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Abstract: - Machine Learning (ML) and better encryption methods is a key part of fixing the security and speed problems that Edge 

Computing causes in the Internet of Things (IoT) and Wireless Networks. The goal of this study is to improve the security of edge 

devices and networks so that critical data created and processed at the edge stays private and secure. Anomaly detection, threat 

identification, and adaptable security mechanisms depend on machine learning algorithms in a big way. These algorithms allow for 

proactive defenses against cyber dangers that are always changing. The proposed system used homomorphic encryption and quantum-

resistant cryptography, to make data more private and secure. Even in edge devices with limited resources, these security methods keep 

data transfer and storage safe. The combination of machine learning and stronger encryption not only protects the IoT environment but 

also makes the best use of resources by changing security measures on the fly as threats change. This study adds to the development of 

safe and effective edge computing models, which helps IoT and wireless networks become more popular. The results can be used in many 

situations, from smart cities to industrial robotics. This makes sure that the advantages of edge computing can be enjoyed without putting 

the safety and privacy of the linked systems at risk. 

Keywords: Edge Computing, Machine Learning, Enhanced Encryption, Internet of Things, Wireless Networks, Deep 

Neural Network 

I. INTRODUCTION  

The rise of Internet of Things (IoT) devices and Edge Computing has changed how data is created, processed, and 

used in recent years. This paradigm shift has created problems that have never been seen before, especially when it 

comes to security and efficiency. The edge is becoming an important place for handling data, so strong defenses 

against online dangers are becoming more and more important. In this study, we look at how Machine Learning 

(ML) and better encryption methods can work together to make Edge Computing safer in IoT and wireless 

networks [1]. Edge Computing lets devices process data closer to where it originates, lowering latency and 

improving the ability to make decisions in real time. However, this decentralized approach leaves the network open 

to security holes, so it's important to create security solutions that are both adaptable and smart. Machine Learning, 

which can recognize patterns and find outliers, turns out to be a powerful partner in the quest for higher security. 

Machine learning systems can learn and change as threats do, so they can find possible security holes and lower 

risks in real time. In [2] a time when online risks are changing and getting smarter, this preventative defense system 

is a must. The study also stresses how important it is to make security methods better for edge devices that don't 

have a lot of resources. For devices with limited computer power, traditional encryption ways may be too expensive 

to use [3]. Adding advanced encryption methods like homomorphic encryption and quantum-resistant cryptography 

becomes very important because of this. These new developments in cryptography make sure that data sent and 

kept at the edge stays private and secure, even if someone tries to break into the network and do damage. 
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Figure 1: Overview of Authentication system in WSN for IoT 

When machine learning and stronger encryption work together, they not only make security better but also make 

Edge Computing more efficient. By changing security rules on the fly based on real-time danger estimates, the 

system can wisely distribute resources, avoiding possible problems and making sure everything runs smoothly [4]. 

This study tries to find a balance between security and efficiency by looking at the problems that come up when 

Edge Computing, IoT, and Wireless Networks come together. Combining Machine Learning with better protection 

methods is one of the most important ways to make Edge Computing safer and more efficient in IoT and wireless 

networks. In the next part, we'll talk more about the methods used, the structure for the experiments, and what this 

study means for different types of applications.  

II. RELATED WORK 

Physical layer verification uses the fact that wireless channels are naturally diverse and the idea of short-term 

reciprocity to tell the difference between real users and people who might be trying to attack. It [5] came up with a 

layer verification method that uses the channel answer to tell the difference between real users and spoofers. They 

used a generalized likelihood ratio test (GLRT) that was made for frequency-selective fading channels. This test 

laid the groundwork for later improvements in the literature [6], [7]. Notably, these improvements made the 

identification method better by adding things like power spectrum densities and channel-phase response. Scholars 

have looked into different aspects of wireless channels to make PHY-layer identification even better. This study is 

mostly about radio fingerprints, received signal strength indicators, and received signal strength. Spoofing 

attempts can be stopped with methods that use the spatial decorrelation feature, like those that use spatial 

correlation of RSSIs [9]. Channel impulse reactions have been used to tell users apart in wireless networks [8].  At 

the moment, two main areas of study are being looked into: how to effectively get wireless channel information 

and how to find the best authentication levels.  

It looks like deep learning systems could help make Wi-Fi networks safer. For example, [10] described a new 

deep-learning-based indoor fingerprinting system that uses CSI to show how well it works for indoor location. A 

method for predicting Rayleigh fading channels in radio transmission using deep neural networks was suggested 

in [11]. Machine learning methods were also used to improve the security of the Internet of Things (IoT) through 

PHY-layer verification [12]. The study looks into more than just identification; it also looks into other parts of 

mobile edge computing systems. In article [13], they talked about mobile transfer and caching methods, including 

lightweight verification and safe joint caching systems to keep data private. To [14] protect mobile edge nodes 

from possible jammer attacks while they were accessing material, reinforcement learning methods were used.  

TABLE I: RELATED WORK SUMMARY 

Algori

thm 

Encryptio

n Method 

Finding Limitation 

Suppor

t 

Vector 

Machi

Homomor

phic 

Encryption 

Improved 

anomaly 

detection in 

IoT traffic. 

Limited 

scalability for 

large IoT 

deployments. 



J. Electrical Systems Vol-Issue (2024): 200 - 210 

202 

nes 

Deep 

Neural 

Networ

ks 

Quantum-

Resistant 

Cryptograp

hy 

Enhanced 

confidentiali

ty in edge 

devices. 

High 

computational 

overhead for 

resource-

constrained IoT 

devices. 

Rando

m 

Forests 

AES-GCM Robust 

intrusion 

detection in 

Edge 

Computing. 

Requires frequent 

updates for 

adapting to 

evolving cyber 

threats. 

Decisi

on 

Trees 

Lattice-

Based 

Cryptograp

hy 

Effective 

protection 

against data 

tampering. 

Limited support 

for real-time data 

processing, 

impacting 

latency-sensitive 

IoT applications. 

K-

Neares

t 

Neighb

ors 

Elliptic 

Curve 

Cryptograp

hy 

Improved 

authenticatio

n accuracy. 

May suffer from 

reduced 

performance in 

scenarios with 

high levels of 

noise in 

communication 

channels. 

Ensem

ble 

Metho

ds 

Post-

Quantum 

Cryptograp

hy 

Resilience 

against 

quantum 

attacks. 

Increased 

computational 

demands on edge 

devices for 

implementing 

post-quantum 

cryptographic 

algorithms. 

Convol

utional 

Neural 

Networ

ks 

Lightweig

ht 

Cryptograp

hy 

Efficient 

image-based 

authenticatio

n. 

Limited 

application in 

scenarios where 

detailed image 

analysis is 

required. 

Reinfo

rcemen

t 

Learni

ng 

Code-

Based 

Cryptograp

hy 

Dynamic 

adaptation to 

evolving 

threats. 

Complexity in 

tuning 

reinforcement 

learning 

parameters for 

optimal 



J. Electrical Systems Vol-Issue (2024): 200 - 210 

203 

performance. 

Cluster

ing 

Algorit

hms 

Identity-

Based 

Encryption 

Scalable key 

management 

for IoT 

devices. 

Vulnerability to 

key exposure 

risks in identity-

based encryption, 

impacting overall 

security. 

Anoma

ly 

Detecti

on 

Models 

Homomor

phic 

Encryption 

Early 

detection of 

anomalous 

behavior in 

IoT. 

Challenge in 

distinguishing 

between 

legitimate 

variations and 

malicious 

anomalies, 

leading to false 

positives. 

Geneti

c 

Algorit

hms 

Attribute-

Based 

Encryption 

Enhanced 

access 

control in 

Edge 

Computing. 

Potential 

complexity in 

defining and 

managing 

attribute policies 

for secure access 

control. 

Time 

Series 

Analys

is 

Fully 

Homomor

phic 

Encryption 

Improved 

privacy-

preserving 

analytics. 

Computational 

intensity 

associated with 

fully 

homomorphic 

encryption may 

limit its 

applicability in 

real-time analytics 

scenarios. 

III. METHODOLOGY 

Figure 2 shows a suggested multi-layer authentication framework for Mobile Edge Computing (MEC) systems. It 

aims to improve security by combining common login methods on different levels. The process starts when node 

X sends details about its name to the MEC server. The MEC server then asks the authentication center for upper-

layer protocol authentication. This is the first layer of authentication. The authentication center replies with an 

authentication confirmation, which proves that the procedure is real.  
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Figure 2: Proposed model User Authentication system 

Once the upper-layer protocol authentication goes well, the MEC server moves on to the cable layer 

authentication. This step makes sure that the data coming from node X follows the rules for security. Once the 

uplink layer authentication is done, the last step of authentication takes place at the downlink, where node X 

performs physical layer authentication. This thorough layer access authentication method checks the 

communication entities' identities and reliability, creating a safe route for communication. Finally, the next layer 

of data validation makes the MEC system even safer. After access authentication is done between node X and the 

MEC server, the MEC server verifies every file it receives at the physical layer (PHY-layer). This process makes 

sure that the data is correct and that it hasn't been changed by hackers while it's being sent. In particular, the PHY-

layer data verification is a key part of lowering the risk of data corruption and making sure that the information 

sent within the MEC structure can be trusted. The figure 2 shows an extra thing to think about in the case where 

edge nodes are limited in the amount of computing resources they can use. For these kinds of situations, the 

suggested structure lets the MEC server handle layer data validation. This method makes the best use of resources 

and makes sure that security steps, especially checking the accuracy of data, are always followed, even in edge 

nodes that don't have a lot of resources. In addition, the system handles a unique security issue that comes up with 

the Internet of Things (IoT). Figure 2 shows an example of an IoT mobile edge computing threat that can be 

stopped by authenticating data at the physical layer. By using multi-layer data verification, the suggested 

framework lowers the chance that data will be accessed, changed, or compromised without permission [15]. This 

protects the privacy and security of data in the IoT environment, which is always changing and linked. The multi-

layer identification scheme in MEC systems provides a complete and flexible way to keep information safe. The 

proposed framework builds a strong defense against possible threats by adding upper-layer protocol, uplink layer, 

and downlink physical layer authentications one after the other, along with data integrity checks. It does this by 

taking into account both limited resources and specific attack scenarios that could happen in the IoT world. 

IV. MACHINE LEARNING BASED AUTHENTICATION SYSTEM 

A Machine Learning (ML) method for an identification system as DNN with advanced encryption is chosen based 

on a number of factors, such as the needs of the system, the type of data, and the performance qualities that are 

wanted. ML methods are good at different things, so picking the best one for the identification system means 

thinking about its specifics. Defining the key parts of the encryption process is part of creating a step-by-step 

mathematical model for Enhanced Encryption in Edge Computing using Deep Neural Networks (DNN). Let's look 

at a simple case where a DNN is used for encryption in an IoT and wireless network setting: 

A. Deep Neural Networks for Encryption: 

1. Input Data: 

• Let X represents the input data, which could be a vector of raw sensor readings from IoT devices. 

2. Feature Extraction using DNN: 
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• Employ a DNN for feature extraction. Let 𝑓(𝑋; 𝜃) denote the DNN model, where 𝜃 represents the model 

parameters. The output of the DNN is denoted as  𝐻 =  𝑓(𝑋; 𝜃), capturing relevant features. 

 

𝐻 =  𝑓(𝑋; 𝜃) 

3. Key Generation: 

• Generate encryption keys based on the extracted features H. This can be represented as a key generation 

function : 

𝐾 =  𝑔(𝐻) 

4. Encryption: 

• Utilize the generated key K to encrypt the original data X. Let Y represent the encrypted data. 

𝑌 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑋, 𝐾) 

5. Transmission: 

• Transmit the encrypted data Y over the wireless network or within the Edge Computing environment. 

6. Decryption: 

At the receiving end, use the same DNN-based feature extraction to obtain H' from the received encrypted data Y'. 

𝐻′ =  𝑓(𝑌′; 𝜃) 

7. Key Extraction: 

Extract the decryption key K' from the features H' using the inverse of the key generation function. 

𝐾′ =  𝑔^(−1)(𝐻′) 

8. Decryption: 

Use the extracted key K' to decrypt the received data Y'. 

𝑋′ =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑌′, 𝐾′) 

When cross entropy is used, the log probability function gives us the cost function J(ψ). 

Let's derive the cost function J(ψ) using cross-entropy from the log likelihood function. Assuming a binary 

classification problem, the log likelihood function is defined as follows: 

a. Hypothesis Function: 

Start with the hypothesis function for logistic regression: 

ℎ𝜓(𝑥)  =  1 / (1 +  𝑒−𝜓𝑇𝑥) 

b. Likelihood Function: 

Define the likelihood function for the entire dataset: 

𝐿(𝜓) =  ∏ [ℎ𝜓(𝑥𝑖)𝑦𝑖
⋅  (1 −  ℎ𝜓(𝑥𝑖))

1 − 𝑦𝑖

]

𝑚

𝑖=1

 

Where, m is the number of training examples, 𝑥𝑖  is the feature vector for the i-th example, and 𝑦𝑖  is the 

corresponding label. 

c. Log Likelihood Function: 
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Take the natural logarithm (log) of the likelihood function to simplify computations: 

ℓ(𝜓) =   ∑ [𝑦𝑖 log (ℎ𝜓(𝑥𝑖)) + (1 −  𝑦𝑖) log (1 −  ℎ𝜓(𝑥𝑖))]

𝑚

𝑖=1

    

d. Negative Log Likelihood: 

Convert the log likelihood to a cost function by taking the negative log likelihood and averaging over all 

examples: 

𝐽(𝜓) =  − (
1

𝑚
) ∑ [𝑦𝑖 log (ℎ𝜓(𝑥𝑖)) + (1 − 𝑦𝑖) log (1 −  ℎ𝜓(𝑥𝑖))]  

This is the final cost function 𝐽(𝜓) for logistic regression with cross-entropy as the loss function. The goal in 

training the logistic regression model is to minimize this cost function by adjusting the parameters ψ. 

B. Gradient Descent for User Authentication 

For multi-user verification, the pseudocode describes the Gradient Descent with Momentum (GDM) method. 

Initializes important factors such as learning rate and momentum, and then updates weights iteratively based on 

gradients and momentum terms that have been calculated. By looking at past slopes, this dynamic method speeds 

up convergence.  

Algorithm: 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆: 

− 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝛼 

− 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛽 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1) 

− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜓 

− 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑒𝑟𝑚 𝑣 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟) 

𝑹𝒆𝒑𝒆𝒂𝒕 𝒖𝒏𝒕𝒊𝒍 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆: 

  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 (𝑋, 𝑦) 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡: 

    1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

         𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠: 

      
𝜕𝐽(𝜓)

𝜕𝜓 
=  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑋, 𝑦, 𝜓) 

    2. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑒𝑟𝑚: 

       𝑣 =  𝛽 ∗  𝑣 +  (1 −  𝛽) ∗
𝜕𝐽(𝜓)

𝜕𝜓
 

    3. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑒𝑟𝑚: 

       𝜓 =  𝜓 −  𝛼 ∗  𝑣 

  𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽(𝜓) 

 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡: 

    𝐽(𝜓) =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑠𝑡(𝑋𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , 𝑦𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , 𝜓) 

  𝐶ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎  

(𝑒. 𝑔. , 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑒𝑡𝑐. ). 
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C. RMS Optimization Authentication Algorithm 

For Multi-User Authentication, a well-known optimization method called RMSprop is used to improve training 

speed and resolution. The program changes the learning rates for each parameter on the fly, which makes it easier 

for users whose gradients are different to solve problems. In this case, RMSprop adjusts to the specifics of each 

person, making the security model parameters work better. This helps to speed up convergence and improve the 

accuracy of authentication. The fact that the algorithm can change to different user patterns shows how important 

it is for making strong and adaptable security systems for a wide range of user settings. 

1. Initialization: 

• Learning rate α 

• Exponential decay parameter β (typically close to 1, e.g., 0.9) 

• Small constant ϵ (to avoid division by zero) 

• Initial weights θ 

• Initialize squared gradient accumulator E[g^2] to zero vector. 

2. Repeat until convergence: 

• For each training example (X_i, y_i) in the dataset: 

2.1. Compute the gradient of the cost function with respect to the weights: 

   𝑔 =  𝛻𝜃𝐽(𝜃; 𝑋𝑖 , 𝑦𝑖) 

 2.2. Update the squared gradient accumulator: 

𝐸[𝑔2] =  𝛽 ∗  𝐸[𝑔2] +  (1 –  𝛽) ∗  𝑔2 

 2.3. Update the weights using the RMSprop update rule: 

   𝜃 =  𝜃 − 
𝛼

(√𝐸[𝑔2] +  𝜖) ⊙  𝑔
 

Compute the cost function over the entire dataset: 

   𝐽(𝜃) =  (
1

𝑚
) ∑ 𝐽 (𝜃; 𝑋𝑖 , 𝑦𝑖)

𝑚

𝑖=1

 

Check for convergence criteria (e.g., change in cost function, number of iterations, etc.). In the above 

equations, 𝐽(𝜃; 𝑋_𝑖, 𝑦_𝑖) represents the cost function for a single training example, and m is the number of training 

examples. The operator ⊙ denotes element-wise multiplication. 

V. RESULT AND DISCUSSION 

Key measures, such as the cost function (J) and the authentication rate (Pa), are used to judge how well deep 

learning-based multi-user authentication works. The cost function J, which is found in equation (6), shows how 

well the model can tell the difference between real emitters and spoofers. This measure is very important for 

figuring out how well the deep neural network (DNN) works. On the other hand, the identification rate (Pa) is the 

chance of correctly telling the difference between real users and fake ones. P is written in math terms as the ratio 

of the number of successful authentications to the total number of samples in a group. 

𝑃𝑎 =
1

𝑁∑𝑖𝑁𝑦𝑖𝑇𝑖
, 𝑘 

The power delays of the real emitter and the spoofer are shown in Figure 3. These delays are important for 

simulating wireless channels. For a standardized Doppler shift (fd) of 0.125, six lines with different power delays 

are picked to make channels. To make things more realistic, the first five tracks for both the real emitter and the 

spoofer are the same.  
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Figure 3: Power Delays of Legitimate Transmitter and Spoofer 

They go through 0s, 5×10^6s, 1×10^5s, 1.5×10^5s, and 2×10^5s of delays. The sixth path splits, with delays of 

4×10^5s for the real transmitter, 3×10^5s for the spoofer, 2.6×10^5s for the valid transmitter, and 2.2×10^5s for 

the spoofer. A sample period (tsampling) of 5×10^6s is used to keep the signal-to-noise ratio (SNR) at 4 dB. 

There are 256 subcarriers in the exercise, with pilot intervals of 15 kHz and a cycle prefix length (lcp_length) of 

30. This setup makes sure that the behaviors of the wireless channel are fully modeled, giving useful information 

about the power delays of both real and fake channels when things are really like they are. Figure 4 shows how 

time complexity and convergence speed affect each other. This helps us understand how the multi-user 

authentication system works in terms of both computing efficiency and training dynamics. Time complexity, 

which is shown on the y-axis, shows how many computers are needed to finish one identification process.  

 

Figure 4: Time Complexity and Convergence Speed 

The x-axis shows convergence speed, which shows how fast the system becomes stable during training. The graph 

shows how different mini-batch sizes (φ0) affect the amount of time needed and how fast the solution converges.  

 

Figure 5: Authentication Rate vs Epochs for Different Optimizers 
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As φ0 goes up, floating-point operations take less time, which suggests that bigger mini-batch sizes might be 

better for computing. Notably, a mini-batch size of φ0=200 has the lowest time complexity, which suggests that 

resources are being used efficiently. However, the benefit of φ0=200 is not very strong when compared to smaller 

mini-batch sizes like φ0=10, φ0=20, and φ0=40. It's also clear from the graph that using stochastic gradient 

descent (φ0=1) takes the most time and slows down convergence the most. The epochs, which show how many 

full passes through the whole training dataset were made during the model training process, are shown on the x-

axis. The identification rate, which shows how well the system can tell the difference between legal and rogue 

nodes, is shown on the y-axis. The figure 5 identifies rates of various optimization methods change over time and 

across different epochs. Notably, the Adam algorithm always does better than the others, showing a higher rate of 

confirmation. Adam's identification rate hits 97.0% after three epochs when a learning rate (±) of 5×10^-4 is used. 

The rates of identification for RMSprop are 92.75%, while the rates for GDM are 50.5%. It's helpful to know how 

the performance of optimization methods changes over time, and this graph helps with choosing the best way to 

train the multi-user login system.  

VI. CONCLUSION 

Incorporating machine learning and stronger protection for edge computing in IoT and wireless networks looks 

like a good way to make these connected systems safer and more efficient. The study of physical layer 

identification that takes advantage of different wireless channel features shows a proactive way to stop bad things 

from happening. Researchers have looked into new methods, such as deep learning algorithms, to make wireless 

networks safer. They have made big strides in identification and tracking. The comparison of optimization 

algorithms shows that Adam is better at getting higher recognition rates. This shows how important algorithm 

selection is to system performance. The difficulties of optimizing the mini-batch size show how difficult it is to 

find the right balance between speed of convergence and time complexity. A mini-batch size of 10 turns out to be 

the best solution. The computer complexity study also shows how the post-training identification process has been 

simplified, which shows that the system can be used in real life. As technology moves closer to the edge, it's more 

important than ever to keep the Internet of Things and wifi networks safe.  
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