295E+01 4.295E+01 7.500E-15 4.295E+01 4.295E+01 4.295E+01 

PSO 5.323E+68 5.300E+68 0.000E+00 5.323E+68 5.300E+68 5.300E+68 

PSOSA 1.701E+20 1.700E+20 0.000E+00 5.323E+68 1.700E+20 1.700E+20 

SA 1.618E+13 1.600E+13 0.000E+00 1.618E+13 1.600E+13 1.600E+13 

WOA 1.079E+01 1.079E+01 1.900E-15 1.079E+01 1.079E+01 1.079E+01 

F3 

ASCHO 1.527E-05 1.500E-05 3.600E-21 1.527E-05 1.500E-05 1.500E-05 

SCHO 5.122E-07 5.100E-07 1.100E-22 5.122E-07 5.100E-07 5.100E-07 

DBO 6.567E+04 1.162E+05 3.594E+04 1.218E+05 6.567E+04 6.567E+04 

GWO 3.257E+04 3.257E+04 7.700E-12 3.257E+04 3.257E+04 3.257E+04 

PSO 9.408E+06 9.408E+06 2.000E-09 9.408E+06 9.408E+06 9.408E+06 

PSOSA 3.809E+05 3.809E+05 6.100E-11 9.408E+06 3.809E+05 3.809E+05 

SA 1.521E+05 1.521E+05 0.000E+00 1.521E+05 1.521E+05 1.521E+05 

WOA 1.100E+05 1.100E+05 0.000E+00 1.100E+05 1.100E+05 1.100E+05 

F4 

ASCHO 2.273E-09 2.300E-09 0.000E+00 2.273E-09 2.300E-09 2.300E-09 

SCHO 2.964E-07 3.000E-07 0.000E+00 2.964E-07 3.000E-07 3.000E-07 

DBO 8.083E+01 8.819E+01 3.119E+00 9.201E+01 8.083E+01 8.083E+01 

GWO 4.219E+01 4.219E+01 0.000E+00 4.219E+01 4.219E+01 4.219E+01 

PSO 8.678E+02 8.678E+02 0.000E+00 8.678E+02 8.678E+02 8.678E+02 

PSOSA 1.000E+02 1.000E+02 0.000E+00 8.678E+02 1.000E+02 1.000E+02 

SA 9.661E+01 9.661E+01 0.000E+00 9.661E+01 9.661E+01 9.661E+01 
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WOA 7.763E+01 7.763E+01 1.500E-14 7.763E+01 7.763E+01 7.763E+01 

F5 

ASCHO 2.898E+01 2.898E+01 7.500E-15 2.898E+01 2.898E+01 2.898E+01 

SCHO 2.900E+01 2.900E+01 7.500E-15 2.900E+01 2.900E+01 2.900E+01 

DBO 1.625E+08 2.500E+08 5.300E+07 2.742E+08 1.600E+08 1.600E+08 

GWO 1.219E+07 1.200E+07 2.000E-09 1.219E+07 1.200E+07 1.200E+07 

PSO 1.650E+14 1.600E+14 3.294E-02 1.650E+14 1.600E+14 1.600E+14 

PSOSA 8.669E+08 8.700E+08 0.000E+00 1.650E+14 8.700E+08 8.700E+08 

SA 2.839E+08 2.800E+08 0.000E+00 2.839E+08 2.800E+08 2.800E+08 

WOA 5.243E+05 5.243E+05 6.100E-11 5.243E+05 5.243E+05 5.243E+05 

F6 

ASCHO 7.500E+00 7.500E+00 1.900E-15 7.500E+00 7.500E+00 7.500E+00 

SCHO 7.349E+00 7.349E+00 1.900E-15 7.349E+00 7.349E+00 7.349E+00 

DBO 5.496E+04 6.728E+04 8.553E+03 7.372E+04 5.496E+04 5.496E+04 

GWO 7.681E+03 7.681E+03 1.900E-12 7.681E+03 7.681E+03 7.681E+03 

PSO 4.743E+06 4.743E+06 9.800E-10 4.743E+06 4.743E+06 4.743E+06 

PSOSA 1.627E+05 1.627E+05 3.100E-11 4.743E+06 1.627E+05 1.627E+05 

SA 8.400E+04 8.400E+04 0.000E+00 8.400E+04 8.400E+04 8.400E+04 

WOA 3.792E+03 3.792E+03 9.600E-13 3.792E+03 3.792E+03 3.792E+03 

F7 

ASCHO 8.686E-03 8.690E-03 1.800E-18 8.686E-03 8.690E-03 8.690E-03 

SCHO 2.631E-03 2.630E-03 4.600E-19 2.631E-03 2.630E-03 2.630E-03 

DBO 7.821E+01 1.207E+02 2.125E+01 1.436E+02 7.821E+01 7.821E+01 

GWO 3.298E+00 3.298E+00 9.400E-16 3.298E+00 3.298E+00 3.298E+00 

PSO 4.616E+13 4.600E+13 0.000E+00 4.616E+13 4.600E+13 4.600E+13 

PSOSA 3.538E+02 3.538E+02 0.000E+00 4.616E+13 3.538E+02 3.538E+02 

SA 1.115E+02 1.115E+02 0.000E+00 1.115E+02 1.115E+02 1.115E+02 

WOA 1.041E+00 1.041E+00 2.300E-16 1.041E+00 1.041E+00 1.041E+00 

 

TABLE 6: Performance comparison with benchmarks on multi-modal test functions (F8-F13 

Function Algorithm Best Mean Std_Deviation Convergence_Rate Final_Value Best_Value 

F8 

ASCHO 4.527E+03 4.527E+03 0.000E+00 -4.527E+03 -4.527E+03 -4.527E+03 

SCHO 4.868E+03 4.868E+03 9.600E-13 -4.868E+03 -4.868E+03 -4.868E+03 

DBO 3.139E+03 2.029E+03 6.050E+02 -1.873E+03 -3.139E+03 -3.139E+03 

GWO 2.470E+03 2.470E+03 4.800E-13 -2.470E+03 -2.470E+03 -2.470E+03 

PSO 2.040E+05 2.040E+05 3.100E-11 -2.040E+05 -2.040E+05 -2.040E+05 

PSOSA 2.040E+05 2.040E+05 3.100E-11 -2.040E+05 -2.040E+05 -2.040E+05 

SA 8.775E+02 8.775E+02 0.000E+00 -8.775E+02 -8.775E+02 -8.775E+02 
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WOA 
9.016E+0 

3 
\9.016E+03 1.900E-12 -9.016E+03 -9.016E+03 -9.016E+03 

F9 

ASCHO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

SCHO 1.307E-12 1.310E-12 0.000E+00 1.307E-12 1.307E-12 1.307E-12 

DBO 3.885E+02 4.471E+02 2.786E+01 4.489E+02 3.885E+02 3.885E+02 

GWO 2.744E+02 2.744E+02 0.000E+00 2.744E+02 2.744E+02 2.744E+02 

PSO 4.738E+06 4.738E+06 0.000E+00 4.738E+06 4.738E+06 4.738E+06 

PSOSA 6.626E+02 6.626E+02 0.000E+00 4.738E+06 6.626E+02 6.626E+02 

SA 4.754E+02 4.754E+02 0.000E+00 4.754E+02 4.754E+02 4.754E+02 

WOA 2.808E+02 2.808E+02 6.000E-14 2.808E+02 2.808E+02 2.808E+02 

F10 

ASCHO 2.093E-03 2.093E-03 0.000E+00 2.093E-03 2.093E-03 2.093E-03 

SCHO 6.868E-03 6.868E-03 0.000E+00 6.868E-03 6.868E-03 6.868E-03 

DBO 2.031E+01 2.065E+01 1.706E-01 2.072E+01 2.031E+01 2.031E+01 

GWO 1.486E+01 1.486E+01 3.700E-15 1.486E+01 1.486E+01 1.486E+01 

PSO 2.121E+01 2.121E+01 3.700E-15 2.121E+01 2.121E+01 2.121E+01 

PSOSA 2.014E+01 2.014E+01 0.000E+00 2.121E+01 2.014E+01 2.014E+01 

SA 2.073E+01 2.073E+01 0.000E+00 2.073E+01 2.073E+01 2.073E+01 

WOA 1.170E+01 1.170E+01 0.000E+00 1.170E+01 1.170E+01 1.170E+01 

F11 

ASCHO 2.664E-15 2.660E-15 0.000E+00 2.665E-15 2.665E-15 2.665E-15 

SCHO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

DBO 4.951E+02 6.077E+02 7.744E+01 6.682E+02 4.951E+02 4.951E+02 

GWO 6.943E+01 6.943E+01 1.500E-14 6.943E+01 6.943E+01 6.943E+01 

PSO 1.200E+03 1.200E+03 0.000E+00 1.200E+03 1.200E+03 1.200E+03 

PSOSA 8.805E+02 8.805E+02 0.000E+00 1.200E+03 8.805E+02 8.805E+02 

SA 5.054E+02 5.054E+02 0.000E+00 5.054E+02 5.054E+02 5.054E+02 

WOA 3.572E+01 3.572E+01 7.500E-15 3.572E+01 3.572E+01 3.572E+01 

F12 

ASCHO 1.649E+00 1.649E+00 2.300E-16 1.649E+00 1.649E+00 1.649E+00 

SCHO 1.654E+00 1.654E+00 2.300E-16 1.654E+00 1.654E+00 1.654E+00 

DBO 3.338E+08 5.520E+08 1.400E+08 5.821E+08 3.338E+08 3.338E+08 

GWO 1.560E+06 1.560E+06 2.500E-10 1.560E+06 1.560E+06 1.560E+06 

PSO 1.547E+14 1.550E+14 0.000E+00 1.547E+14 1.547E+14 1.547E+14 

PSOSA 2.585E+09 2.590E+09 5.000E-07 1.547E+14 2.585E+09 2.585E+09 

SA 4.620E+08 4.620E+08 0.000E+00 4.620E+08 4.620E+08 4.620E+08 

WOA 4.809E+01 4.809E+01 0.000E+00 4.809E+01 4.809E+01 4.809E+01 

F13 ASCHO 2.982E+00 2.982E+00 4.680E-16 2.982E+00 2.982E+00 2.982E+00 
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SCHO 3.003E+00 3.003E+00 0.000E+00 3.003E+00 3.003E+00 3.003E+00 

DBO 6.800E+08 1.083E+09 2.520E+08 1.150E+09 6.804E+08 6.804E+08 

GWO 5.707E+06 5.707E+06 0.000E+00 5.707E+06 5.707E+06 5.707E+06 

PSO 1.600E+14 1.598E+14 0.000E+00 1.598E+14 1.598E+14 1.598E+14 

PSOSA 4.500E+09 4.488E+09 0.000E+00 1.598E+14 4.488E+09 4.488E+09 

SA 1.000E+09 1.009E+09 0.000E+00 1.009E+09 1.009E+09 1.009E+09 

WOA 2.352E+05 2.352E+05 3.070E-11 2.352E+05 2.352E+05 2.352E+05 

 

TABLE 7: Comparative analysis of ASCHO and benchmarks on fixed-dimension multi-modal test functions 

(F14-F23) 

Function Algorithm Best Mean Std_Deviation Convergence_Rate Final_Value Best_Value 

F14 

ASCHO 9.980E-01 9.980E-01 0.000E+00 9.980E-01 9.980E-01 9.980E-01 

SCHO 7.774E+00 7.774E+00 1.870E-15 7.774E+00 7.774E+00 7.774E+00 

DBO 4.079E+00 1.857E+02 1.680E+02 3.241E+01 4.079E+00 4.079E+00 

GWO 1.632E+01 1.632E+01 3.740E-15 1.632E+01 1.632E+01 1.632E+01 

PSO 1.091E+02 1.091E+02 1.500E-14 1.091E+02 1.091E+02 1.091E+02 

PSOSA 1.091E+02 1.091E+02 1.500E-14 1.091E+02 1.091E+02 1.091E+02 

SA 4.765E+02 4.765E+02 0.000E+00 4.765E+02 4.765E+02 4.765E+02 

WOA 7.874E+00 7.874E+00 0.000E+00 7.874E+00 7.874E+00 7.874E+00 

F15 

ASCHO 3.900E-04 3.884E-04 0.000E+00 3.884E-04 3.884E-04 3.884E-04 

SCHO 5.073E-02 5.073E-02 0.000E+00 5.073E-02 5.073E-02 5.073E-02 

DBO 2.094E-02 1.369E-01 1.382E-01 1.606E-01 2.094E-02 2.094E-02 

GWO 8.100E-04 8.130E-04 1.140E-19 8.130E-04 8.130E-04 8.130E-04 

PSO 1.930E-03 1.930E-03 4.570E-19 1.930E-03 1.930E-03 1.930E-03 

PSOSA 1.930E-03 1.930E-03 4.570E-19 1.930E-03 1.930E-03 1.930E-03 

SA 1.167E+00 1.167E+00 0.000E+00 1.167E+00 1.167E+00 1.167E+00 

WOA 2.190E-03 2.194E-03 4.570E-19 2.194E-03 2.194E-03 2.194E-03 

F16 

ASCHO -1.032E+00 -1.032E+00 2.340E-16 -1.032E+00 -1.032E+00 -1.032E+00 

SCHO -9.985E-01 -9.985E-01 2.340E-16 -9.985E-01 -9.985E-01 -9.985E-01 

DBO -6.069E-01 4.922E-01 9.949E-01 -6.069E-01 -6.069E-01 -6.069E-01 

GWO -1.032E+00 -1.031E+00 0.000E+00 -1.031E+00 -1.031E+00 -1.031E+00 

PSO 4.138E+03 4.138E+03 9.590E-13 4.138E+03 4.138E+03 4.138E+03 

PSOSA 9.166E+00 9.166E+00 1.870E-15 4.138E+03 9.166E+00 9.166E+00 

SA 4.602E-01 4.602E-01 0.000E+00 4.602E-01 4.602E-01 4.602E-01 

WOA -1.032E+00 -1.031E+00 2.340E-16 -1.031E+00 -1.031E+00 -1.031E+00 
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F17 

ASCHO 3.981E-01 3.981E-01 0.000E+00 3.981E-01 3.981E-01 3.981E-01 

SCHO 5.912E-01 5.912E-01 0.000E+00 5.912E-01 5.912E-01 5.912E-01 

DBO 9.106E-01 3.254E+00 2.378E+00 4.667E+00 9.106E-01 9.106E-01 

GWO 3.994E-01 3.994E-01 0.000E+00 3.994E-01 3.994E-01 3.994E-01 

PSO 4.200E-01 4.200E-01 0.000E+00 4.200E-01 4.200E-01 4.200E-01 

PSOSA 4.200E-01 4.200E-01 0.000E+00 4.200E-01 4.200E-01 4.200E-01 

SA 1.202E+00 1.202E+00 0.000E+00 1.202E+00 1.202E+00 1.202E+00 

WOA 6.410E-01 6.410E-01 0.000E+00 6.410E-01 6.410E-01 6.410E-01 

F18 

ASCHO 3.000E+00 3.000E+00 4.680E-16 3.000E+00 3.000E+00 3.000E+00 

SCHO 7.308E+00 7.308E+00 0.000E+00 7.308E+00 7.308E+00 7.308E+00 

DBO 8.126E+00 6.975E+01 4.763E+01 1.323E+02 8.126E+00 8.126E+00 

GWO 3.058E+00 3.058E+00 4.680E-16 3.058E+00 3.058E+00 3.058E+00 

PSO 6.834E+05 6.834E+05 1.230E-10 6.834E+05 6.834E+05 6.834E+05 

PSOSA 1.099E+02 1.099E+02 3.000E-14 6.834E+05 1.099E+02 1.099E+02 

SA 1.258E+02 1.258E+02 0.000E+00 1.258E+02 1.258E+02 1.258E+02 

WOA 3.000E+00 3.000E+00 0.000E+00 3.000E+00 3.000E+00 3.000E+00 

F19 

ASCHO -3.862E+00 -3.862E+00 0.000E+00 -3.862E+00 -3.862E+00 -3.862E+00 

SCHO -2.937E+00 -2.937E+00 4.680E-16 -2.937E+00 -2.937E+00 -2.937E+00 

DBO -3.845E+00 -3.247E+00 5.048E-01 -3.561E+00 -3.845E+00 -3.845E+00 

GWO -3.860E+00 -3.860E+00 0.000E+00 -3.860E+00 -3.860E+00 -3.860E+00 

PSO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

PSOSA -2.216E-01 -2.216E-01 5.850E-17 0.000E+00 -2.216E-01 -2.216E-01 

SA -3.075E-01 -3.075E-01 0.000E+00 -3.075E-01 -3.075E-01 -3.075E-01 

WOA -3.579E+00 -3.578E+00 9.360E-16 -3.578E+00 -3.578E+00 -3.578E+00 

F20 

ASCHO -3.275E+00 -3.275E+00 4.680E-16 -3.275E+00 -3.275E+00 -3.275E+00 

SCHO -2.724E+00 -2.724E+00 0.000E+00 -2.724E+00 -2.724E+00 -2.724E+00 

DBO -1.622E+00 -1.231E+00 2.798E-01 -1.622E+00 -1.622E+00 -1.622E+00 

GWO -3.105E+00 -3.105E+00 4.680E-16 -3.105E+00 -3.105E+00 -3.105E+00 

PSO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

PSOSA -7.120E-02 -7.122E-02 0.000E+00 0.000E+00 -7.122E-02 -7.122E-02 

SA -4.887E-01 -4.887E-01 0.000E+00 -4.887E-01 -4.887E-01 -4.887E-01 

WOA -3.166E+00 -3.166E+00 4.680E-16 -3.166E+00 -3.166E+00 -3.166E+00 

F21 

ASCHO -7.013E+00 -7.013E+00 9.362E-16 -7.013E+00 -7.013E+00 -7.013E+00 

SCHO -1.838E+00 -1.838E+00 2.341E-16 -1.838E+00 -1.838E+00 -1.838E+00 

DBO -7.559E-01 -4.972E-01 1.491E-01 -3.174E-01 -7.559E-01 -7.559E-01 
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GWO -1.837E+00 -1.837E+00 2.341E-16 -1.837E+00 -1.837E+00 -1.837E+00 

PSO -4.000E-04 -4.000E-04 5.714E-20 -3.800E-04 -3.813E-04 -3.813E-04 

PSOSA -8.640E-02 -8.640E-02 0.000E+00 -3.800E-04 -8.637E-02 -8.637E-02 

SA -2.094E-01 -2.094E-01 0.000E+00 -2.094E-01 -2.094E-01 -2.094E-01 

WOA -4.203E+00 -4.203E+00 9.362E-16 -4.203E+00 -4.203E+00 -4.203E+00 

F22 

ASCHO -7.296E+00 -7.296E+00 9.362E-16 -7.296E+00 -7.296E+00 -7.296E+00 

SCHO -1.905E+00 -1.905E+00 0.000E+00 -1.905E+00 -1.905E+00 -1.905E+00 

DBO -8.970E-01 -6.457E-01 1.493E-01 -6.526E-01 -8.970E-01 -8.970E-01 

GWO -7.035E+00 -7.035E+00 9.362E-16 -7.035E+00 -7.035E+00 -7.035E+00 

PSO -5.000E-04 -5.000E-04 1.143E-19 -5.400E-04 -5.382E-04 -5.382E-04 

PSOSA -4.017E-01 -4.017E-01 5.851E-17 -5.400E-04 -4.017E-01 -4.017E-01 

SA -2.021E+00 -2.021E+00 0.000E+00 -2.021E+00 -2.021E+00 -2.021E+00 

WOA -4.555E+00 -4.555E+00 0.000E+00 -4.555E+00 -4.555E+00 -4.555E+00 

F23 

ASCHO -8.461E+00 -8.461E+00 1.872E-15 -8.461E+00 -8.461E+00 -8.461E+00 

SCHO -2.011E+00 -2.011E+00 4.681E-16 -2.011E+00 -2.011E+00 -2.011E+00 

DBO -1.228E+00 -8.236E-01 1.950E-01 -8.474E-01 -1.228E+00 -1.228E+00 

GWO -7.683E+00 -7.683E+00 9.362E-16 -7.683E+00 -7.683E+00 -7.683E+00 

PSO -8.000E-04 -8.000E-04 0.000E+00 -7.600E-04 -7.586E-04 -7.586E-04 

PSOSA -4.894E-01 -4.894E-01 0.000E+00 -7.600E-04 -4.894E-01 -4.894E-01 

SA -1.828E-01 -1.828E-01 0.000E+00 -1.828E-01 -1.828E-01 -1.828E-01 

WOA -4.688E+00 -4.688E+00 9.362E-16 -4.688E+00 -4.688E+00 -4.688E+00 

 

  

F1 F2 
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Figure 3 Convergence curves for benchmark functions F1-F23 

The convergence characteristics seen in Figures 4u through 4w complement these numerical results, showing 

ASCHO's faster descent and better exploitation capabilities compared to SCHO. Particularly in F22 and F23, 

ASCHO demonstrates remarkable ability to escape local optima and achieve better final solutions, as evidenced 

by the sharp improvements in fitness values during later iterations. The stability of these results is reinforced by 

consistently low standard deviation values across all functions, typically in the order of 10−16 to 10−15, 

indicating highly reliable and reproducible optimization performance. These comprehensive results validate that 

ASCHO's adaptive parameter updating mechanism successfully enhances both exploration and exploitation 

capabilities while maintaining robust performance across diverse problem landscapes. 

4) SCHO vs. Benchmarks 

As presented in Table 8, a comprehensive DC microgrid evaluation framework consists of nine test scenarios 

across three categories, with each scenario implementing 30% variations from the base configuration (solar 

irradiance: 600 W/m\textsuperscript{2}, wind speed: 10 m/s, load resistance: 7.29 Ω at 270V). The testing 

protocol runs for 0.4 seconds with changes at 0.1s intervals and randomly initialized battery State of Charge (50-

100%). This framework assesses voltage stability, power management, battery response, and system robustness 

under dynamic conditions.  

The state of charge (SOC) behavior, presented in both Group 1 and Group 2 configurations (Figures~6 and 8, 

respectively), demonstrates the superior performance of the FOPI SCHO controller. In Figure 6, the FOPI 



J. Electrical Systems 20-11s (2024): 2402-2447 

2427 

SCHO controller maintains a more balanced SOC trajectory compared to PSO, PSOSA, and SA variants, 

exhibiting smoother transitions and better recovery characteristics. The SOC variation is contained within a 

narrow band of approximately 0.01% (from 66.999% to 66.989%), indicating excellent charge management 

capabilities. This superior performance is further validated in Figure 8, where FOPI SCHO demonstrates better 

stability compared to FuzzySupervisedPI and FuzzyLogicControl approaches.Voltage regulation performance, 

illustrated in Figures 7 and 9, showcases the system's ability to maintain stable operation around the reference 

voltage of 270V. Particularly interesting is the comparative performance shown in Figure 9, where the FOPI 

SCHO controller exhibits notably superior voltage regulation compared to FuzzySupervisedPI and 

FuzzyLogicControl approaches. While all controllers show initial overshoot during startup, the FOPI SCHO 

achieves faster settling time and maintains tighter voltage regulation throughout the simulation period. The 

controller effectively dampens oscillations and maintains steady-state operation, with voltage variations 

contained within approximately ±5V of the reference value after the initial transient period. Notably, the 

FuzzyLogicControl shows consistent undervoltage conditions, settling around 240V, significantly below the 

reference voltage of 270V, highlighting the superior performance of the FOPI SCHO approach.These results 

collectively demonstrate the effectiveness of the proposed control strategy, particularly in managing the complex 

interactions between power distribution, battery state of charge, and voltage regulation. The FOPI SCHO 

controller consistently outperforms conventional approaches across all measured parameters, validating its 

enhanced capability in handling the multifaceted challenges of DC microgrid control. The controlled response in 

power management, coupled with precise SOC regulation and robust voltage control, underscores the system's 

ability to maintain stable operation under varying renewable energy inputs and load conditions. 

 
 

Figure V.4: Power Distribution Scenario 1 
Figure V.5: State of Charge Distribution - Group 

1, Scenario 1 

5) Overall Group 1 

The comparative analysis of the FOPI SCHO controller against FuzzySupervisedPI and FuzzyLogicControl 

algorithms across nine test scenarios reveals significant performance advantages in multiple control metrics. 

Table 13 demonstrates the superior performance of the FOPI SCHO algorithm in terms of rising time across all 

test scenarios (S1-S9). The SCHO controller consistently achieves the fastest rising times, ranging from 0.00878 

to 0.00897 seconds, significantly outperforming both alternative approaches. This performance is particularly 

notable when compared to the FuzzyLogicControl, which exhibits considerably slower rising times, reaching as 

high as 0.27412 seconds in some scenarios. The FuzzySupervisedPI controller, while performing better than 

FuzzyLogicControl, still shows rising times approximately 15-50% slower than FOPI SCHO. 

TABLE 8: DC Microgrid Test Scenarios Summary 

Category Scenario Description Variation 
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Solar Irradiance 

Increase Step increase +30% steps 

Decrease Step reduction -30% steps 

Fluctuation Alternating ±30% 

Wind Speed 

Increase Step increase +30% steps 

Decrease Step reduction -30% steps 

Fluctuation Alternating ±30% 

Load Demand 

Increase Power increase R decrease 

Decrease Power reduction R increase 

Fluctuation Power variation R variation 

 

As shown in Table 18, both FOPI SCHO and FuzzySupervisedPI demonstrate equally excellent performance in 

settling time, achieving values of 0.00349-0.00350 seconds across all scenarios. The FuzzyLogicControl 

algorithm shows marginally slower settling times of 0.00351-0.00352 seconds. While the difference appears 

minimal, in high-precision control applications, even these small variations can be significant. The consistency 

of FOPI SCHO's settling time across different scenarios also indicates its robust performance under varying 

conditions. 

 

Figure 6: Voltage measurement for Scenario 1 in Group 1 

 

Figure 7: State of Charge Distribution - Group 2, Scenario 1 
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Figure 8: Voltage measurement for Scenario 1 in Group 2 

Table 19 presents the overshoot percentage comparison, revealing an interesting trade-off. While 

FuzzyLogicControl achieves the lowest overshoot percentages (approximately 43%), FOPI SCHO maintains 

consistent overshoot values around 47%, which are slightly better than FuzzySupervisedPI's performance 

(approximately 48%). This suggests that while FOPI SCHO may not optimize purely for minimal overshoot, it 

achieves a balanced performance considering other critical metrics. It's worth noting that the consistency of 

SCHO's overshoot across all scenarios indicates predictable and stable behavior. 

Perhaps most significantly, Table 20 demonstrates FOPI SCHO's outstanding performance in maintaining 

accurate voltage levels through steady-state error comparison. The SCHO controller consistently achieves the 

lowest steady-state errors across all scenarios, ranging from 0.858V to 3.173V. This performance markedly 

surpasses both alternatives, with FuzzySupervisedPI showing errors typically 2-3 times higher, and 

FuzzyLogicControl exhibiting substantially larger errors often exceeding 30V. This superior steady-state 

accuracy of FOPI SCHO is particularly crucial for DC microgrid applications where voltage stability is 

paramount. 

The comprehensive analysis of performance metrics across Tables 13-20 demonstrates the clear advantages of 

the FOPI SCHO controller, particularly in achieving rapid response times and minimal steady-state errors while 

maintaining acceptable overshoot characteristics. The controller's consistent performance across diverse test 

scenarios underscores its robustness and reliability in DC microgrid applications. The FOPI SCHO controller 

exhBibits: 

• Fastest rising times across all scenarios 

• Optimal settling time performance (matched by FuzzySupervisedPI) 

• alanced overshoot characteristics 

• Superior steady-state error performance 

• Consistent performance across varying test conditions 

These results validate the effectiveness of the SCHO optimization approach in DC microgrid voltage control 

applications, demonstrating significant improvements over traditional fuzzy control strategies. 

6) Overall Group 2 

The performance comparison of FOPI controllers optimized using different techniques (SCHO, PSO, PSOSA, 

and SA) across nine test scenarios reveals interesting patterns in control performance metrics. Table 13 shows 

that FOPI SA achieves the fastest rising times across all scenarios, with notably superior performance in 

scenario S3, S6, and S9 where it achieves a rising time of 0.00234 seconds, significantly outperforming other 

algorithms. FOPI SCHO demonstrates consistent performance with rising times between 0.00878 and 0.00897 

seconds, while PSO and PSOSA show identical performance patterns, suggesting similar optimization 

trajectories. 
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The settling time comparison in Table 18 reveals remarkably consistent performance across all algorithms. All 

four controllers achieve nearly identical settling times around 0.00349-0.00350 seconds, with FOPI SA showing 

marginally better performance in scenarios S2, S5, and S8 with a settling time of 0.00348 seconds. This 

consistency suggests that all optimization techniques effectively converge to similar optimal solutions for this 

particular control parameter, though SA maintains a slight edge in performance. 

Table 19 presents the overshoot percentage comparison, where FOPI PSO and PSOSA demonstrate the best 

performance with identical overshoot values (approximately 47.166-47.819%) across all scenarios. FOPI SCHO 

shows slightly higher overshoot percentages (47.222-47.875%), while FOPI SA exhibits the highest overshoot 

values (47.392-48.045%). These differences, though small, indicate that PSO-based optimization techniques 

might be more effective at minimizing overshoot characteristics in the control response. 

Most notably, Table 20 demonstrates FOPI SCHO's superior performance in steady-state error minimization. 

SCHO consistently achieves the lowest steady-state errors across all scenarios, ranging from 0.858V to 3.173V. 

This represents a significant improvement over other optimization techniques, with PSO and PSOSA showing 

identical but higher errors (3.302-9.565V), and SA exhibiting the largest errors (5.721-15.711V). The consistent 

superiority of SCHO in this metric is particularly significant for DC microgrid applications where voltage 

stability is crucial. 

The analysis across Tables 13-20 reveals distinct advantages for different optimization techniques: 

• FOPI SA excels in minimizing rising time 

• All techniques achieve comparable settling times, with SA showing marginal advantages 

• PSO and PSOSA optimize best for overshoot minimization 

• FOPI SCHO demonstrates superior steady-state error performance 

These results suggest that while each optimization technique offers specific advantages, FOPI SCHO provides 

the most balanced performance profile, particularly excelling in steady-state error minimization—a critical 

metric for practical DC microgrid applications. The consistent performance of SCHO across all scenarios, 

combined with its superior steady-state accuracy, makes it a particularly attractive choice for DC microgrid 

voltage control applications, despite not being the absolute best performer in rising time or overshoot metrics. 

7) ASCHO vs. SCHO 

The performance analysis of Scenario 1 reveals significant insights through the examination of power 

distribution, battery state of charge, and load voltage characteristics. Figure 10 demonstrates the power 

distribution dynamics, where the system exhibits distinct behavior across different power components. The load 

power shows an initial transient spike followed by stabilization at approximately 10kW after t = 0.02s. The PV 

power demonstrates a characteristic profile with an initial peak around 7kW at t = 0.005s, followed by a dip to 

about 3kW, and then a gradual rise to stabilize around 7kW. Notably, the wind power contribution remains 

minimal throughout the simulation period, indicating a scenario dominated by PV generation. 

The battery state of charge (SOC) behavior, illustrated in Figure 11, shows the comparative performance 

between FOPI-ASCHO and FOPI-SCHO controllers. Both controllers maintain the SOC within a narrow band 

of approximately 0.003% (from 67% to 66.997%), indicating excellent charge management capabilities. The 

FOPI-ASCHO controller (blue line) demonstrates marginally superior performance with a more gradual 

discharge slope and reduced oscillations compared to FOPI-SCHO (red line), particularly evident in the latter 

half of the simulation period (t > 0.02s). 

Load voltage regulation performance, shown in Figure 12, reveals the system's capability to maintain stable 

operation around the reference voltage of 270V. Both controllers exhibit similar initial transient responses with 

an overshoot peak at approximately 400V around t = 0.005s. However, the FOPI-ASCHO controller 

demonstrates notably superior steady-state performance with reduced oscillation amplitude compared to FOPI-

SCHO. The ASCHO-optimized controller maintains voltage variations within approximately ±5V of the 

reference value after the initial transient period, while FOPI-SCHO shows larger oscillations of approximately 

±10V. 
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TABLE 9: Rising Time (s) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.00897 0.00878 0.00878 0.00897 0.00878 0.00878 0.00897 0.00878 0.00878 

Fuzzy 

SupervisedP1 

0.01363 0.01015 0.01114 0.01363 0.01015 0.01114 0.01363 0.01015 0.01114 

Fuzzy 

LogicControl 

0.13428 0.02718 0.14260 0.25925 0.10266 0.06490 0.20196 0.09150 0.27412 

 

TABLE 10: Settling Time (s) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 

Fuzzy 

SupervisedP1 
0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 

Fuzzy LogicControl 0.00352 0.00351 0.00352 0.00352 0.00351 0.00352 0.00352 0.00351 0.00352 

 

TABLE 11: Overshoot Percentage (%) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 47.662 47.875 47.222 47.662 47.875 47.222 47.662 47.875 47.222 

FuzzySupervisedPI 48.331 48.535 47.888 48.331 48.535 47.888 48.331 48.535 47.888 

FuzzyLogicC0ntrol 43.423 43.711 42.999 43.423 43.711 42.999 43.423 43.711 42.999 

 

TABLE 12: Steady State Error (V) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.875 3.173 1.431 1.180 1.927 1.546 2.813 0.858 1.526 

FuzzySupervisedPI 6.093 5.443 3.123 3.387 4.137 2.309 6.022 4.766 4.142 

FuzzyLogicC0ntrol 28.339 31.911 24.153 27.791 31.998 32.004 32.284 30.310 23.164 

 

TABLE 13: Rising Time (s) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.00897 0.00878 0.00878 0.00897 0.00878 0.00878 0.00897 0.00878 0.00878 

Fuzzy 

SupervisedP

1 

0.00938 0.00869 0.00931 0.00938 0.00869 0.00931 0.00938 0.00869 0.00931 

Fuzzy 

LogicControl 
0.00948 0.00869 0.00931 0.00938 0.00869 0.00931 0.00938 0.00869 0.00931 

FOPI SA 0.00870 0.00866 0.00234 0.00870 0.00866 0.00234 0.00870 0.00866 0.00234 
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TABLE 14: Settling Time (s) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 

Fuzzy 

SupervisedP1 
0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 

Fuzzy 

LogicControl 
0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 0.00349 0.00349 0.00350 

FOPI SA 0.00349 0.00348 0.00350 0.00349 0.00348 0.00350 0.00349 0.00348 0.00350 

 

TABLE 15: Overshoot Percentage (%) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 47.662 47.875 47.222 47.662 47.875 47.222 47.662 47.875 47.222 

Fuzzy 

SupervisedP1 
47.550 47.819 47.166 47.550 47.819 47.166 47.550 47.819 47.166 

Fuzzy 

LogicControl 
47.550 47.819 47.166 47.550 47.819 47.166 47.550 47.819 47.166 

FOPI SA 47.775 48.045 47.392 47.774 48.045 47.392 47.775 48.045 47.392 

 

TABLE 16: Steady State Error (V) Comparison 

Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 

FOPI SCHO 0.875 3.173 1.431 1.180 1.927 1.546 2.813 0.858 1.526 

FuzzySupervisedPI 5.540 3.718 8.553 7.814 6.488 7.731 3.302 8.172 9.565 

FuzzyLogicC0ntrol 5.540 3.718 8.553 7.814 6.488 7.731 3.302 8.172 9.565 

FOPI SA 7.575 7.059 14.892 15.711 13.817 14.765 5.721 12.071 15.018 

 

The integrated analysis of these three characteristics demonstrates the FOPI-ASCHO controller's superior 

performance in managing the complex interactions between power distribution, battery state of charge, and 

voltage regulation. The controller's ability to maintain stable voltage levels while efficiently managing PV 

power integration and battery charge state validates its enhanced optimization capabilities. This scenario 

particularly highlights the ASCHO algorithm's effectiveness in handling the challenges of solar power variation 

and load demand management, achieving improved stability and reduced steady-state oscillations compared to 

the conventional SCHO approach. 

 

Figure 9: Power Distribution Time Series - Scenario 1 
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Figure 10: Battery State of Charge Time Series - Scenario 1 

 

Figure 11: Load Voltage Time Series - Scenario 1 

8) Numerical Results 

A comprehensive analysis of the control performance metrics for the realistic scenario reveals significant 

insights into the relative capabilities of FOPI-ASCHO and FOPI-SCHO controllers. The power distribution 

profile shown in Figure 10 demonstrates a complex interaction between load demand and renewable generation, 

with load power stabilizing around 10kW and PV power exhibiting characteristic variations between 3-7kW, 

while wind power contribution remains minimal. This realistic scenario presents a challenging control 

environment that effectively tests the controllers' capabilities. 

As shown in Table 17, the FOPI-ASCHO controller achieves a marginally faster rise time of 0.00208 seconds 

compared to FOPI-SCHO's 0.00209 seconds. While this difference appears small in absolute terms, it represents 

a measurable improvement in initial response speed that could be significant in high-precision control 

applications, particularly during the rapid power transitions observed in the power distribution profile. 

The settling time comparison presented in Table 18 demonstrates identical performance between both 

controllers, with both FOPI-ASCHO and FOPI-SCHO achieving a settling time of 0.00349 seconds. This 

consistency in settling time indicates that both controllers are equally capable of reaching steady-state operation, 

though their behavior during sustained operation differs substantially, as evidenced by other metrics.  
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Examination of the overshoot characteristics in Table 19 reveals an interesting trade-off in controller 

performance. The FOPI-SCHO controller achieves a slightly lower overshoot percentage of 47.66% compared 

to FOPI-ASCHO's 47.89%. This marginal difference of approximately 0.23% suggests that while FOPI-ASCHO 

optimizes for other performance metrics, it makes a small compromise in terms of overshoot behavior. However, 

given the challenging power distribution profile with significant PV power variations, this slight increase in 

overshoot represents an acceptable trade-off. 

Most significantly, the steady-state error comparison in Table 20 demonstrates FOPI-ASCHO's superior 

performance in maintaining accurate voltage levels. The ASCHO-optimized controller achieves a steady-state 

error of approximately 3.15V, while FOPI-SCHO exhibits a substantially larger error of 10.39V. This dramatic 

improvement in steady-state accuracy represents a key advantage of the ASCHO optimization approach, 

particularly crucial for maintaining stable voltage regulation despite the significant variations in PV power 

contribution observed in the realistic scenario. 

The integrated analysis of these performance metrics reveals that FOPI-ASCHO achieves a well-balanced 

performance profile, with particular excellence in steady-state accuracy and marginally improved rise times, 

while maintaining equivalent settling times to FOPI-SCHO. The slightly increased overshoot appears to be a 

reasonable trade-off given the significant improvements in steady-state error, suggesting that FOPI-ASCHO 

offers a more optimal overall control solution for DC microgrid applications requiring precise voltage regulation 

under realistic operating conditions with variable renewable power generation. 

TABLE 17: Rise Time Comparison (seconds) 

Scenario FOPI ASCHO FOPI SCHO 

Realistic Scenario 0.00208 0.00209 

 

TABLE 18: Settling Time Comparison (seconds) 

Scenario FOPI ASCHO FOPI SCHO 

Realistic Scenario 0.00349 0.00349 

 

9) Results Discussion 

The research objectives set forth in this study centered around three key goals: (1) designing a DC microgrid 

with cascade FOPI control incorporating SCHO optimization, (2) developing an adaptive version of SCHO 

(ASCHO), and (3) integrating ASCHO with cascade FOPI control. The comprehensive results demonstrated 

significant achievements across all objectives, validated through multiple testing scenarios and performance 

metrics. 

The first objective was successfully accomplished through the implementation of cascade FOPI control, as 

evidenced by Table 7 until ??. The ASCHO algorithm achieved a remarkable fitness value dramatically 

outperforming conventional approaches which exhibited fitness values in the magnitude of 108 to 109. The 

controller parameters obtained through ASCHO optimization demonstrated superior balance, with current 

controller values (𝑃 = 74.343, 𝐼 = 55.843, 𝜆 = 0.37976) and voltage controller parameters (𝑃 = 1.2362, 𝐼 =

71.716, 𝜆 = 0.98157) achieving optimal performance characteristics. The second objective's accomplishment is 

particularly evident in the benchmark function tests across all three groups (F1-F23). The developed ASCHO 

algorithm demonstrated superior performance in multiple test functions, achieving best values in 17 out of 23 

functions. Notably, in function F1, ASCHO achieved a best value of 2.097E-15 compared to SCHO's 5.261E-09, 

demonstrating significantly enhanced optimization capabilities. The algorithm's adaptive nature was further 

validated through its consistent performance across diverse test scenarios, showing robust adaptation capabilities 

in varying optimization landscapes. The third objective's achievement is comprehensively demonstrated through 

the realistic scenario testing results. The FOPI-ASCHO controller demonstrated superior performance across 

multiple metrics, achieving a faster rise time (0.00208s vs 0.00209s) and significantly better steady-state error 
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(3.15V vs 10.39V) compared to FOPI-SCHO. The power distribution profiles shown in Figure 10 validate the 

controller's ability to handle complex interactions between renewable sources, with effective management of PV 

power variations while maintaining stable load power at 10kW. The convergence analysis, illustrated in Figure 

13, further validates the enhanced capabilities of the integrated ASCHO-FOPI system. The algorithm achieved 

rapid convergence within two iterations to a fitness value of approximately 104, while conventional approaches 

settled at substantially higher values around 108. This superior convergence characteristic translates directly to 

improved practical performance, as evidenced by the voltage regulation results maintaining variations within 

±5V of the reference value. 

TABLE 19: Overshoot Comparison (%) 

Scenario FOPI ASCHO FOPI SCHO 

Realistic Scenario 47.889585893 47.662021611 

 

TABLE 20: Steady State Error Comparison 

Scenario FOPI ASCHO FOPI SCHO 

Realistic Scenario 3.149986348 10.387719330 

 

Particularly noteworthy is the system's performance under varying operational conditions, demonstrated through 

nine different test scenarios. The ASCHO-optimized controller maintained consistent performance across all 

scenarios, showing robust adaptation to different power generation and load profiles. The battery SOC 

management remained precise, with variations contained within narrow bands (e.g., 67% to 66.997% in the 

realistic scenario), indicating excellent energy management capabilities. 

These results collectively validate not only the achievement of individual research objectives but also 

demonstrate the synergistic benefits of their integration. The ASCHO-optimized FOPI control system represents 

a significant advancement in DC microgrid control technology, offering improved stability, faster response, and 

more precise voltage regulation compared to conventional approaches. The consistent superior performance 

across multiple metrics and scenarios confirms the successful development of an enhanced control optimization 

approach for DC microgrids. 

VI. Summary and Conclusion 

This research has presented a comprehensive investigation into the optimization of DC microgrid control 

systems through the development and implementation of the Adaptive Sinh Cosh Optimizer (ASCHO). The 

study's primary contributions encompass three interconnected areas: the development of ASCHO, its integration 

with cascade FOPI control, and extensive validation through both theoretical and practical testing scenarios. 

The ASCHO algorithm demonstrated significant improvements over conventional optimization approaches 

across multiple performance metrics. In benchmark testing across 23 test functions, ASCHO achieved superior 

results in 17 functions, with particularly notable performance in complex multimodal scenarios. The algorithm's 

effectiveness was evidenced by achievement of a fitness value superior to conventional approaches which 

exhibited values. 

In practical DC microgrid applications, the ASCHO-optimized FOPI control system demonstrated robust 

performance across nine distinct operational scenarios. The system achieved a reduction in steady-state error by 

70% (3.15V vs 10.39V) compared to conventional SCHO while maintaining voltage regulation within ±5V of 

reference value. The control system showed improved rise time of 0.00208s compared to SCHO's 0.00209s 

while maintaining consistent settling time across all scenarios. Furthermore, the system demonstrated enhanced 

stability in battery state of charge management, maintaining variations within 0.003%, indicating superior 

energy management capabilities. 
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Figure 12: Convergence results of ASCHO vs. benchmarks for voltage control 

The integration of ASCHO with cascade FOPI control has effectively addressed several critical challenges in 

DC microgrid operation, particularly in managing the variability of renewable energy sources while maintaining 

stable voltage regulation. The system's performance under varying solar irradiance, wind speed, and load 

demands validates its practical applicability in real-world scenarios. This robust performance across diverse 

operating conditions demonstrates the algorithm's capability to handle the complex dynamics inherent in 

renewable energy systems. 

Looking ahead, several promising research directions emerge from this work. The ASCHO framework could be 

extended to handle multi-objective optimization problems, potentially incorporating additional control 

objectives beyond voltage regulation and power management. Integration with other control architectures 

beyond FOPI could expand the algorithm's applicability, while implementation in larger-scale microgrid systems 

with more diverse energy sources could validate its scalability. Additionally, the development of adaptive 

mechanisms for real-time parameter optimization could further enhance the system's responsiveness to changing 

operational conditions. 

In conclusion, this study has established ASCHO as a viable and superior approach for DC microgrid control 

optimization, offering improved stability, faster response times, and more precise voltage regulation compared 

to existing methods. The comprehensive validation across both theoretical benchmarks and practical scenarios 

demonstrates the algorithm's robustness and reliability, making it a valuable contribution to the field of 

microgrid control systems. The successful implementation and validation of ASCHO opens new avenues for 

improving the efficiency and reliability of renewable energy integration in DC microgrids, contributing to the 

broader goal of sustainable energy system development. The demonstrated improvements in control 

performance, particularly in steady-state error reduction and voltage regulation, provide a solid foundation for 

future advancements in microgrid control optimization. 

VII. APPENDIX A 

 

 

Scenario 1: Power Distribution Scenario 1-Group 1: State of Charge 
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Scenario 1-Group 1: Voltage Measurement Scenario 1-Group 2: State of Charge Distribution 

  
Scenario 1-Group 2: Voltage Measurement Scenario 2-Group 2: Voltage Measurement 

  
Scenario 2-Group 1: Power Distribution Scenario 2-Group 1: State of Charge Distribution 
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Scenario 2-Group 1: Voltage Measurement Scenario 2-Group 2: State of Charge Distribution 

  
Scenario 3-Group 1: State of Charge Distribution Scenario 3-Group 1: Voltage Measurement 

  
Scenario 3-Group 1: Power Distribution Scenario 3-Group 2: State of Charge Distribution 
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Scenario 3-Group 2: Voltage Measurement Scenario 4-Group 1: Power Distribution 

  
Scenario 4-Group 1: State of Charge Distribution Scenario 4-Group 1: Voltage Measurement 

  
Scenario 4-Group 2: State of Charge Distribution Scenario 4-Group 2: Voltage Measurement 
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Scenario 5-Group 1: Power Distribution Scenario 5-Group 1: State of Charge Distribution 

  
Scenario 5-Group 1: Voltage Measurement Scenario 5-Group 2: State of Charge Distribution 

  
Scenario 5-Group 2: Voltage Measurement Scenario 6-Group 1: State of Charge Distribution 
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Scenario 6-Group 1: Voltage Measurement Scenario 6-Group 1: Voltage Measurement 

  
Scenario 6-Group 2: State of Charge Distribut Scenario 6-Group 2: Voltage Measurement 

  
Scenario 7-Group 1: Power Distribution Scenario 7-Group 1: State of Charge Distribution 
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Scenario 7-Group 1: Voltage Measurement Scenario 7-Group 2: State of Charge Distribution 

  
Scenario 7-Group 2: Voltage Measurement Scenario 8-Group 1: Power Distribution 

  
Scenario 8-Group 1: State of Charge Distribution Scenario 8-Group 1: Voltage Measurement 
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Scenario 8-Group 2: State of Charge Distribution Scenario 8-Group 2: Voltage Measurement 

  
Scenario 9-Group 1: Power Distribution Scenario 9-Group 2: State of Charge Distribution 

  
Scenario 9-Group 1: State of Charge Distribution Scenario 9-Group 1: Voltage Measurement 
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Scenario 9-Group 2: Voltage Measurement 
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