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Abstract:Large Language Models (LLMs) originally developed for tasks like text generation and translation
have shown successful potential in capturing temporal and complex dependencies, making them suitable for
different tasks. In this study, we want to propose a LLMs-based Heating Load (HL) and Cooling Load (CL)
estimation model based on residential building characteristics. At first, a prompt generation module was
proposed to convert in-hand tabular data to useful prompts, and then the hugging face pre-trained Bart-base
model was re-trained to create a new prediction tool for residential buildings HL and CL prediction. In
addition, to improve the performance of the proposed LLM-based model, a new data augmentation module
was proposed based on Generative Adversarial Network (GAN) and Conditional GAN to increase the size of
training data. The proposed model combines Data Augmentation and Prompt generation Modules with LLM
and is named DAPM-LLM. The prediction result showed that the DAPM-LLM can predict energy usage
using linguistic prompts, and the data augmentation module improved model performance by 600% and
300% in HL and CL prediction, respectively. The comparison of its results with other works shows its
superiority over most of them except ensemble models. Using larger pre-trained models and sufficient data
will enable these models to outperform ensemble models too. The results showed that the DAPM-LLM
model can be successfully used in solving complex problems such as energy consumption prediction, and can
be used by engineers and designers to select the best design/plan for building construction by using linguistic
sentences.

Keywords: Residential building Energy usage prediction, Prompt engineering, Generative adversarial
network, Tabular data augmentation tool, Bart

INTRODUCTION

Reducing energy usage in residential building is a major concern of many engineers and designers
from the entire world that consume 39% of worldwide energy production [1]. They looking for efficient
tools to help them in designing energy efficient buildings. Available tools use physical models or data-
driven models to help them with energy usage estimation [2]. With surprising progress in Machine
Learning (ML) and artificial intelligence (Al), many powerful tool was developed to estimate and predict
energy usage based on design characteristics [3]. If we can develop a tool that can predict the amount of
energy consumption based on building structural characteristics, then we can help engineers and designers
to choose the best design from the point of view of energy consumption to choose the best design among
unique designs.

Accurately predicting amount of required heating and cooling loads in residential buildings is crucial
for achieving energy efficiency, reducing environmental impact, and improving occupant comfort. With
the rise of smart buildings and cities, the ability to forecast energy demands has become essential in
optimizing heating, ventilation, and air conditioning (HVAC) systems. Traditional approaches to energy
load prediction have relied on a combination of statistical and machine-learning methods [3], which have
produced promising results [4] but are often limited by their reliance on feature engineering and domain-
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specific knowledge.

The state-of-the-art ensemble models in Heating load (HL) and Cooling Load (CL) prediction [4] in
residential buildings, combining multiple ML models to address the nonlinearities and complexities of
energy data [5, 6]. However, ensemble and other published ML models that used in-hand dataset [5], such
as Gaussian processes (GP) [6], exXtreme Gradient Boosting (XGB) [7, 8], Grid Search-tuned XGB (GS-
XGB) [4], Adaptive Boosting (ADA) and XGB, optimized by the Covariance Matrix Adaptation Evolution
Strategy (CMAES) method (XACM) [9], meta-heuristic ensemble model [10], support vector regressor
(SVR) + artificial neural network (ANN) [11], Bayesian-XGB [12], Random Forest (RF) [13, 14],
Evolutionary Multivariate Adaptive Regression Splines (EMARS) [15], Multilayer Perceptron network
tuned with Particle Swarm Optimization (MLP-PSO) [16], genetic programming approach (GPA) [17],
Evolutionary Neural Machine Inference Model (ENMIM) [10], SVR [18], Regression Tree Ensemble
(SRTE) [19], MLP tuned with PSO and Grey Wolf Optimizer (PSOGWO-MLP) [20] can become
computationally expensive and may struggle to adapt to dynamic and unseen data patterns, especially
when dealing with large, real-time datasets. In addition, engineers must have the proper technical
knowledge to use them.

ChatGPT, Al-based chatbot created by open Al, is powered by LLM. As a result, it can be said that
GPT Chat is able to understand human-like answers. Therefore, it can be said that the most important
feature of GPT chat is that it can have a conversation with you just like when you are talking to a very
knowledgeable person. This chatbot can talk to you about various topics, from history to philosophy and
culture. In addition, it can help you in many other areas, such as passing professional exams, composing
poetry, and writing code, among other abilities [21].

Recent developments in natural language processing (NLP) and deep learning have led to innovative
approaches for managing sequential data, including energy load time series [22]. Promptcast, a framework
that uses LLMs for energy time sreies prediction [23], LLM-based automatic building modeling platform
in EnergyPlus [24], autoregressive time series predictor based on LLM for predicting a future value of
time series [25], well-pre-trained LLMs, such as Claude 3, GPT-4, and Llama2 for addressing both linear
and non-linear regression tasks [26] are successful application of using LLMs in solving real world
complicated tasks.

Using LLM models in solving complex real world engineering problems is still in its infancy and
requires a lot of efforts. The performance improvement of pre-trained LLM models depends highly on the
size of data for re-training in problem context. The in-hand tabular data contains only 768 samples of
residential building data [5]. To increase the size of data, and improving re-training performance, data
augmentation technigues can generate new but dependent data [2]. Data augmentation techniques have
been successfully applied to image data, leading to significant progress and improvements [27]. But, the
in-hand data is tabular and includes numerical and categorical data. Therefore, it is necessary to consider
tabular data augmentation techniques [28, 29]. The Table-GAN generates synthetic data using the vanilla
GAN approach (VGAN) [30]. However, the inability of Table-GAN to regulate synthetic data creation
may exacerbate imbalances in categorical features. The Conditional Tabular GAN (CTGAN) [31]
and Synthetic Minority Over-sampling Technique (SMOTE) [32] have been introduced to solve these
issues. The GANBLR changed vanilla GAN architectures using a Bayesian network for both the generator
and discriminator [33]. The Tabular Variational Autoencoder (TVAE), a modified version of the VAE for
tabular data, significantly improved classification task performance [31]. The TimeGAN addresses the data
scarcity problem and enhances the accuracy of heating load prediction models [34]. Transfer learning-
based data fusion is more efficient than direct data fusion and enhanced data augmentation strategies for
optimal results [35]. Conditional Variational Autoencoders (CVAE) generated synthetic but potentially
valuable data for constructing an energy forecast model for the next 24 hours [36, 37]. In this study, based
on initial evaluation of different methods, a new data augmentation framework has been proposed based on
GAN and CGAN combination to increase the size of the dataset, and use it for LLM re-training, aiming to
have a more accurate prediction model.

These LLM methods bypass the need for extensive feature engineering, and can directly process the
data, using linguistic descriptions, making it an attractive solution for predicting energy loads. This paper
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proposes a novel approach for predicting heating and cooling loads in residential buildings using LLMs for
the first time, based on our knowledge. By leveraging the pre-trained knowledge and modeling capabilities
of LLMs, we aim to develop and proposed a new LLM-based tool for HL and CL prediction to improve
prediction accuracy and reduce the dependence on domain-specific feature engineering. This approach
builds on existing research in energy load forecasting, advanced data augmentation techniques, and
explores how state-of-the-art NLP techniques can be adapted for HL and CL prediction based on in-hand
tabular data.

The rest of this work is organized: Section 2 discuss related works. Section 3 discusses the
methodlogy, the proposed model structure, dataset, background information, and the structure of the new
synthetic data generation tools. Section 4 provides model implementation results and its comparison with
similar works. Section 5 discusses the results, and Section 6 presents the conclusions.

RELATED WORK

Recent developments in natural language processing (NLP) and deep learning have led to innovative
approaches for managing sequential data, including energy load time series. Large Language Models
(LLMs), originally developed for tasks like text generation and translation, have shown potential in
capturing temporal dependencies, making them suitable for a complex task like time-series forecasting.
Xue and Salim [22] using a novel approach based on existing language models have presented a tool for
predicting the energy consumption load. They enable accurate and dynamic prediction of energy
consumption through configuration, fine-tuning and re-training of existing language models. Their
approach by using the power of LLMs has opened a new horizon in solving complex engineering
problems. Their proposed approach and its accuracy and efficiency have been investigated and confirmed
using real data. They used Bart, Bigbird, and Pegasus and showed that many times the Pegasus
outperforms other models [22]. Also, Xue and Salim introduced Promptcast, a framework that uses LLMs
for time-series forecasting by leveraging natural language prompts. They used different LLMs to check the
efficeiny of promptcast tools and showed that Bigbird and RoOBERTa outperformed other models in energy
prediction [23]. The application of LLMs for time-series forecasting has also been explored in other
domains, such as human mobility prediction. Xue et al. [38] demonstrated how LLMs can model both
spatial and temporal dependencies in mobility data, which suggests their applicability in energy
forecasting, where similar dependencies exist.

Jiang et al. for providing the automatic building modeling platform in EnergyPlus software used LLM
[24]. Their model changes descriptive information of buildings such as usage scenarios, equipment loads,
and different geometries into linguistic descriptions and uses them to reset and train the linguistic model.
Through the process of fine-tuning, the LLM, specifically T5, transforms human descriptions into
EnergyPlus modeling files. Subsequently, it produces outputs that are appropriate for users by utilizing the
API integrated within the Eplus-LLM platform.

Liu et al. employed multi-step generation capability of LLMs and the general-purpose token transfer,
and proposed AutoTimes [25]. AutoTimes is proposed to work as autoregressive time series predictor
based on LLM ability and predict a future value of time series successfully.

Vacareanu et al. examine the feasibility of addressing both linear and non-linear regression tasks
within a specified context using well-pre-trained LLMs, such as Claude 3, GPT-4, and Llama2. Their
research indicates that these models are capable of effectively solving regression tasks, comparable to
traditional supervised techniques like RF, Bagging, and Gradient Boosting, and sometimes, they even
surpass the performance of these methods [26].

METHODOLOGY

The proposed LLM-Based HL and CL prediction models, named DAPM-LLM, contains the
following steps which are graphically shown in Figure 1.

1- After loading the original in-hand data, used a 10-fold cross-validation method to split dataset
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into training and testing data.
a. Use 9-fold data for model training and one remaining fold for model testing.

b. Repeat this process ten times to test model accuracy and generality against each sample of
data

2- Pass training data into the proposed data augmentation module
a. The proposed models’ performance will be calculated with and without data augmentation.

3- Use the developed prompt generation module to convert building tabular data into sentences that
could be processed by the LLM model.

4- Fine-tune the pre-trained Bart-Base model using original or newly generated prompt data.
5-  Test model performance with unseen test fold and calculate performance metrics.

6- Repeat steps 1 to 5, ten times and finally analyze the model results, and compare it with other
published works.
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Figure 1: The proposed DAPM-LLM model structure

Dataset

The selected dataset contains structural charactristics of 768 buildings [5]. Each building has eight
features: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area,
and glazing area distribution. It contains the HL and CL consumed in kilowatts (kW) for each building.
The materials used in the buildings were identical and thus excluded from the analysis. Researchers have
widely used this dataset to predict HL and CL [4, 11, 13]. The main reason of selecting this dataaset is that
it containg building design structure which could be used for selecting best desing/plan for building
counstruction. Although other datasets have many records, but they cannot be used for the purpose of this
research, which is to select the best design based on physical characteristics, because they do not contain
structural information about the buildings.

To create a sample of 720 buildings, the researchers considered 12 buildings with four distinct
orientations, five glazing area distributions per building, and three glazing area variations for each
building, resulting in a sample size of 12 * 4 * 5 * 3 = 720. They also included four glazing-free
orientations for each building, thus generating 720 + 12 * 4 = 768 distinct simulated buildings.

Model Training and Testing

The 10-fold cross-validation (CV) technique was employed within this work for model training and
testing at each iteration. In a 10-fold CV, all data is split into ten folds (use 9 folds for training, and the
remaining one fold for testing). This process is repeated 10 times, ensuring the model is tested against
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different unseen folds in each iteration, testing its generality, and the average performance of these ten
iterations will be reported as the model performance metrics rather than relying on the best fold testing.

The proposed LLM model performance will be checked with and without data augmentation.
Proposed Data Augmentation Module

To improve LLM-Based HL and CL prediction performance and reduce the time and cost of model
re-training, in this study a new data augmentation module was proposed to generate new synthetic data.

After an initial evaluation of different data augmentation methods, such as SMOTE [32] and VAE
[31], we selected the GAN and CGAN methods to augment the data and generate new synthetic samples.
Based on our knowledge, in this study, the GAN and CGAN and their combination are used for the first
time to generate new data to investigate the performance of energy consumption prediction models. Many
libraries and methods are available for tabular data augmentation [3]. In this work, we used the TabGan
library provided by Ashrapov, which offers three different methods—GAN, Conditional GAN, and
diffusion—for generating new data [39]. The main reason for selecting GAN and CGAN is their special
structure that generates more valuable and relevant new data samples, which was discussed in following
subsections.

Generative Adversarial Networks (GANSs)

The most common application of Generative Adversarial Networks (GANS) is generating synthetic
image data. However, they can now also be used to generate synthetic tabular data. As shown in Fig. 2, a
GAN comprises two deep networks, a generator and a discriminator, which train simultaneously [40]. The
generator network creates data that mimics actual data, aiming to produce outputs that the discriminator
cannot distinguish from actual data. If the discriminator detects differences, both networks are updated to
help generate more accurate and realistic data.

/\/
Generated data Original real data
/—\\_/ /_\’\/
G(z2) X
v
Generator Discriminator *—‘
Update /—\L—/ Update
e J
Z:latent/noise space (D,G)
/X/

Figure 2: Architecture of GAN[40]

The value function V (D, G) of the GAN can be defined: Z is the noise space, G(z) represents a
mapping from the noise space to the generated data space, and X is the original data space. The V (D, G) is
defined as equation (1) [40]:

V(D,G) = Expyy, 0108 D(X)] + Ezpp, () [log (1 = D(G(2)))] @

Where z is the noise from the noise space Z, p,(z) is defined as a prior on the input noise variables, G
is a differentiable function represented by a multilayer perception, x is the sample from the original space
X, pdata(X) is the distribution of the original data, and D(x) describes the possibility that x comes from the
original data rather than the generator.

This objective is maximized by the discriminator and minimized by the generator through training. In
other words, by resolving the following optimization problem, the generator and discriminator are trained:

mGinmgXV(D, G) = Ex-py,, oll0g D] + E,-pp, 5 [log (1 — D(G(2)))]

The discriminator and generator play a single two-step game to min-max V (D, G) to obtain a well-

O]
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behaved GAN. The discriminator (D) is optimized while the generator (G) is fixed to maximize
discrimination accuracy. Subsequently, the generator G is tuned to minimize discrimination accuracy while
the discriminator D is fixed. The procedure is carried out repeatedly. When the generator is known, V (D,
G) in continuous space can be explained:

V) = [ puw ()log (D@)dx + [ p.(2)log (1 = DGz
X zZ (3)
= | [puae G108 D) + py ()1og (1 — DG

Where the generative distribution, pgy(X), is picked up from the initial data set, x.

The discriminator's optimal value, D¢ (x), is found in equation (4) when the generator is fixed:

D* — Pdata (X) 4
¢ = S e “)

By utilizing the original data as input, the discriminator estimates the conditional probability of the
input data by maximizing the log-likelihood. Therefore, the min-max game in equation (2) is restructured
as:

C(G) = m[?xV(D, G) = Expaa 165 [ og%}
ata g
+Ex~pg [ & Ddata (JC) + pg (X) (5)

The global optimal solution of V(D, G) and the minimum value of the virtual training criterion C(G)
will be reached if and only if pgata = Pg-

Conditional Tabular GAN (CGAN)

A Conditional Tabular GAN (CTGAN) is a GAN-based technique that uses sample rows from a
tabular data distribution to model its distribution. Xu et al. developed mode-specific normalization to
address the multimodal and non-Gaussian distribution challenges in CTGAN creation [31]. They
introduced a conditional generator to manage unbalanced discrete columns and trained a high-quality
model using multiple state-of-the-art techniques and fully connected networks.

In a Conditional GAN (CGAN), the discriminator and generator are conditioned on additional
information y. This auxiliary data, such as class labels or information from different modalities, is used to
condition the GAN [41]. The conditioning is implemented by incorporating y as an extra input layer to the
discriminator and generator. The generator uses a joint hidden representation composed of the prior input
noise pz(z) and y. The adversarial training framework gives the generator significant flexibility in creating
this hidden representation.

By using the proposed data augmentation module, new 4057 synthetic sample data was generated and
are combined with 691 samples in the training data, creating a large dataset containing 4748 samples. This
new dataset will be utilized for tuning, training, and evaluating the proposed LLM-Based model. Within
the proposed structure, the new synthetic dataset will be fed into the Prompt engineering module to
generate sentences.

Proposed Prompt Generation Module

In this study, to convert tabular data to linguistic sentences, a prompt module was developed. This
module receives tabular data sample and generates a sentence that will be used for model retraining. Table
1 shows how it converted tabular data to prompt sentences. Then, this sentence will feed into tokenizer
part to LLM model to be used for model re-training.
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Table 1: Sample of tabular data converted to prompt

. X1 X2 X3 X4 X5 X X7 X Y1l Y2
Original 6 8
Data 0.71 7105 2695 220.5 35 4 0 0 6.37 11.29
HL The Building Relative compactness is 0.71, Surface area is 710.5, Wall The
Prompt area is 269.5, Roof area is 220.5, Overall height is 3.5, Orientation is 4.0, heating
P Glazing area is 0.0, and Glazing area distribution is 0.0. What will be the load will
Sentence .
heating load? be 6.37
cL The Building Relative compactness is 0.71, Surface area is 710.5, Wall The cooling
Prompt area is 269.5, Roof area is 220.5, Overall height is 3.5, Orientation is 4.0, load will be
P Glazing area is 0.0, and Glazing area distribution is 0.0. What will be the 11.29
Sentence .
cooling load?

Fine-tuning pre-trained LLM Model for HL and CL Prediction

Despite successful usage of different LLMs in time-series and energy load prediction and superiority
of Pegasus [22], Bighird and RoBERTa [23] over other models , based on in-hand hardware and GPU
resources (free version of Google CoLab and GTX 1080 TI GPU with 11G memory), we selected
Facebook Bart-Base model for HL and CL prediction task, and analyzed its performance with proposed
data augmentation module in different cases.

BART is a sequence-to-sequence model that employs a transformer architecture, featuring a
bidirectional encoder akin to BERT and an autoregressive decoder similar to GPT, developed by Hugging
Face. The pre-training of BART involves two key processes: (1) introducing noise to the text through a
random noising function, and (2) training a model to restore the original text. This model demonstrates
notable effectiveness when fine-tuned for text generation tasks, such as summarization and translation,
while also performing admirably in comprehension tasks, including text classification and question
answering [42].

Testing Model Performance Metrics

Several statistical criteria were calculated to evaluate the performance and accuracy of prediction
models. These metrics assess how closely the predicted values align with the actual values. Mean Absolute
Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) are widely recognized
performance evaluation metrics for continuous target values [4]. Smaller values of these metrics indicate
that the model predicts the target values with low error and high accuracy. These metrics will be calculated
based on the equation (6) to (8):

MAE =% Lalog — yil (6)
MSE = ~ %, (0; — y,)? )
RMSE = \MSE (8)

Where N is the number of samples in the testing dataset, o; is the predicted (estimated) value of HL or
CL by the proposed model, y; is the actual value of HL or CL, and ¥, is the mean value of the actual value
of HL or CL.

To have a model fair comparison, the model overall performance is average of 10 different runs based
on 10-fold CV.

RESULTS

Different parameters must be defined in training and retraining LLM models. Based on in-hand
resources and different tries, we selected epoch = 50 to re-train the proposed model on the original data
and generated data using the proposed data augmentation module.
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HL Prediction Results

Table 2 shows the performance of the proposed HL prediction model based on LLM on the original
and newly generated data based on 10-fold cross-validation.
Table 2: HL prediction performance with and without data augmentation module

MAE MSE RMSE

Fold | Original | New | Original | New Original | New
Data Data Data Data Data Data

1 2.13 0.40 7.35 0.35 2.71 0.60
2 2.82 0.39 14.94 0.33 3.87 0.58
3 1.30 0.37 3.40 0.32 1.85 0.57
4 2.02 0.40 7.25 0.34 2.69 0.58
5 2.81 0.36 12.85 0.35 3.58 0.59
6 1.92 0.35 6.85 0.29 2.62 0.54
7 2.72 0.39 12.90 0.34 3.59 0.58
8 1.52 0.33 4.59 0.25 2.14 0.50
9 2.70 0.28 12.55 0.20 3.54 0.45
10 1.71 0.32 5.31 0.30 2.30 0.54
Avg 2.16 0.36 8.80 0.31 2.89 0.55

The MAE varies between 1.30 and 2.82 when re-training the model on the original data, while it
varies between 0.28 and 0.40 when using the data augmentation module. The presented results indicated
that the proposed data augmentation module helped model performance improvement and its stability on
all testing folds. Also, by using data augmentation module, the model average performance is 0.36 which
improved overall performance by 600%.

Increasing epoch size or training iteration rounds will affect model performance. Table 3 shows HL
prediction performance with different epochs, varying from 30 to 300. The evaluation was conducted when
fold 10 was considered as the testing fold, and the other nine folds were used for model training and data
generation. The presented result shows increasing epoch size helped model performance improvement.

Table 3: HL prediction performance without data augmentation module with different epoch size

Epoch MAE MSE RMSE
30 2.23 10.79 3.28
50 1.71 5.31 2.30
80 0.51 0.72 0.85
100 0.43 0.77 0.88
120 0.37 0.33 0.58
150 0.36 0.31 0.56
180 0.32 0.26 0.51
200 0.27 0.23 0.48
250 0.28 0.22 0.47
300 0.30 0.24 0.49

To check the effect of epoch size on the DAPM-LLM prediction performance, Table 4 shows that
there are no effects on its performance. In comparison with the presented result in Table 3, the new
DAPM-LLM performance with epoch size equals 30 is similar to epoch size equals to 180. Therefore, the
proposed data generation module helps model re-training, improves its accuracy, and reduces the time and
cost of re-retraining. Figure 3 compares two cases' MAE performance with same epochs. Increasing epoch
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size causes to re-training model more rounds, and helped it to reach the performance level similar to the
DAPM-LLM. The presented result indicates that the proposed data augmentation module helped
performance improvement successfully.

Table 4: Effect of epoch size on proposed HL prediction model performance

2.50

2.00

1.50

1.00

0.50

0.00

Epoch MAE MSE RMSE
30 0.32 0.29 0.54
50 0.32 0.30 0.54
80 0.30 0.25 0.50
100 0.41 0.70 0.84
120 0.32 0.28 0.53
150 0.33 0.27 0.52
180 0.31 0.26 0.51

200 0.32 0.29 0.54

30 50 80 100 120 150 180

M Original Prompt

New Data

Figure 3: Comparison of HL model performance on different epochs
CL Prediction Results

Table 5 shows the performance of the proposed CL prediction model based on LLM on the original
and newly generated data based on 10-fold cross-validation.

200

Table 5: Effect of epoch size on proposed CL prediction model performance

MAE MSE RMSE

Fold Original New Original | New Original | New
Data Data Data Data Data Data

1 2.46 0.63 9.72 1.02 3.12 1.01
2 2.49 0.58 11.10 1.34 3.33 1.16
3 2.37 0.90 9.94 2.95 3.15 1.72
4 2.38 0.87 12.00 3.04 3.46 1.74
5 2.06 0.74 7.67 2.83 2.77 1.68
6 1.93 0.70 6.93 2.39 2.63 1.54
7 2.43 0.86 11.63 2.25 341 1.50
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8 2.09 1.14 8.02 4.43 2.83 2.10
9 2.46 0.54 10.12 0.54 3.18 0.73
10 2.24 0.50 9.20 0.85 3.03 0.92
Avg 2.29 0.75 9.63 2.16 3.09 1.41

As shown in table 5, the MAE varies between 1.93 and 2.49 when re-training the model on the
original data, while it varies between 0.50 and 0.90 when using the data augmentation module. The
presented results indicated that the proposed data augmentation module helped model performance and
stability on all testing folds. Also, the DAPM-LLM models’ average performance is 0.75 which improved
the models’ overall performance by 300%, when trained without data augmentation.

Increasing epoch size or training iteration rounds will affect model performance. Table 6 shows CL
prediction performance with different epoch size, varying from 10 to 300. The evaluation was conducted
when fold 2 was considered the testing fold, and the other nine folds were used for model training and data
generation. The presented result shows increasing epoch size helped model performance improvement.

Table 6: CL prediction performance without data augmentation module with different epoch size

Epoch MAE MSE RMSE
10 10.88 202.39 14.23
20 3.36 20.41 4.52
30 2.99 15.63 3.95
50 2.49 11.10 3.33
80 1.19 3.70 1.92
120 1.14 391 1.98
150 1.12 4.30 2.07
180 0.61 1.11 1.06
200 0.99 3.70 1.92
250 0.60 1.09 1.04
300 0.75 2.15 1.47

To check the effect of epoch size on the DAPM-LLM prediction performance, Table 7 shows that
there are no effects on its performance. In comparison with the presented result in Table 6, the new model
performance with epoch size equal 50 is similar to its performance when epoch size is 250. Therefore, the
proposed data generation module helps model re-training, improves its accuracy, and reduces the time and
cost of re-retraining. Figure 4 compares two cases' MAE performance with similar epochs. By increasing
the epoch size, training the model in more rounds, helps the model re-trained with original data reached the
performance of the DAPM-LLM model.

Table 7: Effect of epoch size on proposed CL prediction model performance

Epoch MAE MSE RMSE
10 1.41 4.99 2.23
20 1.00 2.88 1.70
30 0.83 3.04 1.74
50 0.58 1.34 1.16
80 0.56 0.91 0.95
120 1.05 4.82 2.20
150 0.81 3.01 1.73
180 0.62 2.10 1.45
200 0.62 1.24 1.12
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Figure 4. Comparison of CL model performance on different epochs

Because of the low in-hand resources in hand, it was not possible to check the performance of other
large LLM models. We only check the Google Pegasus-Large LLM model [22] on the original CL data
with epoch sizes of 10, 20, and 30. The Pegasus-Large is a state-of-the-art model designed for text
summarization. The results presented in Table 8, indicates that the Pegasus-Large model outperforms Bart
in CL prediction and shows its superiority. It was not possible to run Pegasus-Large with new data and
greater epoch size, because of low available resources.

Table 8: Comparison of Bart and Pegasus in CL prediction using original data

Pegasus-Large Bart-Base
Epoch MAE MSE RMSE MAE MSE RMSE
10 3.08 17.22 4.15 10.88 202.39 14.23
20 1.64 5.94 2.44 3.36 20.41 4.52
30 1.41 5.22 2.29 2.99 15.63 3.95

Discussion

Table 9 compares the proposed DAPM-LLM, HL and CL performance prediction with other
published work that used in-hand dataset.

Table 9: Comparison of different HL prediction models’ performance

HL Prediction CL Prediction
Best Model MAE RMSE MAE RMSE
RF (2012)[5] 0.51 1.42 -
EMARS (2014)[15] 0.34 0.46 0.68 0.97
SVR+ANN (2014)[43] 0.236 0.35 0.89 1.57
GPA (2015)[17] 0.38 - 0.97 -
RF (2017)[11] 0.351 0.22 0.565 0.84
GP (2018)[6] 0.251 0.38 0.448 0.67
GS-XGB (2019)[4] 0.175 0.265 0.307 0.461
RF (2019)[44] 0.557 1.589
MLP-PSO (2020)[16] 1.863 2.569 2.136 3.122
ENMIM (2020)[10] 0.71 0.98 0.35 0.47
MLP (2020)[18] 0.412 0.483 1.476 1.739
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SRTE (2022)[19] 0332 | 0452 0.536 0.690
PSOGWO-MLP (2023)[20] 0.787 | 1412 1.470 1.927
Bayesian-XGB (2023)[12] 0.247 | 0380 0.454 0.757
XGB (2024)[8] 0356 | 0492 | ~0.64 | 00922
XACM (2024)[9] ~0.65 | 0904 | ~0.94 1.247
Proposed DAPM-LLM 0.32 0.54 0.64 0.62

The results showed that our proposed model outperformed most published works in HL prediction
except GS-XGB (2019)[4], SVR+ANN (2014)[43], GP (2018)[6] and Bayesian-XGB (2023)[12]. Also, in
CL prediction, our proposed model outperformed most published model except GS-XGB (2019)[4], GP
(2018)[6], XGB (2024)[8], RF (2017)[11], ENMIM (2020)[10], Bayesian-XGB (2023)[12] and SRTE
(2022)[19]. Most of outperforming models used complicated ensemble or hyper-parameter tuned methods
to predict HL and CL that need more efforts and complexity.

Compared to the published works, the presented model has an acceptable performance, although it is
still not as efficient as the advanced hybrid models, but it should be noted that in this study, due to the
limited resources, the simple LLM, Facebook Bart-Base model was used. Using larger language models
will certainly improve prediction performance. The initial comparison of the Pegasus-Large model with
Bart-Base on the original CL data, Table 8, confirms this hypothesis. In addition, LLMs are still in their
infancy and will achieve significant improvements in the coming years and are expected to perform better
than ML models, such as hybrid ensemble models, in solving many real-world problems.

In this study, the in-hand data set contains only 768 records, that only 691 record was used for re-
training and 77 record was used for model evaluation. The prediction performance indicated when epoch
size is small, like 10 and 20, the model performance is feeble. To increase its performance, we increased
the epoch size from 10 to 300 and check model performance. Increasing epoch size helps model
performance improvement but needs more time to tune and re-train the model.

In comparison, the proposed data augmentation module has increased the number of training records
by almost 7 times and has helped the model to have a suitable and stable performance even with a handful
of epochs, which shows that there is no significant change in the prediction results with the increase in the
number of epochs. This behavior indicates that the generated data contains most of the hidden information
in the original data and, by reducing the learning time, it helps to improve the performance of the model.
Also, this feature is suitable for successive re-training and updating of the model and enables the
development team to create a new model and replace the previous model in a quick time in solving real-
time applications.

The presented results show that the presented DAPM- LLM model makes it possible to answer the
queries about amount of building energy consumption based on the design characteristics in linguistic
description. For example, one engineer will interact with an Al system using a linguistic sentence:

Person: “Hi, I have a building design/plan. Can you help me estimate its heating load?”
The Al replies: “yes off course. Can you give detail information about ... of your building design?”’

Person: “The Building Relative compactness is 0.71, Surface area is 710.5, Wall area is 269.5, Roof
area is 220.5, Overall height is 3.5, Orientation is 4.0, Glazing area is 0.0, and Glazing area distribution is
0.0. What will be its heating load?”

The Al replies: “The heating load will be 6.37 kW/h”.

This kind of interaction in linguistic sentences with the Al system is fascinating and surprising and
will be possible soon easily.

The major novelty in this study is using the LLM model for the first time to predict amount of
required HL and CL based on building characteristics and bring the opportunity to solve such complex
problem by using linguistic sentences. In addition, to reduce the time and cost of re-training and fine-
tuning the proposed model, a new data augmentation module based on GAN and CGAN was successfully
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proposed to increase dataset samples by generating new synthetic samples. This module helped the model
performance improvement.

The major limitation of this study is low in-hand resources (free version of Google Colab and GTX Tl
1080 GPU card with 11G Memory), which prevented to use and test large LLM models in CL and HL
prediction.

In future works, we will try to check the performance of large LLMs in HL and CL prediction based
on in-hand data and use the LLM models to directly execute regression tasks. Also, adding more layers
before and after the LLM models may be helpful. Also, future studies may concentrate on investigating
prompt optimization to enhance the precision and relevance of language models in high-level and
commercial forecasting.

CONCLUSION

In this study, by leveraging advancements in LMMs, a model has been proposed to predict the
cooling and heating energy requirements of residential buildings in linguistic way. This model enables
engineers and designers to present their requests to the model in linguistic language, and the model
responds in an appropriately linguistic manner.

The result indicated that LLM-based model is able to solve such complicated tasks and surprisingly
outperformed most of published ML models. Also, to improve HL and CL prediction performance, based
on generative adversarial network and conditional GAN, a new hybrid data augmentation module was
proposed to generate new synthetic training data, which increased data size almost 7 times. The prediction
result showed that the proposed hybrid data augmentation module helped model performance improvement
and indicated that having more data helped the model to perform better. Proposed data augmentation
module improved HL and CL prediction performance by 600% and 300%, respectively.

The presented result indicated that it will be possible soon to communicate with Al systems in
linguistic sentences and solve many complex engineering tasks. The Al systems will reply in human
understanding sentences.

In the future works, we are going to use a large dataset for LLM-based models re-training and tuning
and using large LLMs, which outperform base model most times, in developing more stable and accurate
HL and CL prediction model.
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