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Abstract: - Named Entity Recognition (NER) is a critical task in natural language processing that involves identifying and categorizing 

named entities in text. These entities can include people, organizations, locations, and more. Extracting features from these entities is equally 

important as it enables downstream tasks like sentiment analysis, text classification, and more. In this research paper, we propose an efficient 

Transformer-based model for identifying named entities and analyzing their features through ensemble operations. Our proposed model 

leverages the power of Transformer models such as BERT and XLNet for identifying named entities. We then convert the identified entities 

into feature vector sets using a combination of BERT and XLNet. These features are classified using the GoogLeNet convolutional neural 

network for model validation operations. By combining these different models through ensemble operations, we aim to improve the 

accuracy, precision, recall, and delay of the model for different use cases. The need for such a model arises due to the limitations of existing 

models for named entity recognition and feature analysis. While these models have achieved significant success, they still suffer from low 

accuracy, precision, recall, and high delay. Our proposed model overcomes these limitations by using ensemble operations to combine the 

strengths of different models. We compare the performance of our proposed model with existing models on standard datasets and show that 

it outperforms these models in terms of accuracy, precision, recall, and delay. Our results demonstrate the potential of ensemble operations 

in developing efficient models for named entity recognition and feature analysis. Overall, this research paper contributes to the development 

of more accurate and efficient models for natural language processing tasks. 
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I. INTRODUCTION 

Named Entity Recognition (NER) is a fundamental task in natural language processing that involves identifying 

and categorizing named entities in text. These entities can include people, organizations, locations, and more. The 

extraction of features from these entities is equally important, as it enables downstream tasks such as sentiment 

analysis, text classification, and more. While significant progress has been made in the development of NER models, 

these models still suffer from low accuracy, precision, recall, and high delay. In this research paper, we propose an 

efficient Transformer-based model for identifying named entities and analyzing their features through ensemble 

operations [1, 2, 3]. 

The objective of this research is to develop a more accurate and efficient model for named entity recognition and 

feature analysis. Our proposed model leverages the power of Transformer models such as BERT and XLNet to 

identify named entities. We then convert the identified entities into feature vector sets using a combination of BERT 

and XLNet. These features are classified using the GoogLeNet convolutional neural network for model validation 

for multiple use cases. By combining these different models through ensemble operations, we aim to improve the 

accuracy, precision, recall, and delay of the model for different scenarios via Multi-Modal Ensemble Learning 

(MMEL) [4, 5, 6]. 

The motivation for this work arises due to the limitations of existing models for named entity recognition and feature 

analysis. These models have achieved significant success in identifying named entities and analyzing their features, 

but they still suffer from low accuracy, precision, recall, and high delay. Our proposed model overcomes these 

limitations by using ensemble operations to combine the strengths of different models. This approach has shown 

promise in improving the performance of natural language processing models in other tasks, such as text 

classification and sentiment analysis. 
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The need for this work arises from the importance of NER and feature analysis in natural language processing 

applications. The ability to accurately identify and analyze named entities is critical for tasks such as information 

retrieval, document classification, and sentiment analysis. However, current models still suffer from limitations that 

prevent them from achieving optimal performance. Our proposed model addresses these limitations by using 

ensemble operations to improve the accuracy, precision, recall, and delay of the model for different input datasets 

& samples. 

In summary, this research paper proposes an efficient Transformer-based model for identifying named entities and 

analyzing their features through ensemble operations. By combining the strengths of different models, we aim to 

develop a more accurate and efficient model for named entity recognition and feature analysis. This work has 

important implications for natural language processing applications and contributes to the development of more 

accurate and efficient models for text analysis. 

II. LITERATURE REVIEW 

Named Entity Recognition (NER) is a fundamental task in natural language processing that involves identifying 

and categorizing named entities in text. Over the years, various approaches have been proposed for NER, including 

rule-based methods, statistical methods, and deep learning methods. In recent years, deep learning methods, 

particularly those based on Transformer models, have shown significant promise for NER use cases [7, 8, 9]. 

The Transformer model is a neural network architecture that has shown remarkable performance in natural language 

processing tasks such as machine translation and text generation. It consists of a multi-head self-attention 

mechanism that allows the model to capture contextual information efficiently. BERT (Bidirectional Encoder 

Representations from Transformers) is a pre-trained Transformer-based model that has achieved state-of-the-art 

results in various natural language processing tasks, including NER & other applications via use of Multi-Agent 

Communication (MACs) [10, 11, 12]. 

One of the limitations of BERT and other pre-trained Transformer models is that they do not account for the specific 

characteristics of named entities. To address this limitation, several studies have proposed methods for converting 

named entities into feature vectors that can be used in downstream tasks. One such approach is to use contextualized 

embeddings, such as ELMo (Embeddings from Language Models) and Flair, which generate embeddings that are 

specific to the context in which the named entity appears [13, 14, 15]. Other approaches include using hand-crafted 

features and using graph-based methods to represent named entities and their relationships. 

Ensemble learning is a technique that combines the outputs of multiple models to improve the overall performance. 

Ensemble methods have been shown to be effective in improving the accuracy, precision, recall, and delay of natural 

language processing models. One popular approach is to combine the outputs of multiple models using a weighted 

average or an augmented set of voting mechanisms with Multi-Graph Neural Networks (MGNN) [16, 17, 18]. 

Another approach is to use meta-learning, where a higher-level model learns to combine the outputs of lower-level 

models. 

In this research paper, we propose an efficient Transformer-based model for NER that uses ensemble operations to 

improve the accuracy, precision, recall, and delay of the models [19, 20]. Our model leverages the power of 

Transformer models such as BERT and XLNet for identifying named entities. We then convert the identified entities 

into feature vector sets using a combination of BERT and XLNet. These features are classified using the GoogLeNet 

convolutional neural network for model validation. 

Compared to existing models [21, 22, 23, 24], our proposed model offers several advantages. First, it leverages the 

strengths of different models to improve the overall performance. Second, it uses ensemble operations to combine 

the outputs of multiple models, which has been shown to be effective in improving the accuracy, precision, recall, 

and delay of natural language processing models. Finally, it provides a more efficient approach to NER and feature 

analysis, which is critical for real-world applications. 

Thus, this literature review has highlighted the importance of NER and feature analysis in natural language 

processing applications [25, 26, 27]. It has also shown the potential of Transformer-based models and ensemble 

operations in improving the accuracy, precision, recall, and delay of these models [28, 29, 30]. Our proposed model 
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contributes to this research by providing an efficient approach to NER and feature analysis that leverages the 

strengths of different models through ensemble operations. 

III.PROPOSED DESIGN OF AN EFFICIENT TRANSFORMER-BASED MODEL FOR IDENTIFICATION & 

FEATURE ANALYSIS OF NAMED ENTITIES VIA ENSEMBLE OPERATIONS 

As per the review of existing models used for identification of named entities, it can be observed that these models 

either showcase lower efficiency, or cannot be scaled for multiple application scenarios. To overcome these issues, 

this section proposes design of an efficient transformer-based model for identification & feature analysis of named 

entities via ensemble operations.  

 

Figure 1. Flow of the proposed NER process 

The flow of proposed model is depicted in figure 1, from where it can be observed that the model converts identified 

entities into feature vector sets using a combination of BERT and XLNet. These features are classified using the 

GoogLeNet convolutional neural network for model validation operations. By combining these different models 

through ensemble operations, we aim to improve the accuracy, precision, recall, and delay of the model for different 

use cases. The need for such a model arises due to the limitations of existing models for named entity recognition 

and feature analysis. While these models have achieved significant success, they still suffer from low accuracy, 

precision, recall, and high delay. Our proposed model overcomes these limitations by using ensemble operations to 

combine the strengths of different models. 
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To identify named entities, the model uses a fusion of Conditional Random Fields (CRF), Hidden Markov Model 

(HMM), Maximum Entropy Markov Models (MEMM), Bidirectional Long-Short-Term Memory with CRF 

(BILSTM CRF), and Support Vector Machines (SVM), each of which assists in representing every tagged word 

with a set of individual probabilities. The CRF probabilities are estimated via equation 1, 

𝑃(𝑦|𝑥) =
1

𝑍
∗  𝑒𝑥𝑝(∑𝑖 = 1 𝑡𝑜 𝑛 𝛴𝑗 = 1 𝑡𝑜 𝑘 𝜃𝑗 ∗ 𝑓𝑗(𝑥𝑖, 𝑦𝑖, 𝑦(𝑖 − 1))) … (1) 

Where, 𝑃(𝑦|𝑥) is the probability of the label sequence 𝑦 given the input sequence 𝑥, 𝑍 is the normalization factor, 

and 𝜃𝑗 is the weight of the 𝑗𝑡ℎ feature function 𝑓𝑗. 𝑥𝑖, 𝑦𝑖, 𝑎𝑛𝑑 𝑦(𝑖 − 1) are the input sequence, the current label, and 

the previous labels. Similarly, the HMM probabilities are used, which is another popular approach for sequence 

labeling tasks. The HMM model calculates the joint probability of a sequence of labels and the input sequence via 

equation 2, 

𝑃(𝑥, 𝑦) =  𝛱𝑖 = 1 𝑡𝑜 𝑛 𝑃(𝑥𝑖|𝑦𝑖) ∗  𝑃(𝑦𝑖|𝑦(𝑖 − 1)) … (2) 

Where, 𝑃(𝑥𝑖|𝑦𝑖) is the probability of the input sequence element 𝑥𝑖 given the label 𝑦𝑖, and 𝑃(𝑦𝑖|𝑦(𝑖 − 1)) is the 

probability of the current label 𝑦𝑖 given the previous label 𝑦(𝑖 − 1), for different entities. After this, MEMM which 

is a variant of the HMM model is used for analysis of features. It uses a maximum entropy classifier instead of the 

Naïve Bayes (NB) classifier, and is represented via equation 3, 

𝑃(𝑦𝑖|𝑥𝑖, 𝑦(𝑖 − 1)) =
𝑒𝑥𝑝(∑ 𝜆𝑗 ∗  ℎ𝑖𝑗(𝑥𝑖, 𝑦𝑖, 𝑦(𝑖 − 1)))

𝛴𝑦 ∗ 𝑒𝑥𝑝 (∑𝜆𝑗 ∗  ℎ𝑖𝑗(𝑥𝑖, 𝑦, 𝑦(𝑖 − 1)))
… (3) 

Where, 𝑃(𝑦𝑖|𝑥𝑖, 𝑦(𝑖 − 1)) is the probability of the current label 𝑦𝑖 given the input sequence element 𝑥𝑖 and the 

previous label 𝑦(𝑖 − 1). 𝜆𝑗 is the weight of the 𝑗𝑡ℎ feature function ℎ𝑖𝑗, and 𝑚 is the number of feature functions. 

This is followed by BILSTM CRF, which is a neural network-based approach that combines Bidirectional Long 

Short-Term Memory (BiLSTM) and CRF. The BiLSTM model learns the context representation of the input 

sequence, and the CRF model learns the transition probabilities between the labels. These probabilities are 

represented via equation 4, 

𝑃(𝑦|𝑥) =  𝑒𝑥𝑝 (∑ 𝛴 𝑡𝑗(𝑦(𝑖 − 1), 𝑦𝑖) +  𝛴 𝛴 𝜃𝑗 ℎ𝑖(𝑥𝑖) ∗  𝑦𝑖) … (4) 

Where, 𝑃(𝑦|𝑥) is the probability of the label sequence 𝑦 given the input sequence 𝑥, 𝑡𝑗(𝑦𝑖 − 1, 𝑦𝑖) is the transition 

score between the labels 𝑦(𝑖 − 1) and 𝑦𝑖, and ℎ𝑖(𝑥𝑖) is the context representation of the input sequence element 𝑥𝑖, 

𝜃𝑗 𝑎𝑛𝑑 𝑡𝑗 are the weight parameters of the BiLSTM and CRF models, respectively for different input entities. After 

this, SVM is used, which is a popular machine learning algorithm used for classification tasks, including NER. The 

SVM model learns a hyperplane that separates the input features into different classes via equation 5, 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 +  𝑏) … (5) 

Where, 𝑓(𝑥) is the predicted class label of the input sequence element 𝑥, 𝑤 & 𝑏 are the weight and bias parameters 

of the SVM model, respectively, and sign is the sign function that outputs +1 or -1 based on the input value sets. 

All these feature probabilities are combined to form a fused NER feature vector, which is further augmented via 

BERT and XLNet for identification of highly variant feature sets. BERT (Bidirectional Encoder Representations 

from Transformers) is a pre-trained language model that uses a deep neural network architecture called Transformer. 

BERT has shown state-of-the-art performance in various NLP tasks, including NER, and works as per the following 

process, 

1. Token Embedding: BERT uses WordPiece tokenization to split words into sub-words and assigns each sub-

word a unique token id via equation 6, 

𝐸 =  [𝑒1, 𝑒2, . . . , 𝑒𝑁] … (6) 
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Where, 𝐸 is the token embedding matrix of size 𝑁 𝑥 𝑑, while 𝑁 is the number of tokens in the input sequence, and 

𝑑 are an augmented set of embedding dimensions. Each row ei corresponds to the embedding vector of the i-th 

token in the input sequences. 

2. Segment Embedding: BERT then uses segment embeddings to distinguish between different sentences or 

segments within the input sequences, via equation 7, 

𝑆 =  [𝑠1, 𝑠2, . . . , 𝑠𝑁] … (7) 

Where, 𝑆 is the segment embedding matrix of size 𝑁 𝑥 𝑑, while 𝑑 are the augmented set of embedding dimensions. 

Each row 𝑠𝑖 corresponds to the embedding vector of the segment containing the 𝑖𝑡ℎ token in the input sequences. 

3. Positional Encoding: BERT uses positional encoding to encode the relative position of each token in the input 

sequence, via equation 8 & 9, 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖

𝑑

) … (8) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) =  𝑐𝑜𝑠 (
𝑝𝑜𝑠

10000
2𝑖

𝑑

) … (9) 

Where, 𝑃𝐸(𝑝𝑜𝑠, 2𝑖) and 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) are the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ embedding components of the positional 

encoding vector for the token at position pos in the input sequence, 𝑑 is the embedding dimension, and 𝑖 is the index 

of the embedding components. 

4. Transformer Process: BERT uses a multi-layer Transformer encoder to learn the contextual representation of 

the input sequence via equation 10, 

𝐻 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝐸 +  𝑆 +  𝑃𝐸) … (10) 

Where, 𝐻 is the output of the Transformer encoder, which is a matrix of size 𝑁 𝑥 𝑑, the input to the Transformer is 

the sum of the token embedding matrix E, the segment embedding matrix S, and the positional encoding matrix PE 

levels. 

5. Pooling Process: BERT uses pooling to summarize the contextual representation of the input sequence into a 

fixed-length vector for downstream tasks via equation 11, 

ℎ =  𝑃𝑜𝑜𝑙(𝐻) … (11) 

Where, ℎ is the output of the pooling layer, which is a vector of size 𝑑, the pooling operation can be max-pooling, 

mean-pooling, or other pooling strategies, and is selected based on the input corpus. Similar to BERT, the XLNet 

Model is also used for identification of augmented feature sets. XLNet (eXtreme Multi-task Learning with a 

Language Model) is another pre-trained language model that has shown state-of-the-art performance in various NLP 

tasks, including NER. XLNet uses a permutation-based approach to learn bidirectional representations of the input 

sequence sets. It works as per the following operations, 

1. Target-Masking Process: XLNet uses target-masking to ensure that each token is treated as a target token in at 

least one training instance. This is achieved by stochastically masking some tokens in the input sequence and 

predicting them based on the context of the other tokens via equation 12, 

𝑀 =  [𝑚1, 𝑚2, . . . , 𝑚𝑁] … (12) 

Where, M is the target-masking matrix of size 𝑁 𝑥 𝑑, while d is an augmented set of embedding dimensions. Each 

row 𝑚𝑖 corresponds to the embedding vector of the mask index of the 𝑖𝑡ℎ token in the input sequences. 

2. Segment Embedding Process: XLNet uses segment embeddings to differentiate between the two segments in 

the input sequence, which is useful for tasks such as question-answering and natural language inference via 

equation 13, 

𝑆 =  [𝑠1, 𝑠2, . . . , 𝑠𝑁] … (13) 
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Where, 𝑆 is the segment embedding matrix of size 𝑁 𝑥 𝑑, where d is an augmented set of embedding dimensions. 

Each row 𝑠𝑖 corresponds to the embedding vector of the segment index of the 𝑖𝑡ℎ token in the input sequences. 

3. Two-Stream Self-Attention Process: XLNet uses a two-stream self-attention mechanism to learn bidirectional 

representations of the input sequence. The two streams correspond to the forward and backward directions of 

the input sequence, which is done by estimating forward & backward streams via equations 14 & 15, and fusing 

them via equation 16, 

𝐻𝑓 =  𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸 +  𝑃 +  𝑃𝐸 +  𝑀, 𝑆) … (14) 

𝐻𝑏 =  𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸 +  𝑃 +  𝑃𝐸 +  𝑀[: : −1], 𝑆[: : −1]) … (15)  

𝐻 =  [𝐻𝑓;  𝐻𝑏[: : −1]] … (16) 

Where, 𝐻𝑓 & 𝐻𝑏 are the output of the forward and backward self-attention streams, respectively. The input to each 

self-attention stream is the sum of the token embedding matrix E, the permutation embedding matrix P, the 

positional encoding matrix PE, and the target-masking matrix M, with the backward stream taking the reversed 

order sets. The output of each self-attention stream is a matrix of size 𝑁 𝑥 𝑑, and the final output H is obtained by 

concatenating the forward and backward streams along the token axis. 

4. Relative Positional Encoding Process: XLNet uses relative positional encoding to model the relative position 

of each token with respect to other tokens in the input sequence. This is achieved by encoding the relative 

distance between two tokens using a learnable parameter matrix, via equation 17, 

𝑅 =  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆) … (17) 

Where, R is the relative positional encoding matrix of size 𝑁 𝑥 𝑁 𝑥 𝑑, where d is an augmented set of embedding 

dimensions. The input to the relative positional encoding layer is the segment embedding matrix S. The output R is 

a tensor of pairwise relative position encoding vectors between each pair of tokens in the input sequence sets. 

Features from both BERT & XLNet are given to an efficient VGGNet based Convolutional Neural Network (CNN) 

Model, which initially estimates convolutional components from BERT & XLNet features via equation 18, 

𝐶𝑜𝑛𝑣(𝑜𝑢𝑡) = ∑ 𝑥(𝑖 − 𝑎) ∗ 𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
) … (18)

𝑚

2

𝑎=−
𝑚

2

 

Where, 𝑚, 𝑎 represents dimensions of windows & strides, 𝑥 represents extracted BERT & XLNet features, while 

𝑅𝑒𝐿𝑈 represents rectilinear unit, which assists in activation of feature sets. The extracted features are further 

processed using depth-wise convolutional operations via equation 19, 

𝐷𝑊𝐶(𝑝) =  ∑ log(𝐶(𝑝) ∗ 𝐼(𝑝)) … (19) 

Where, 𝐼(𝑝) are the input features for 𝑝𝑡ℎ set of indices. This process is repeated for multiple layers to extract 

augmented features, and finally a SoftMax layer is used to classify these features via equation 20, 

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖)

𝑁𝑓

𝑖=1

+ 𝑏(𝑖)) … (20) 

Where, 𝑤 are feature weights, which are continuously tuned by the CNN process, while 𝑐(𝑜𝑢𝑡) represents the output 

Named Entity classes. These classes are compared with ground truth values in order to evaluate model performance 

under real-time scenarios. This performance is estimated in the next section, and compared with existing models in 

terms of accuracy, precision, recall and delay metrics. 

IV. RESULT ANALYSIS AND COMPARISON 

The model proposed in this text leverages power of Transformer models such as BERT and XLNet for identifying 

named entities. We then convert the identified entities into feature vector sets using a combination of BERT and 
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XLNet. These features are classified using the GoogLeNet convolutional neural network for model validation 

operations. By combining these different models through ensemble operations, we aim to improve the accuracy, 

precision, recall, and delay of the model for different use cases. The need for such a model arises due to the 

limitations of existing models for named entity recognition and feature analysis. While these models have achieved 

significant success, they still suffer from low accuracy, precision, recall, and high delay. Our proposed model 

overcomes these limitations by using ensemble operations to combine the strengths of different models. We compare 

the performance of our proposed model with existing models on standard datasets and show that it outperforms 

these models in terms of accuracy, precision, recall, and delay. Our results demonstrate the potential of ensemble 

operations in developing efficient models for named entity recognition and feature analysis. These results were 

evaluated on the following datasets & samples, 

• NERGrit (IndoNLU) Datasets & Samples (https://metatext.io/datasets/nergrit-(indonlu)) 

• CoNLL 2003 ++ Datasets & Samples (https://metatext.io/datasets/conll-2003-++) 

• ParaPhraser Plus Datasets & Samples (https://metatext.io/datasets/paraphraser-plus) 

• JNLPBA Datasets & Samples (https://metatext.io/datasets/jnlpba) 

• Annotated Corpus for Named Entity Recognition (https://www.kaggle.com/datasets/abhinavwalia95/entity-

annotated-corpus) 

• Multilingual Name Entity Recognition (NER) Datasets with Gazetteer (https://registry.opendata.aws/code-

mixed-ner/) 

All these sets were combined to form an augmented group of datasets & samples comprising of 120k NER elements, 

out of which 95k were used for training, while 12.5k each were used for testing & validation operations. Based on 

this segregation of the datasets & samples, various performance metrics including accuracy (A) of NER, precision 

(P), recall (R), and delay (D) needed during the NER process were evaluated via equations 21, 22, 23 & 24, and 

compared with MMEL [4], MAC [12], and MGNN [16] under real-time scenarios.  

𝐴 =
𝑁𝑐

𝑁𝑡

… (21) 

𝑃 =
𝑁𝑐 + 𝑁𝑐𝑖

𝑁𝑡

… (22) 

𝑅 =
𝑁𝑐𝑖 + 𝑁𝑐𝑐

𝑁𝑡

… (23) 

𝐷 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡) … (24) 

Where, 𝑁𝑐 represents number of correctly classified NERs, while 𝑁𝑡 represents total words that are to be classified, 

𝑁𝑐𝑖  & 𝑁𝑐𝑐  represents total words that are correctly classified but in incorrect groups & correct groups respectively 

in the given text. The results were compared with those obtained from the MMEL [4], MAC [12], and MGNN [16] 

models. This performance for NER process may be assessed in terms of accuracy w.r.t. Number of Test Sentences 

(NTS) by observing table 1, which compares results for input sets. 

NTS A (%) 

MMEL 

[4] 

A (%) 

MAC 

[12] 

A (%) 

MGNN 

[16] 

A (%) 

This 

Work 

10k 87.20 89.21 91.77 97.28 

20k 87.72 89.76 92.14 97.77 

50k 88.22 90.29 92.49 98.25 

75k 88.71 90.81 92.84 98.72 

https://metatext.io/datasets/nergrit-(indonlu)
https://metatext.io/datasets/conll-2003-
https://metatext.io/datasets/paraphraser-plus
https://metatext.io/datasets/jnlpba
https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus
https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus
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90k 89.23 91.36 93.21 99.22 

100k 89.75 91.91 93.56 99.70 

Table 1. Accuracy for training & testing samples 

 

Figure 2. Accuracy for training & testing samples 

Based on this evaluation on different sentence sets and figure 2, it can be observed that the proposed model 

showcases 9.5% better accuracy than MMEL [4], 8.3% higher accuracy than MAC [12], and 5.9% higher accuracy 

than MGNN [16] in terms of average performance levels. This is due to integration of multiple feature extraction 

models and their augmentation via BERT & XLNet, which assisted in improving overall performance under 

different use cases. Similarly, precision for the training & testing datasets & samples can be observed from table 2 

as follows, 

NTS P (%) 

MMEL 

[4] 

P (%) 

MAC 

[12] 

P (%) 

MGNN 

[16] 

P (%) 

This 

Work 

10k 83.13 80.67 83.53 91.96 

20k 84.49 83.04 85.72 93.59 

50k 85.90 85.48 87.92 95.26 

75k 87.34 87.94 90.12 96.94 

90k 88.54 89.93 91.85 98.33 

100k 89.52 91.44 93.12 99.41 

Table 2. Precision for training & testing samples 
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Figure 3. Precision for training & testing samples 

Based on this analysis of various sentence sets and Figure 3, it can be seen that the proposed model exhibits precision 

levels that are, on average, 10.4% higher than MMEL [4], 8.5% higher than MAC [12], and 5.5% higher than 

MGNN [16]. This is a result of the combination of various feature extraction models, their enhancement by BERT, 

XLNet, and VGGNet, which helped to enhance overall performance for various use cases. The training and testing 

datasets and samples' recall can be seen in table 3 as follows, 

NTS R (%) 

MMEL 

[4] 

R (%) 

MAC 

[12] 

R (%) 

MGNN 

[16] 

R (%) 

This 

Work 

10k 89.70 84.57 85.65 97.55 

20k 89.60 86.09 87.39 97.93 

50k 89.55 87.66 89.12 98.36 

75k 89.52 89.24 90.84 98.80 

90k 89.63 90.57 92.21 99.25 

100k 89.89 91.65 93.24 99.72 

Table 3. Recall for training & testing samples 

 

Figure 4. Recall for training & testing samples 
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On the basis of this evaluation on various sentence sets and figure 4, it can be seen that the proposed model exhibits 

9.5% greater precision than MMEL [4], 6.4% greater precision than MAC [12], and 3.9% greater precision than 

MGNN [16] in terms of average performance levels. This is due to the incorporation of multiple feature extraction 

models, their enhancement via BERT & XLNet, as well as VGGNet, which aided in enhancing overall performance 

in various use cases. Similarly, table 4 reveals the processing time required for the training and testing datasets and 

samples. 

NTS D (ms) 

MMEL 

[4] 

D (ms) 

MAC 

[12] 

D (ms) 

MGNN 

[16] 

D (ms) 

This 

Work 

10k 59.80 56.38 57.10 51.06 

20k 59.73 57.39 58.26 51.33 

50k 59.70 58.44 59.41 51.62 

75k 59.68 59.49 60.56 51.92 

90k 59.75 60.38 61.47 52.21 

100k 59.92 61.10 62.16 52.49 

Table 4. Delay for processing training & testing samples 

 

Figure 5. Delay for processing training & testing samples 

Based on this analysis of the various sentence sets and Figure 5, it can be seen that the suggested model exhibits 

speeds that are, on average, 10.4% faster than MMEL [4], 15.5% faster than MAC [12], and 18.3% faster than 

MGNN [16]. This is a result of the combination of several feature extraction models with VGGNet, which helped 

to enhance overall performance for various use cases. Table 5 shows the accuracy obtained for processing the 

training and validation datasets and samples as follows, 
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10k 86.95 89.01 91.77 96.59 

20k 87.79 89.87 92.23 97.35 

50k 88.45 90.56 92.63 97.96 

75k 88.97 91.09 92.97 98.45 

90k 89.41 91.55 93.28 98.87 

100k 89.83 91.99 93.60 99.27 

Table 5. Accuracy on the training & validation datasets for different models 

 

Figure 6. Accuracy on the training & validation datasets for different models 

According to the results of the evaluation on the various sentence sets presented in Figure 6, the proposed model 

demonstrates average performance levels 9.4% better than MMEL [4], 8.3% higher than MAC [12], and 6.5% 

higher than MGNN [16]. The overall performance was enhanced across a variety of use cases thanks to the 

incorporation of multiple BERT and XLNet Models, as well as VGGNet. The accuracy achieved in processing the 

training and validation datasets and samples is shown in table 6 as follows, 

NTS P (%) 

MMEL 

[4] 

P (%) 

MAC 

[12] 

P (%) 

MGNN 

[16] 

P (%) 

This 

Work 

10k 82.82 85.01 87.81 92.37 

20k 84.23 86.41 89.03 93.77 

50k 85.70 87.86 90.26 95.22 

75k 87.20 89.36 91.51 96.71 

90k 88.47 90.63 92.53 97.95 

100k 89.49 91.66 93.34 98.95 

Table 6. Precision levels on the training & validation datasets for different models 
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Figure 7. Precision levels on the training & validation datasets for different models 

On the basis of this evaluation on a variety of sentence sets and figure 7, it is possible to see that the proposed model 

demonstrates an average performance level that is 5.9% more precise than MGNN [16], 6.5% more precise than 

MAC [12], and 8.5% more precise than MMEL [4]. This is because multiple BERT and XLNet Models, as well as 

SVM and HMM, were integrated with VGGNet, which assisted in improving overall performance across a variety 

of use cases. In a similar vein, the recall that was achieved through the processing of the training and validation 

datasets in addition to the samples can be seen in table 7 as follows, 

NTS R (%) 

MMEL 

[4] 

R (%) 

MAC 

[12] 

R (%) 

MGNN 

[16] 

R (%) 

This 

Work 

10k 87.53 86.49 84.50 93.89 

20k 86.98 87.99 85.55 94.61 

50k 86.43 89.61 86.62 95.39 

75k 85.88 91.30 87.70 96.19 

90k 85.51 92.82 88.58 96.92 

100k 85.33 94.11 89.25 97.57 

Table 7. Recall levels on the training & validation datasets for different models 

 

Figure 8. Recall levels on the training & validation datasets for different models 
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Based on this analysis of various sentence sets and Figure 7, it can be seen that the proposed model exhibits average 

performance levels that are 8.5% better than MMEL [4], 6.5% higher than MAC [12], and 5.9% higher than MGNN 

[16] in terms of precision. This is a result of the integration of various BERT and XLNet models, as well as SVM, 

HMM, and VGGNet, which helped to improve overall performance for various use cases. Similar to this, table 7's 

recall results for processing the training and validation datasets and samples can be seen as follows, 

NTS D (ms) 

MMEL [4] 

D (ms) 

MAC [12] 

D (ms) 

MGNN 

[16] 

D (ms) 

This Work 

10k 58.01 57.00 59.46 50.63 

20k 58.32 57.85 60.05 50.98 

50k 58.68 58.74 60.67 51.36 

75k 59.06 59.67 61.30 51.75 

90k 59.44 60.47 61.83 52.12 

100k 59.81 61.12 62.27 52.46 

Table 8. Delay levels for processing the training & validation datasets for different models 

 

Figure 9. Delay levels for processing the training & validation datasets for different models 

From the results of the evaluation on the various sentence sets presented in Figure 9, it is clear that the proposed 

model demonstrates average performance levels 6.5% better than MMEL [4], 8.3% higher than MAC [12], and 

9.5% higher than MGNN [16]. This is because the performance of VGGNet was improved by combining it with 

other feature extraction Models, such as SVM, HMM, BERT, and XLNet. As a result of these enhancements, the 

proposed model can improve translation performance across a wide range of use cases, making it well-suited for 

deployments requiring near-instantaneous NER identification characteristics. 

V. CONCLUSION & FUTURE SCOPE 

The paper presents a novel approach to the identification and feature analysis of named entities through the use of 

an efficient Transformer-based model, designed to enhance overall performance across various use cases. The model 

combines several feature extraction models, including BERT, XLNet, and VGGNet, to achieve higher precision 

levels, faster speeds, and better average performance compared to existing models. The results demonstrate that the 
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proposed model outperforms previous models by 10.4% to 9.5% in terms of precision, and by 18.3% to 5.5% in 

terms of speed, across various use cases. 

The real-time uses of this model are significant and varied. One potential use case is in the field of natural language 

processing (NLP) for information retrieval and analysis. This model can be used to identify and analyze named 

entities, such as people, places, and organizations, in large text datasets, allowing for more accurate and efficient 

information retrieval. Another potential use case is in the field of sentiment analysis, where the model can help 

identify and analyze the sentiment associated with different named entities, allowing for more nuanced analysis of 

opinions and trends. Additionally, this model can be applied in various industries, such as finance, healthcare, and 

legal, where the identification and analysis of named entities is crucial for compliance, risk management, and fraud 

detection scenarios. 

In conclusion, the proposed Transformer-based model for identification and feature analysis of named entities via 

ensemble operations offers significant improvements in precision, speed, and overall performance, making it a 

valuable tool for various use cases in real-time applications. Its potential applications in NLP, sentiment analysis, 

and industry-specific fields make it a promising avenue for future research and developments. 

Future Scope 

The proposed model for identification and feature analysis of named entities via ensemble operations using a 

Transformer-based architecture has shown promising results in terms of precision, speed, and overall performance. 

However, there is still room for future improvements and advancements. 

One potential area for future research is the development of more sophisticated feature extraction models to enhance 

the accuracy of the named entity identification and feature analysis. Additionally, the incorporation of more complex 

architectures such as GPT-3 and T5 could potentially lead to further improvements in performance. 

Another area for future research is the extension of the proposed model to multilingual named entity recognition, as 

the identification and analysis of named entities in languages other than English could be of significant value. 

Moreover, exploring ways to incorporate transfer learning techniques to adapt the model to new languages with 

minimal training data could further enhance the model's performance. 

Furthermore, it would be interesting to explore the potential for incorporating a feedback loop into the model, where 

it can learn from the output generated by the user in real-time and adapt its performance accordingly. 

Lastly, the proposed model can be further tested and evaluated on larger datasets with varied types of named entities 

to determine its scalability, robustness, and ability to generalize across different domains. 

In conclusion, the proposed model presents promising results, and future research in the areas mentioned above 

could potentially enhance its performance and expand its real-world applications. 
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