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Abstract:Large Language Models (LLMs) originally developed for tasks like text generation and translation 

have shown successful potential in capturing temporal and complex dependencies, making them suitable for 

different tasks. In this study, we want to propose a LLMs-based Heating Load (HL) and Cooling Load (CL) 

estimation model based on residential building characteristics. At first, a prompt generation module was 

proposed to convert in-hand tabular data to useful prompts, and then the hugging face pre-trained Bart-base 

model was re-trained to create a new prediction tool for residential buildings HL and CL prediction. In 

addition, to improve the performance of the proposed LLM-based model, a new data augmentation module 

was proposed based on Generative Adversarial Network (GAN) and Conditional GAN to increase the size of 

training data. The proposed model combines Data Augmentation and Prompt generation Modules with LLM 

and is named DAPM-LLM. The prediction result showed that the DAPM-LLM can predict energy usage 

using linguistic prompts, and the data augmentation module improved model performance by 600% and 

300% in HL and CL prediction, respectively. The comparison of its results with other works shows its 

superiority over most of them except ensemble models. Using larger pre-trained models and sufficient data 

will enable these models to outperform ensemble models too. The results showed that the DAPM-LLM 

model can be successfully used in solving complex problems such as energy consumption prediction, and can 

be used by engineers and designers to select the best design/plan for building construction by using linguistic 

sentences. 
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INTRODUCTION 

Reducing energy usage in residential building is a major concern of many engineers and designers 

from the entire world that consume 39% of worldwide energy production [1]. They looking for efficient 

tools to help them in designing energy efficient buildings. Available tools use physical models or data-

driven models to help them with energy usage estimation [2]. With surprising progress in Machine 

Learning (ML) and artificial intelligence (AI), many powerful tool was developed to estimate and predict 

energy usage based on design characteristics [3]. If we can develop a tool that can predict the amount of 

energy consumption based on building structural characteristics, then we can help engineers and designers 

to choose the best design from the point of view of energy consumption to choose the best design among 

unique designs. 

Accurately predicting amount of required heating and cooling loads in residential buildings is crucial 

for achieving energy efficiency, reducing environmental impact, and improving occupant comfort. With 

the rise of smart buildings and cities, the ability to forecast energy demands has become essential in 

optimizing heating, ventilation, and air conditioning (HVAC) systems. Traditional approaches to energy 

load prediction have relied on a combination of statistical and machine-learning methods [3], which have 

produced promising results [4] but are often limited by their reliance on feature engineering and domain-

 
1 

1 Computer Engineering Department, Urmia University, Urmia, Iran 

2 Information Technology and Computer Engineering Department, Urmia University of Technology, 

Urmia, Iran 

Corresponding Author: p.rashidi@uut.ac.ir 

 

mailto:p.rashidi@uut.ac.ir


J. Electrical Systems 20-11s (2024): 1926-1940 

 

1927 

 

specific knowledge. 

The state-of-the-art ensemble models in Heating load (HL) and Cooling Load (CL) prediction [4] in 

residential buildings, combining multiple ML models to address the nonlinearities and complexities of 

energy data [5, 6]. However, ensemble and other published ML models that used in-hand dataset [5], such 

as Gaussian processes (GP) [6], eXtreme Gradient Boosting (XGB) [7, 8], Grid Search-tuned XGB (GS-

XGB) [4], Adaptive Boosting (ADA) and XGB, optimized by the Covariance Matrix Adaptation Evolution 

Strategy (CMAES) method (XACM) [9], meta-heuristic ensemble model [10], support vector regressor 

(SVR) + artificial neural network (ANN) [11], Bayesian-XGB [12], Random Forest (RF) [13, 14], 

Evolutionary Multivariate Adaptive Regression Splines (EMARS) [15],  Multilayer Perceptron network 

tuned with Particle Swarm Optimization (MLP-PSO) [16], genetic programming approach (GPA) [17], 

Evolutionary Neural Machine Inference Model (ENMIM) [10], SVR [18], Regression Tree Ensemble 

(SRTE) [19], MLP tuned with PSO and Grey Wolf Optimizer (PSOGWO-MLP) [20] can become 

computationally expensive and may struggle to adapt to dynamic and unseen data patterns, especially 

when dealing with large, real-time datasets. In addition, engineers must have the proper technical 

knowledge to use them . 

ChatGPT, AI-based chatbot created by open AI, is powered by LLM. As a result, it can be said that 

GPT Chat is able to understand human-like answers. Therefore, it can be said that the most important 

feature of GPT chat is that it can have a conversation with you just like when you are talking to a very 

knowledgeable person. This chatbot can talk to you about various topics, from history to philosophy and 

culture. In addition, it can help you in many other areas, such as passing professional exams, composing 

poetry, and writing code, among other abilities [21]. 

Recent developments in natural language processing (NLP) and deep learning have led to innovative 

approaches for managing sequential data, including energy load time series [22]. Promptcast, a framework 

that uses LLMs for energy time sreies prediction [23], LLM-based automatic building modeling platform 

in EnergyPlus [24], autoregressive time series predictor based on LLM for predicting a future value of 

time series [25], well-pre-trained LLMs, such as Claude 3, GPT-4, and Llama2 for addressing both linear 

and non-linear regression tasks [26] are successful application of using LLMs in solving real world 

complicated tasks. 

Using LLM models in solving complex real world engineering problems is still in its infancy and 

requires a lot of efforts. The performance improvement of pre-trained LLM models depends highly on the 

size of data for re-training in problem context. The in-hand  tabular data contains only 768 samples of 

residential building data [5]. To increase the size of data, and improving re-training performance, data 

augmentation techniques can generate new but dependent data [2]. Data augmentation techniques have 

been successfully applied to image data, leading to significant progress and improvements [27]. But, the 

in-hand data is tabular and includes numerical and categorical data. Therefore, it is necessary to consider 

tabular data augmentation techniques [28, 29]. The Table-GAN generates synthetic data using the vanilla 

GAN approach (VGAN) [30]. However, the inability of Table-GAN to regulate synthetic data creation 

may exacerbate imbalances in categorical features. The Conditional Tabular GAN (CTGAN) [31] 

and Synthetic Minority Over-sampling Technique (SMOTE) [32] have been introduced to solve these 

issues. The GANBLR changed vanilla GAN architectures using a Bayesian network for both the generator 

and discriminator [33]. The Tabular Variational Autoencoder (TVAE), a modified version of the VAE for 

tabular data, significantly improved classification task performance [31]. The TimeGAN addresses the data 

scarcity problem and enhances the accuracy of heating load prediction models [34]. Transfer learning-

based data fusion is more efficient than direct data fusion and enhanced data augmentation strategies for 

optimal results [35]. Conditional Variational Autoencoders (CVAE) generated synthetic but potentially 

valuable data for constructing an energy forecast model for the next 24 hours [36, 37]. In this study, based 

on initial evaluation of different methods, a new data augmentation framework has been proposed based on 

GAN and CGAN combination to increase the size of the dataset, and use it for LLM re-training, aiming to 

have a more accurate prediction model. 

These LLM methods bypass the need for extensive feature engineering, and can directly process the 

data, using linguistic descriptions, making it an attractive solution for predicting energy loads. This paper 
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proposes a novel approach for predicting heating and cooling loads in residential buildings using LLMs for 

the first time, based on our knowledge. By leveraging the pre-trained knowledge and modeling capabilities 

of LLMs, we aim to develop and proposed a new LLM-based tool for HL and CL prediction to improve 

prediction accuracy and reduce the dependence on domain-specific feature engineering. This approach 

builds on existing research in energy load forecasting, advanced data augmentation techniques, and 

explores how state-of-the-art NLP techniques can be adapted for HL and CL prediction based on in-hand 

tabular data. 

The rest of this work is organized: Section 2 discuss related works. Section 3 discusses the 

methodlogy, the proposed model structure, dataset, background information, and the structure of the new 

synthetic data generation tools. Section 4 provides model implementation results and its comparison with 

similar works. Section 5 discusses the results, and Section 6 presents the conclusions. 

 

RELATED WORK 

Recent developments in natural language processing (NLP) and deep learning have led to innovative 

approaches for managing sequential data, including energy load time series. Large Language Models 

(LLMs), originally developed for tasks like text generation and translation, have shown potential in 

capturing temporal dependencies, making them suitable for a complex task like time-series forecasting. 

Xue and Salim [22] using a novel approach based on existing language models have presented a tool for 

predicting the energy consumption load. They enable accurate and dynamic prediction of energy 

consumption through configuration, fine-tuning and re-training of existing language models. Their 

approach by using the power of LLMs has opened a new horizon in solving complex engineering 

problems. Their proposed approach and its accuracy and efficiency have been investigated and confirmed 

using real data. They used Bart, Bigbird, and Pegasus and showed that many times the Pegasus 

outperforms other models [22]. Also, Xue and Salim introduced Promptcast, a framework that uses LLMs 

for time-series forecasting by leveraging natural language prompts. They used different LLMs to check the 

efficeiny of promptcast tools and showed that Bigbird and RoBERTa outperformed other models in energy 

prediction [23]. The application of LLMs for time-series forecasting has also been explored in other 

domains, such as human mobility prediction. Xue et al. [38] demonstrated how LLMs can model both 

spatial and temporal dependencies in mobility data, which suggests their applicability in energy 

forecasting, where similar dependencies exist. 

Jiang et al. for providing the automatic building modeling platform in EnergyPlus software used LLM 

[24]. Their model changes descriptive information of buildings such as usage scenarios, equipment loads, 

and different geometries into linguistic descriptions and uses them to reset and train the linguistic model. 

Through the process of fine-tuning, the LLM, specifically T5, transforms human descriptions into 

EnergyPlus modeling files. Subsequently, it produces outputs that are appropriate for users by utilizing the 

API integrated within the Eplus-LLM platform. 

Liu et al. employed multi-step generation capability of LLMs and the general-purpose token transfer, 

and proposed AutoTimes [25]. AutoTimes is proposed to work as autoregressive time series predictor 

based on LLM ability and predict a future value of time series successfully. 

Vacareanu et al. examine the feasibility of addressing both linear and non-linear regression tasks 

within a specified context using well-pre-trained LLMs, such as Claude 3, GPT-4, and Llama2. Their 

research indicates that these models are capable of effectively solving regression tasks, comparable to 

traditional supervised techniques like RF, Bagging, and Gradient Boosting, and sometimes, they even 

surpass the performance of these methods [26]. 

 

METHODOLOGY 

The proposed LLM-Based HL and CL prediction models, named DAPM-LLM, contains the 

following steps which are graphically shown in Figure 1. 

1- After loading the original in-hand data, used a 10-fold cross-validation method to split dataset 
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into training and testing data. 

a. Use 9-fold data for model training and one remaining fold for model testing. 

b. Repeat this process ten times to test model accuracy and generality against each sample of 

data 

2- Pass training data into the proposed data augmentation module 

a. The proposed models’ performance will be calculated with and without data augmentation. 

3- Use the developed prompt generation module to convert building tabular data into sentences that 

could be processed by the LLM model. 

4- Fine-tune the pre-trained Bart-Base model using original or newly generated prompt data. 

5- Test model performance with unseen test fold and calculate performance metrics. 

6- Repeat steps 1 to 5, ten times and finally analyze the model results, and compare it with other 

published works. 

 

Figure 1: The proposed DAPM-LLM model structure 

 

Dataset  

The selected dataset contains structural charactristics of 768 buildings [5]. Each building has eight 

features: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, 

and glazing area distribution. It contains the HL and CL consumed in kilowatts (kW) for each building. 

The materials used in the buildings were identical and thus excluded from the analysis. Researchers have 

widely used this dataset to predict HL and CL [4, 11, 13]. The main reason of selecting this dataaset is that 

it containg building design structure which could be used for selecting best desing/plan for building 

counstruction. Although other datasets have many records, but they cannot be used for the purpose of this 

research, which is to select the best design based on physical characteristics, because they do not contain 

structural information about the buildings. 

To create a sample of 720 buildings, the researchers considered 12 buildings with four distinct 

orientations, five glazing area distributions per building, and three glazing area variations for each 

building, resulting in a sample size of 12 * 4 * 5 * 3 = 720. They also included four glazing-free 

orientations for each building, thus generating 720 + 12 * 4 = 768 distinct simulated buildings. 

Model Training and Testing 

The 10-fold cross-validation (CV) technique was employed within this work for model training and 

testing at each iteration. In a 10-fold CV, all data is split into ten folds (use 9 folds for training, and the 

remaining one fold for testing). This process is repeated 10 times, ensuring the model is tested against 
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different unseen folds in each iteration, testing its generality, and the average performance of these ten 

iterations will be reported as the model performance metrics rather than relying on the best fold testing. 

The proposed LLM model performance will be checked with and without data augmentation. 

Proposed Data Augmentation Module 

To improve LLM-Based HL and CL prediction performance and reduce the time and cost of model 

re-training, in this study a new data augmentation module was proposed to generate new synthetic data.  

After an initial evaluation of different data augmentation methods, such as SMOTE [32] and  VAE 

[31], we selected the GAN and CGAN methods to augment the data and generate new synthetic samples. 

Based on our knowledge, in this study, the GAN and CGAN and their combination are used for the first 

time to generate new data to investigate the performance of energy consumption prediction models. Many 

libraries and methods are available for tabular data augmentation [3]. In this work, we used the TabGan 

library provided by Ashrapov, which offers three different methods—GAN, Conditional GAN, and 

diffusion—for generating new data [39]. The main reason for selecting GAN and CGAN is their special 

structure that generates more valuable and relevant new data samples, which was discussed in following 

subsections. 

Generative Adversarial Networks (GANs) 

The most common application of Generative Adversarial Networks (GANs) is generating synthetic 

image data. However, they can now also be used to generate synthetic tabular data. As shown in Fig. 2, a 

GAN comprises two deep networks, a generator and a discriminator, which train simultaneously [40]. The 

generator network creates data that mimics actual data, aiming to produce outputs that the discriminator 

cannot distinguish from actual data. If the discriminator detects differences, both networks are updated to 

help generate more accurate and realistic data. 

 
  

Figure 2: Architecture of GAN[40] 

 

The value function V (D, G) of the GAN can be defined: Z is the noise space, G(z) represents a 

mapping from the noise space to the generated data space, and X is the original data space. The V (D, G) is 

defined as  equation (1) [40]: 

𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝data (𝑥)
[log⁡ 𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧)[log⁡(1 − 𝐷(𝐺(𝑧)))]                                       (1) 

Where z is the noise from the noise space Z, pz(z) is defined as a prior on the input noise variables, G 

is a differentiable function represented by a multilayer perception, x is the sample from the original space 

X, pdata(x) is the distribution of the original data, and D(x) describes the possibility that x comes from the 

original data rather than the generator. 

This objective is maximized by the discriminator and minimized by the generator through training. In 

other words, by resolving the following optimization problem, the generator and discriminator are trained: 

 

min
G
 max
D

 V(D, G) = EX∼pdata (x)
[log D(x)] + Ez∼pz(z)[log⁡(1 − D(G(z)))]                          (2) 

The discriminator and generator play a single two-step game to min-max V (D, G) to obtain a well-
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behaved GAN. The discriminator (D) is optimized while the generator (G) is fixed to maximize 

discrimination accuracy. Subsequently, the generator G is tuned to minimize discrimination accuracy while 

the discriminator D is fixed. The procedure is carried out repeatedly. When the generator is known, V (D, 

G) in continuous space can be explained: 

 

𝑉(𝐷)⁡= ∫ 
𝑥

 𝑝data (𝑥)log⁡(𝐷(𝑥))𝑑𝑥 + ∫ 
𝑧

 𝑝𝑧(𝑧)log⁡(1 − 𝐷(𝐺(𝑧)))𝑑𝑧

⁡= ∫ 
𝑥

  [𝑝data (𝑥)log⁡(𝐷(𝑥)) + 𝑝𝑔(𝑥)log⁡(1 − 𝐷(𝑥))]𝑑𝑥
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 

Where the generative distribution, pg(x), is picked up from the initial data set, x.  

The discriminator's optimal value, 𝐷𝐺
∗(𝑥), is found in equation (4) when the generator is fixed: 

𝐷𝐺
∗(𝑥) =

𝑝data (𝑥)

𝑝data (𝑥)+𝑝𝑔(𝑥)
                                                                       (4) 

By utilizing the original data as input, the discriminator estimates the conditional probability of the 

input data by maximizing the log-likelihood. Therefore, the min-max game in equation (2) is restructured 

as:  

𝐶(𝐺) =⁡max
𝐷

 𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝data (𝑥)
[log

𝑝data (𝑥)

𝑝data (𝑥) + 𝑝𝑔(𝑥)
]

+𝐸𝑥∼𝑝𝑔 [log⁡
𝑝𝑔(𝑥)

𝑝data (𝑥) + 𝑝𝑔(𝑥)
]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)

 

The global optimal solution of V(D, G) and the minimum value of the virtual training criterion C(G) 

will be reached if and only if pdata = pg. 

Conditional Tabular GAN (CGAN) 

A Conditional Tabular GAN (CTGAN) is a GAN-based technique that uses sample rows from a 

tabular data distribution to model its distribution. Xu et al. developed mode-specific normalization to 

address the multimodal and non-Gaussian distribution challenges in CTGAN creation [31]. They 

introduced a conditional generator to manage unbalanced discrete columns and trained a high-quality 

model using multiple state-of-the-art techniques and fully connected networks.  

In a Conditional GAN (CGAN), the discriminator and generator are conditioned on additional 

information y. This auxiliary data, such as class labels or information from different modalities, is used to 

condition the GAN [41]. The conditioning is implemented by incorporating y as an extra input layer to the 

discriminator and generator. The generator uses a joint hidden representation composed of the prior input 

noise pz(z) and y. The adversarial training framework gives the generator significant flexibility in creating 

this hidden representation. 

By using the proposed data augmentation module, new 4057 synthetic sample data was generated and 

are combined with 691 samples in the training data, creating a large dataset containing 4748 samples. This 

new dataset will be utilized for tuning, training, and evaluating the proposed LLM-Based model. Within 

the proposed structure, the new synthetic dataset will be fed into the Prompt engineering module to 

generate sentences. 

Proposed Prompt Generation Module 

In this study, to convert tabular data to linguistic sentences, a prompt module was developed. This 

module receives tabular data sample and generates a sentence that will be used for model retraining. Table 

1 shows how it converted tabular data to prompt sentences. Then, this sentence will feed into tokenizer 

part to LLM model to be used for model re-training. 
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Table 1: Sample of tabular data converted to prompt 

Original 

Data 

X1 X2 X3 X4 X5 X

6 

X7 X

8 

Y1 Y2 

0.71 710.5 269.5 220.5 3.5 4 0 0 6.37 11.29 

HL 

Prompt 

Sentence 

The Building Relative compactness is 0.71, Surface area is 710.5, Wall 

area is 269.5, Roof area is 220.5, Overall height is 3.5, Orientation is 4.0, 

Glazing area is 0.0, and Glazing area distribution is 0.0. What will be the 

heating load? 

The 

heating 

load will 

be 6.37 

CL 

Prompt 

Sentence 

The Building Relative compactness is 0.71, Surface area is 710.5, Wall 

area is 269.5, Roof area is 220.5, Overall height is 3.5, Orientation is 4.0, 

Glazing area is 0.0, and Glazing area distribution is 0.0. What will be the 

cooling load? 

The cooling 

load will be 

11.29 

 

Fine-tuning pre-trained LLM Model for HL and CL Prediction 

Despite successful usage of different LLMs in time-series and energy load prediction and superiority 

of Pegasus [22], Bigbird and RoBERTa [23] over other models , based on in-hand hardware and GPU 

resources (free version of Google CoLab and GTX 1080 TI GPU with 11G memory), we selected 

Facebook Bart-Base model for HL and CL prediction task, and analyzed its performance with proposed 

data augmentation module in different cases.   

BART is a sequence-to-sequence model that employs a transformer architecture, featuring a 

bidirectional encoder akin to BERT and an autoregressive decoder similar to GPT, developed by Hugging 

Face. The pre-training of BART involves two key processes: (1) introducing noise to the text through a 

random noising function, and (2) training a model to restore the original text. This model demonstrates 

notable effectiveness when fine-tuned for text generation tasks, such as summarization and translation, 

while also performing admirably in comprehension tasks, including text classification and question 

answering [42]. 

Testing Model Performance Metrics 

Several statistical criteria were calculated to evaluate the performance and accuracy of prediction 

models. These metrics assess how closely the predicted values align with the actual values. Mean Absolute 

Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) are widely recognized 

performance evaluation metrics for continuous target values [4]. Smaller values of these metrics indicate 

that the model predicts the target values with low error and high accuracy. These metrics will be calculated 

based on the equation (6) to (8): 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑜𝑖 − 𝑦𝑖|⁡
𝑁
𝑖=1                                                           (6) 

𝑀𝑆𝐸 = ⁡
1

𝑁
⁡∑ (𝑜𝑖 − 𝑦𝑖)

2⁡𝑁
𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                          (7) 

𝑅𝑀𝑆𝐸 =⁡√𝑀𝑆𝐸                                                                     (8) 

Where N is the number of samples in the testing dataset, 𝑜𝑖  is the predicted (estimated) value of HL or 

CL by the proposed model, 𝑦𝑖  is the actual value of HL or CL, and 𝑦𝑖̅ is the mean value of the actual value 

of HL or CL. 

To have a model fair comparison, the model overall performance is average of 10 different runs based 

on 10-fold CV. 

 

RESULTS 

Different parameters must be defined in training and retraining LLM models. Based on in-hand 

resources and different tries, we selected epoch = 50 to re-train the proposed model on the original data 

and generated data using the proposed data augmentation module.  
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HL Prediction Results  

Table 2 shows the performance of the proposed HL prediction model based on LLM on the original 

and newly generated data based on 10-fold cross-validation. 

Table 2: HL prediction performance with and without data augmentation module  
MAE MSE RMSE 

Fold Original 

Data 

New 

Data 

Original 

Data 

New 

Data 

Original 

Data 

New 

Data 

1 2.13 0.40 7.35 0.35 2.71 0.60 

2 2.82 0.39 14.94 0.33 3.87 0.58 

3 1.30 0.37 3.40 0.32 1.85 0.57 

4 2.02 0.40 7.25 0.34 2.69 0.58 

5 2.81 0.36 12.85 0.35 3.58 0.59 

6 1.92 0.35 6.85 0.29 2.62 0.54 

7 2.72 0.39 12.90 0.34 3.59 0.58 

8 1.52 0.33 4.59 0.25 2.14 0.50 

9 2.70 0.28 12.55 0.20 3.54 0.45 

10 1.71 0.32 5.31 0.30 2.30 0.54 

Avg 2.16 0.36 8.80 0.31 2.89 0.55 

 

The MAE varies between 1.30 and 2.82 when re-training the model on the original data, while it 

varies between 0.28 and 0.40 when using the data augmentation module. The presented results indicated 

that the proposed data augmentation module helped model performance improvement and its stability on 

all testing folds. Also, by using data augmentation module, the model average performance is 0.36 which 

improved overall performance by 600%. 

Increasing epoch size or training iteration rounds will affect model performance. Table 3 shows HL 

prediction performance with different epochs, varying from 30 to 300. The evaluation was conducted when 

fold 10 was considered as the testing fold, and the other nine folds were used for model training and data 

generation. The presented result shows increasing epoch size helped model performance improvement. 

 

Table 3: HL prediction performance without data augmentation module with different epoch size 

Epoch MAE MSE RMSE 

30 2.23 10.79 3.28 

50 1.71 5.31 2.30 

80 0.51 0.72 0.85 

100 0.43 0.77 0.88 

120 0.37 0.33 0.58 

150 0.36 0.31 0.56 

180 0.32 0.26 0.51 

200 0.27 0.23 0.48 

250 0.28 0.22 0.47 

300 0.30 0.24 0.49 

 

To check the effect of epoch size on the DAPM-LLM prediction performance, Table 4 shows that 

there are no effects on its performance. In comparison with the presented result in Table 3, the new 

DAPM-LLM performance with epoch size equals 30 is similar to epoch size equals to 180. Therefore, the 

proposed data generation module helps model re-training, improves its accuracy, and reduces the time and 

cost of re-retraining. Figure 3 compares two cases' MAE performance with same epochs. Increasing epoch 
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size causes to re-training model more rounds, and helped it to reach the performance level similar to the 

DAPM-LLM. The presented result indicates that the proposed data augmentation module helped 

performance improvement successfully. 

 

Table 4: Effect of epoch size on proposed HL prediction model performance 

Epoch MAE MSE RMSE 

30 0.32 0.29 0.54 

50 0.32 0.30 0.54 

80 0.30 0.25 0.50 

100 0.41 0.70 0.84 

120 0.32 0.28 0.53 

150 0.33 0.27 0.52 

180 0.31 0.26 0.51 

200 0.32 0.29 0.54 

 

 
Figure 3: Comparison of HL model performance on different epochs 

CL Prediction Results 

Table 5 shows the performance of the proposed CL prediction model based on LLM on the original 

and newly generated data based on 10-fold cross-validation. 

 

Table 5: Effect of epoch size on proposed CL prediction model performance  
MAE MSE RMSE 

Fold Original 

Data 

New 

Data 

Original 

Data 

New 

Data 

Original 

Data 

New 

Data 

1 2.46 0.63 9.72 1.02 3.12 1.01 

2 2.49 0.58 11.10 1.34 3.33 1.16 

3 2.37 0.90 9.94 2.95 3.15 1.72 

4 2.38 0.87 12.00 3.04 3.46 1.74 

5 2.06 0.74 7.67 2.83 2.77 1.68 

6 1.93 0.70 6.93 2.39 2.63 1.54 

7 2.43 0.86 11.63 2.25 3.41 1.50 
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8 2.09 1.14 8.02 4.43 2.83 2.10 

9 2.46 0.54 10.12 0.54 3.18 0.73 

10 2.24 0.50 9.20 0.85 3.03 0.92 

Avg 2.29 0.75 9.63 2.16 3.09 1.41 

 

As shown in table 5, the MAE varies between 1.93 and 2.49 when re-training the model on the 

original data, while it varies between 0.50 and 0.90 when using the data augmentation module. The 

presented results indicated that the proposed data augmentation module helped model performance and 

stability on all testing folds. Also, the DAPM-LLM models’ average performance is 0.75 which improved 

the models’ overall performance by 300%, when trained without data augmentation. 

Increasing epoch size or training iteration rounds will affect model performance. Table 6 shows CL 

prediction performance with different epoch size, varying from 10 to 300. The evaluation was conducted 

when fold 2 was considered the testing fold, and the other nine folds were used for model training and data 

generation. The presented result shows increasing epoch size helped model performance improvement. 

 

Table 6: CL prediction performance without data augmentation module with different epoch size 

Epoch MAE MSE RMSE 

10 10.88 202.39 14.23 

20 3.36 20.41 4.52 

30 2.99 15.63 3.95 

50 2.49 11.10 3.33 

80 1.19 3.70 1.92 

120 1.14 3.91 1.98 

150 1.12 4.30 2.07 

180 0.61 1.11 1.06 

200 0.99 3.70 1.92 

250 0.60 1.09 1.04 

300 0.75 2.15 1.47 

 

To check the effect of epoch size on the DAPM-LLM prediction performance, Table 7 shows that 

there are no effects on its performance. In comparison with the presented result in Table 6, the new model 

performance with epoch size equal 50 is similar to its performance when epoch size is 250. Therefore, the 

proposed data generation module helps model re-training, improves its accuracy, and reduces the time and 

cost of re-retraining. Figure 4 compares two cases' MAE performance with similar epochs. By increasing 

the epoch size, training the model in more rounds, helps the model re-trained with original data reached the 

performance of the DAPM-LLM model. 

 

Table 7: Effect of epoch size on proposed CL prediction model performance 

Epoch MAE MSE RMSE 

10 1.41 4.99 2.23 

20 1.00 2.88 1.70 

30 0.83 3.04 1.74 

50 0.58 1.34 1.16 

80 0.56 0.91 0.95 

120 1.05 4.82 2.20 

150 0.81 3.01 1.73 

180 0.62 2.10 1.45 

200 0.62 1.24 1.12 
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Figure 4: Comparison of CL model performance on different epochs 

Because of the low in-hand resources in hand, it was not possible to check the performance of other 

large LLM models. We only check the Google Pegasus-Large LLM model [22] on the original CL data 

with epoch sizes of 10, 20, and 30. The Pegasus-Large is a state-of-the-art model designed for text 

summarization. The results presented in Table 8, indicates that the Pegasus-Large model outperforms Bart 

in CL prediction and shows its superiority. It was not possible to run Pegasus-Large with new data and 

greater epoch size, because of low available resources. 

 

Table 8: Comparison of Bart and Pegasus in CL prediction using original data  
Pegasus-Large Bart-Base 

Epoch MAE MSE RMSE MAE MSE RMSE 

10 3.08 17.22 4.15 10.88 202.39 14.23 

20 1.64 5.94 2.44 3.36 20.41 4.52 

30 1.41 5.22 2.29 2.99 15.63 3.95 

 

Discussion 

Table 9 compares the proposed DAPM-LLM, HL and CL performance prediction with other 

published work that used in-hand dataset. 

 

Table 9: Comparison of different HL prediction models’ performance 

 HL Prediction CL Prediction 

Best Model MAE RMSE MAE RMSE 

RF (2012)[5] 0.51  1.42 - 

EMARS (2014)[15] 0.34 0.46 0.68 0.97 

SVR+ANN (2014)[43] 0.236 0.35 0.89 1.57 

GPA (2015)[17] 0.38 - 0.97 - 

RF (2017)[11] 0.351 0.22 0.565 0.84 

GP (2018)[6] 0.251 0.38 0.448 0.67 

GS-XGB (2019)[4] 0.175 0.265 0.307 0.461 

RF (2019)[44] 0.557 1.589   

MLP-PSO (2020)[16] 1.863 2.569 2.136 3.122 

ENMIM (2020)[10] 0.71 0.98 0.35 0.47 

MLP (2020)[18] 0.412 0.483 1.476 1.739 
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SRTE (2022)[19] 0.332 0.452 0.536 0.690 

PSOGWO-MLP (2023)[20] 0.787 1.412 1.470 1.927 

Bayesian-XGB (2023)[12] 0.247 0.380 0.454 0.757 

XGB (2024)[8] 0.356 0.492 ~ 0.64 0.922 

XACM (2024)[9] ~0.65 0.904 ~ 0.94 1.247 

Proposed DAPM-LLM 0.32 0.54 0.64 0.62 

 

The results showed that our proposed model outperformed most published works in HL prediction 

except GS-XGB (2019)[4], SVR+ANN (2014)[43], GP (2018)[6] and Bayesian-XGB (2023)[12]. Also, in 

CL prediction, our proposed model outperformed most published model except GS-XGB (2019)[4], GP 

(2018)[6], XGB (2024)[8], RF (2017)[11], ENMIM (2020)[10], Bayesian-XGB (2023)[12] and SRTE 

(2022)[19]. Most of outperforming models used complicated ensemble or hyper-parameter tuned methods 

to predict HL and CL that need more efforts and complexity. 

Compared to the published works, the presented model has an acceptable performance, although it is 

still not as efficient as the advanced hybrid models, but it should be noted that in this study, due to the 

limited resources, the simple LLM, Facebook Bart-Base model was used. Using larger language models 

will certainly improve prediction performance. The initial comparison of the Pegasus-Large model with 

Bart-Base on the original CL data, Table 8, confirms this hypothesis. In addition, LLMs are still in their 

infancy and will achieve significant improvements in the coming years and are expected to perform better 

than ML models, such as hybrid ensemble models, in solving many real-world problems. 

In this study, the in-hand data set contains only 768 records, that only 691 record was used for re-

training and 77 record was used for model evaluation. The prediction performance indicated when epoch 

size is small, like 10 and 20, the model performance is feeble. To increase its performance, we increased 

the epoch size from 10 to 300 and check model performance. Increasing epoch size helps model 

performance improvement but needs more time to tune and re-train the model.  

In comparison, the proposed data augmentation module has increased the number of training records 

by almost 7 times and has helped the model to have a suitable and stable performance even with a handful 

of epochs, which shows that there is no significant change in the prediction results with the increase in the 

number of epochs. This behavior indicates that the generated data contains most of the hidden information 

in the original data and, by reducing the learning time, it helps to improve the performance of the model. 

Also, this feature is suitable for successive re-training and updating of the model and enables the 

development team to create a new model and replace the previous model in a quick time in solving real-

time applications. 

The presented results show that the presented DAPM- LLM model makes it possible to answer the 

queries about amount of building energy consumption based on the design characteristics in linguistic 

description. For example, one engineer will interact with an AI system using a linguistic sentence: 

Person: “Hi, I have a building design/plan. Can you help me estimate its heating load?” 

The AI replies: “yes off course. Can you give detail information about … of your building design?” 

Person: “The Building Relative compactness is 0.71, Surface area is 710.5, Wall area is 269.5, Roof 

area is 220.5, Overall height is 3.5, Orientation is 4.0, Glazing area is 0.0, and Glazing area distribution is 

0.0. What will be its heating load?” 

The AI replies: “The heating load will be 6.37 kW/h”. 

This kind of interaction in linguistic sentences with the AI system is fascinating and surprising and 

will be possible soon easily . 

The major novelty in this study is using the LLM model for the first time to predict amount of 

required HL and CL based on building characteristics and bring the opportunity to solve such complex 

problem by using linguistic sentences. In addition, to reduce the time and cost of re-training and fine-

tuning the proposed model, a new data augmentation module based on GAN and CGAN was successfully 
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proposed to increase dataset samples by generating new synthetic samples. This module helped the model 

performance improvement. 

The major limitation of this study is low in-hand resources (free version of Google Colab and GTX TI  

1080 GPU card with 11G Memory), which prevented to use and test large LLM models in CL and HL 

prediction. 

In future works, we will try to check the performance of large LLMs in HL and CL prediction based 

on in-hand data and use the LLM models to directly execute regression tasks. Also, adding more layers 

before and after the LLM models may be helpful. Also, future studies may concentrate on investigating 

prompt optimization to enhance the precision and relevance of language models in high-level and 

commercial forecasting. 

 

CONCLUSION 

In this study, by leveraging advancements in LMMs, a model has been proposed to predict the 

cooling and heating energy requirements of residential buildings in linguistic way. This model enables 

engineers and designers to present their requests to the model in linguistic language, and the model 

responds in an appropriately linguistic manner. 

The result indicated that LLM-based model is able to solve such complicated tasks and surprisingly 

outperformed most of published ML models. Also, to improve HL and CL prediction performance, based 

on generative adversarial network and conditional GAN, a new hybrid data augmentation module was 

proposed to generate new synthetic training data, which increased data size almost 7 times. The prediction 

result showed that the proposed hybrid data augmentation module helped model performance improvement 

and indicated that having more data helped the model to perform better. Proposed data augmentation 

module improved HL and CL prediction performance by 600% and 300%, respectively. 

The presented result indicated that it will be possible soon to communicate with AI systems in 

linguistic sentences and solve many complex engineering tasks. The AI systems will reply in human 

understanding sentences.  

In the future works, we are going to use a large dataset for LLM-based models re-training and tuning 

and using large LLMs, which outperform base model most times, in developing more stable and accurate 

HL and CL prediction model. 

 

REFERENCES 

[1] N. Somu, G. R. MR, and K. Ramamritham, "A hybrid model for building energy consumption forecasting 

using long short term memory networks," Applied Energy, vol. 261, p. 114131, 2020. 

[2] H. Fang, H. Tan, R. Kosonen, X. Yuan, K. Jiang, and R. Ding, "Study of the Data Augmentation 

Approach for Building Energy Prediction beyond Historical Scenarios," Buildings, vol. 13, no. 2, p. 326, 

2023. 

[3] Y. Sun, F. Haghighat, and B. C. Fung, "A review of the-state-of-the-art in data-driven approaches for 

building energy prediction," Energy and Buildings, vol. 221, p. 110022, 2020. 

[4] M. Al-Rakhami, A. Gumaei, A. Alsanad, A. Alamri, and M. M. Hassan, "An ensemble learning approach 

for accurate energy load prediction in residential buildings," IEEE Access, vol. 7, pp. 48328-48338, 2019. 

[5] A. Tsanas and A. Xifara, "Accurate quantitative estimation of energy performance of residential buildings 

using statistical machine learning tools," Energy and buildings, vol. 49, pp. 560-567, 2012. 

[6] L. Goliatt, P. Capriles, and G. R. Duarte, "Modeling heating and cooling loads in buildings using Gaussian 

processes," in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018: IEEE, pp. 1-6.  

[7] C. Lu, S. Li, S. R. Penaka, and T. Olofsson, "Automated machine learning-based framework of heating 

and cooling load prediction for quick residential building design," Energy, vol. 274, p. 127334, 2023. 

[8] O. A. Alawi, H. M. Kamar, and Z. M. Yaseen, "Optimizing building energy performance predictions: A 

comparative study of artificial intelligence models," Journal of Building Engineering, vol. 88, p. 109247, 

2024. 

[9] B. Sadaghat, S. Afzal, and A. J. Khiavi, "Residential building energy consumption estimation: A novel 



J. Electrical Systems 20-11s (2024): 1926-1940 

 

1939 

 

ensemble and hybrid machine learning approach," Expert Systems with Applications, vol. 251, p. 123934, 

2024. 

[10] D.-H. Tran, D.-L. Luong, and J.-S. Chou, "Nature-inspired metaheuristic ensemble model for forecasting 

energy consumption in residential buildings," Energy, vol. 191, p. 116552, 2020. 

[11] G. R. Duarte, L. G. da Fonseca, P. Goliatt, and A. C. de Castro Lemonge, "Comparison of machine 

learning techniques for predicting energy loads in buildings," Ambiente Construído, vol. 17, no. 3, pp. 

103-115, 2017. 

[12] B. A. Salami, S. I. Abba, A. A. Adewumi, U. A. Dodo, G. K. Otukogbe, and L. O. Oyedele, "Building 

energy loads prediction using bayesian-based metaheuristic optimized-explainable tree-based model," 

Case Studies in Construction Materials, vol. 19, p. e02676, 2023. 

[13] F. Abdel-Jaber and K. N. Dirks, "A Review of Cooling and Heating Loads Predictions of Residential 

Buildings Using Data-Driven Techniques," Buildings, vol. 14, no. 3, p. 752, 2024. 

[14] W. Gao, J. Alsarraf, H. Moayedi, A. Shahsavar, and H. Nguyen, "Comprehensive preference learning and 

feature validity for designing energy-efficient residential buildings using machine learning paradigms," 

Applied Soft Computing, vol. 84, p. 105748, 2019. 

[15] M.-Y. Cheng and M.-T. Cao, "Accurately predicting building energy performance using evolutionary 

multivariate adaptive regression splines," Applied Soft Computing, vol. 22, pp. 178-188, 2014. 

[16] G. Zhou, H. Moayedi, M. Bahiraei, and Z. Lyu, "Employing artificial bee colony and particle swarm 

techniques for optimizing a neural network in prediction of heating and cooling loads of residential 

buildings," Journal of Cleaner Production, vol. 254, p. 120082, 2020. 

[17] M. Castelli, L. Trujillo, L. Vanneschi, and A. Popovič, "Prediction of energy performance of residential 

buildings: A genetic programming approach," Energy and Buildings, vol. 102, pp. 67-74, 2015. 

[18] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, "Performance 

evaluation of two machine learning techniques in heating and cooling loads forecasting of residential 

buildings," Applied Sciences, vol. 10, no. 11, p. 3829, 2020. 

[19] N. Pachauri and C. W. Ahn, "Regression tree ensemble learning-based prediction of the heating and 

cooling loads of residential buildings," in Building Simulation, 2022, vol. 15, no. 11: Springer, pp. 2003-

2017.  

[20] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, "Building energy consumption prediction 

using multilayer perceptron neural network-assisted models; comparison of different optimization 

algorithms," Energy, vol. 282, p. 128446, 2023. 

[21] S. Makridakis, F. Petropoulos, and Y. Kang, "Large language models: Their success and impact," 

Forecasting, vol. 5, no. 3, pp. 536-549, 2023. 

[22] H. Xue and F. D. Salim, "Utilizing language models for energy load forecasting," in Proceedings of the 

10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and 

Transportation, 2023, pp. 224-227.  

[23] H. Xue and F. D. Salim, "Promptcast: A new prompt-based learning paradigm for time series forecasting," 

IEEE Transactions on Knowledge and Data Engineering, 2023. 

[24] G. Jiang, Z. Ma, L. Zhang, and J. Chen, "EPlus-LLM: A large language model-based computing platform 

for automated building energy modeling," Applied Energy, vol. 367, p. 123431, 2024. 

[25] Y. Liu, G. Qin, X. Huang, J. Wang, and M. Long, "Autotimes: Autoregressive time series forecasters via 

large language models," arXiv preprint arXiv:2402.02370, 2024. 

[26] R. Vacareanu, V.-A. Negru, V. Suciu, and M. Surdeanu, "From Words to Numbers: Your Large Language 

Model Is Secretly A Capable Regressor When Given In-Context Examples," arXiv preprint 

arXiv:2404.07544, 2024. 

[27] C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," Journal of 

big data, vol. 6, no. 1, pp. 1-48, 2019. 

[28] J. Fonseca and F. Bacao, "Tabular and latent space synthetic data generation: a literature review," Journal 

of Big Data, vol. 10, no. 1, p. 115, 2023. 

[29] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, "Deep neural networks and 

tabular data: A survey. arXiv 2021," arXiv preprint arXiv:2110.01889. 

[30] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, "Data synthesis based on generative 



J. Electrical Systems 20-11s (2024): 1926-1940 

 

1940 

 

adversarial networks," arXiv preprint arXiv:1806.03384, 2018. 

[31] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, "Modeling tabular data using 

conditional gan," Advances in neural information processing systems, vol. 32, 2019. 

[32] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, "SMOTE for learning from imbalanced data: 

progress and challenges, marking the 15-year anniversary," Journal of artificial intelligence research, vol. 

61, pp. 863-905, 2018. 

[33] Y. Zhang, N. A. Zaidi, J. Zhou, and G. Li, "GANBLR: a tabular data generation model," in 2021 IEEE 

International Conference on Data Mining (ICDM), 2021: IEEE, pp. 181-190.  

[34] Y. Zhang, Z. Zhou, J. Liu, and J. Yuan, "Data augmentation for improving heating load prediction of 

heating substation based on TimeGAN," Energy, vol. 260, p. 124919, 2022. 

[35] Y. Lu, Z. Tian, Q. Zhang, R. Zhou, and C. Chu, "Data augmentation strategy for short-term heating load 

prediction model of residential building," Energy, vol. 235, p. 121328, 2021. 

[36] C. Fan, M. Chen, R. Tang, and J. Wang, "A novel deep generative modeling-based data augmentation 

strategy for improving short-term building energy predictions," in Building Simulation, 2022, vol. 15: 

Springer, pp. 197-211.  

[37] C. Fan, Y. Lei, Y. Sun, M. S. Piscitelli, R. Chiosa, and A. Capozzoli, "Data-centric or algorithm-centric: 

Exploiting the performance of transfer learning for improving building energy predictions in data-scarce 

context," Energy, vol. 240, p. 122775, 2022. 

[38] H. Xue, B. P. Voutharoja, and F. D. Salim, "Leveraging language foundation models for human mobility 

forecasting," in Proceedings of the 30th International Conference on Advances in Geographic Information 

Systems, 2022, pp. 1-9.  

[39] I. Ashrapov, "Tabular GANs for uneven distribution," arXiv preprint arXiv:2010.00638, 2020. 

[40] I. Goodfellow et al., "Generative adversarial nets," Advances in neural information processing systems, 

vol. 27, 2014. 

[41] M. Mirza and S. Osindero, "Conditional generative adversarial nets," arXiv preprint arXiv:1411.1784, 

2014. 

[42] M. Lewis, "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, 

and comprehension," arXiv preprint arXiv:1910.13461, 2019. 

[43] J.-S. Chou and D.-K. Bui, "Modeling heating and cooling loads by artificial intelligence for energy-

efficient building design," Energy and Buildings, vol. 82, pp. 437-446, 2014. 

[44] L. T. Le, H. Nguyen, J. Zhou, J. Dou, and H. Moayedi, "Estimating the heating load of buildings for smart 

city planning using a novel artificial intelligence technique PSO-XGBoost," Applied Sciences, vol. 9, no. 

13, p. 2714, 2019. 

 


