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Abstract: - Climate change is leading to sudden extreme weather events like floods and heavy rain to occur. One of the most significant 

rain-bearing systems, Mesoscale Convective Systems (MCSs), is in charge of catastrophic rainfall and flood events that may cause loss of 

life and property. MCSs are one of the vital components of the climate system on Earth. Many studies contributed to two significant steps, 

MCS identification and tracking. There are a variety of algorithms focused on tracking whereas for MCS identification only limited methods 

are present. They contribute to global as well as regional climate patterns by transporting heat and moisture. It is necessary to identify MCS 

properly to track MCS occurrences over time and comprehend their typical lifecycle to get early warnings of their existence. Three MCS 

identification techniques based on the Hue channel of the Hue Saturation Value (HSV) color model are implemented in this research, and 

their effectiveness is assessed. These techniques execute segmentation based on Hue channel Thresholding (HT), K means clustering 

combined with Hue channel Thresholding (KMCHT) and the modified Source Apportionment Technique combined with Hue channel 

Thresholding (SATHT). Image pixel values are used to depict infrared brightness temperature data obtained from the Indian geostationary 

satellite Kalpana-1. The generated ground truth images and performance measurements are used to assess the effectiveness of the methods. 

The proposed SATHT method for multiple cloud segmentation results in superior performance metrics than the HT and KMCHT 

approaches. 
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I. INTRODUCTION 

Mesoscale Convective Systems (MCSs) represent cloud clusters holding a group of thunderstorms, within it causing 

contiguous precipitation over an area covering approximately 100 km along the horizontal scale in one direction 

[1]. Prolific rainmakers, MCSs possess the capacity to generate large amounts of precipitation within a short 

duration leading to floods, which may cause property damage and loss of life [1] [3]. Sometimes MCS existence 

can be the reason for occurrences of tornadoes and hail [3]. In most parts of the tropical belt, such as the Bay of 

Bengal, Indo-Pacific warm pool, tropical Eastern Pacific, and tropical Eastern Atlantic, MCS precipitation 

contributions exceed 50% of yearly total precipitation [2]. Over the Indian subcontinent, the MCS rainfall portion 

ranges from 40%-60%. Therefore, it is important to understand and study the MCSs characteristics considering their 

hazardous existence. In order to improve weather forecasting models and enhance the understanding of atmospheric 

processes, MCSs are the focus of significant research [1]. Forecasts of rainfall, severe weather, and other 

meteorological phenomena is made easier by studying MCSs. Major research has been conducted on MCS 

identification, characterization, and tracking using advanced remote sensing technology. Geostationary 

meteorological satellite infrared imagery data has been globally used to study the MCS due to its wide space and 

time coverage [3], [4]. Maddox [5] initiated the MCS studies in the United States and identified Mesoscale 

Convective Complexes (MCCs). Using satellite images, the MCS climatology was documented over the Indian 

monsoon and globally [6]. MCS characteristics were further examined in other regions, including South America, 

Africa, South Asia, and the Maritime continent [2] [3] [4] [6] [7]. Most of the MCS characteristics and organization 

investigation is carried out with brightness temperature (BT) based thermal infrared (IR) images as pixel intensities 

in an image are directly proportional to the cloud temperature. 

Though MCS cloud identification is a significant step for MCS area coverage calculation, the existing literature 
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lacks analysis and comparison of the methods used for it. In this research work, MCS are identified from RGB color 

maps generated using IR BT data taken from the Indian geostationary satellite, Kalpana-1. The objective of the 

paper is to focus on detecting or identifying MCS based on IR BT observations using three techniques, Hue channel 

Thresholding (HT), K means clustering combined with Hue channel Thresholding (KMCHT), and the modified 

Source Apportionment Technique combined with Hue channel Thresholding (SATHT) and comparison of their 

results due to its importance in understanding the MCS occurrence patterns. This study contributed a combination 

of the Source Apportionment Technique (SAT) and the Thresholding technique to identify multiple cloud clusters 

in an image. Results are compared using performance metrics such as Mean Intersection of Union (IoU), Mean 

Pixel Accuracy, Mean Precision, Mean Recall, and Mean F1 score along with execution time. These results will be 

compared with the results of Deep Learning (DL) based algorithms to assess and confirm the worthiness of DL 

techniques used for cloud segmentation as it involves a substantial amount of cost, time as well as effort for the 

creation of labelled data.  

The paper is organised as, the literature review in section 2, Data set and methods in section 3, Results and 

discussions are given in section 4, and section 5 concludes the work. 

II. LITERATURE REVIEW 

Many studies contributed to two significant steps, MCS identification and their tracking using IR BT data from 

geostationary satellites [3] [4] [ 5] [7] [8] [9] [10] [11] [12]. There are a variety of algorithms focused on tracking 

whereas for MCS identification only limited methods are present. IR BT threshold and the minimum size 

requirements were used for MCS identification. The temperature and size criteria were chosen arbitrarily, and they 

vary according to the specific MCS type and study location [10] [11] [12]. A detailed review of different methods 

and studies for MCS identification, also known as detection and tracking is available in [13]. These studies 

highlighted the significance of MCS identification. Various temperature thresholds ranging from 190–258K have 

been used to detect MCSs [10]. Some studies used a single temperature threshold, while others given in employed 

several temperature thresholds (190-235K) to identify MCS [8] [14]. Most studies used a BT threshold within the 

range of 228-263K and around 220K or less, where deep convection is considered as a single threshold value or 

combination of multiple thresholds [2] [4] [10] [11] [12] [15] [16] [17]. Thresholding-based segmentation depending 

on IR BT is an inherent part of the MCS identification step. The above points highlight that MCS identification is 

often made using cloud segmentation based on the Thresholding technique.  

Although the Thresholding method is often used for MCS identification, there are other additional approaches also 

found in the literature. Reference [7] identified MCSs using the Source Apportionment Technique (SAT). It works 

only with one global minimum BT within the domain of interest for single MCS extraction, but several local minima 

might exist within an image. Reference [18] used a fuzzy min-max neural network to identify the cold clouds 

representing MCS. The Thresholding approach is used in conjunction with other techniques in [19] and [20]. 

References [8] and [21] employed three-dimensional (3D) segmentation with varied BT threshold values to obtain 

3D cloud clusters of varying temperatures separately as part of the Tracking of Organized Convection Algorithm 

through a 3-D segmentatioN algorithm (TOOCAN). The K means clustering (KMC) algorithm is also used to 

identify the convective clouds in [22] [23] [24]. Reference [25] identified MCS as a Gaussian mixture represented 

by a 2D spheroid. As mentioned earlier, MCS identification in all techniques starts with the Thresholding technique, 

either directly or indirectly. Hence, it underlines the importance of the Thresholding technique for accurate MCS 

detection. Therefore, the Thresholding technique for cloud identification can be considered a State-of-the-art 

(SOTA) or base method for MCS identification. Limitation of using only the Thresholding technique is, it extracts 

cloud structures resulting in false large size parameters leading to the increased area during the merging of clouds 

[7]. Thus, the Thresholding technique may result in incorrect MCS identification and tracking while several cells 

are present and where the shape of the system changes rapidly. Although Source Apportionment Technique (SAT) 

performs better than Thresholding, it can only detect a single biggest cloud in an image if numerous cold cloud 

clusters are present. References [22] [23] [24], also used the KMC algorithm for MCS identification. As mentioned 

in [26] KMC is a widely used technique for image segmentation. Even though KMC gives good results, the value 

of K must be determined before its use, which is unknown prior to applying it for cloud segmentation. For different 

values of K, it may lead to different results [26]. 

To address the above-mentioned limitations of the SAT and KMC methods, their combinations with the 

Thresholding technique are proposed and results are analyzed against the Thresholding method. An empirical study 
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is done with different values of K, for KMC algorithm implementation by combining it with the Thresholding 

technique.  

 

1.1. MCS identification based on Hue channel of HSV color space   

The three methods, namely Thresholding, proposed method SATHT i.e. SAT combined with Thresholding, and K 

means clustering technique combined with Thresholding, are implemented on the Hue channel of the Hue, 

Saturation, and Value (HSV) color space. Color image processing makes it simple to identify the objects while 

extracting them from the image as it is easy to see color shades compared to grey shades [27]. In addition, color 

images also provide more visual information about the object [28]. Color space is mathematically modelled to 

represent color information as a combination of three or four color components [29]. RGB is a traditional color 

space with red, blue, and green components. RGB is a device-dependent color space [27], and there is a significant 

change in RGB components if lighting conditions change [30]. Therefore, it is unsuitable for color-based 

segmentation as luminance and chrominance components get mixed [31]. HSV relates closely to how humans 

perceive color [32]. In HSV color space, the Hue component gives the pure color value. Saturation describes the 

degree of white light present in the pure color and brightness of the color described by the Value component [27]. 

In HSV, the pixel intensity color component is easily separated and remains stable during the change in exposure 

or lighting conditions [31]. Hence, in this work, the Hue channel of the HSV color model is used for MCS 

identification instead of RGB. The advantages of the HSV color space over other color spaces are detailed in [33]. 

Equations (1) - (10) describe RGB to HSV conversion based on the formulas given in [32]. Here R, G, and B 

represent pixel-wise red, green, and blue color component values, respectively. Similarly, H, S, and V represent 

pixel-wise Hue, Saturation, and Value color component values, respectively. 

𝑃: =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 (𝑅, 𝐺, 𝐵)  (1) 

𝑄: = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 (𝑅, 𝐺, 𝐵)  (2) 

𝐻 = 0                                        𝑖𝑓 𝑅 = 𝐺 = 𝐵  (3) 

𝐻 = 60 𝑥 (
𝐺−𝐵

𝑃−𝑄
 )                    𝑖𝑓 𝑃 = 𝑅  (4) 

𝐻 = 120 + 60 𝑥 (
𝐵−𝑅

𝑃−𝑄
)        𝑖𝑓 𝑃 = 𝐺  (5) 

𝐻 = 240 + 60 𝑥 (
𝑅−𝐺

𝑃−𝑄
)       𝑖𝑓 𝑃 = 𝐵  (6) 

𝑆 =
𝑃−𝑄

𝑃
                                  𝑖𝑓 𝑃 ≠ 0  (7) 

𝑆 = 0                                       𝑖𝑓 𝑃 =  0  (8) 

𝑉 = 𝑃  (9) 
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S and V values range from 0 to 1, whereas H ranges from 0 to 360. Then for 8-bit values H, S, and V are mapped as 

 

𝑆 = 𝑆 𝑥255, 𝑉 = 𝑉 𝑥255, 𝐻 = 𝐻/2            (10) 

 

After splitting the image into H, S, and V components, the Hue channel is used for further image segmentation 

operations to identify and extract the cold clouds. Following are the three proposed methods based on the 

combination of the widely used segmentation techniques of Thresholding, K means clustering (KMC), and Region 

Growing. These methods are applied to the Hue channel of HSV color space. Here, temperatures below 220K are 

considered since they represent deep convection.  

1.2. Hue channel Segmentation based on Thresholding technique (HT) 

Here Thresholding segmentation is applied to the Hue component of the HSV color model with the following steps.  

 

Algorithm: Hue channel segmentation based on Thresholding (HT) 

 

Input: RGB BT image 𝒊(𝒙, 𝒚)    

Output: Segmented output image 𝒐(𝒙, 𝒚) 

1. RGB BT image 𝒊(𝒙, 𝒚) is converted from RGB to HSV color space. HSV image is split into hue, saturation, and 

value components.  

2. Hue image 𝒉(𝒙, 𝒚) is thresholded with the Hue value equivalent to the brightness temperature of 220K shown 

as HTH220K in (11) to generate a segmented output image 𝒐(𝒙, 𝒚) 

3. For Any point (𝒙, 𝒚) within an output image 𝒐(𝒙, 𝒚), 

o(𝒙, 𝒚) = 𝟐𝟓𝟓 𝒊𝒇 𝒉(𝒙, 𝒚) ≥ 𝑯𝑻𝑯𝟐𝟐𝑲 

𝒐(𝒙, 𝒚) = 𝟎 𝒊𝒇 𝒉(𝒙, 𝒚) < 𝑯𝑻𝑯𝟐𝟐𝟎𝑲       (11) 

 

All the image pixels with the Hue values above the threshold are removed, retaining only values representing the 

clouds with cold temperatures below 220K from the range of values from 360K to 180K.  

 𝒐(𝒙, 𝒚) represents an image consisting of foreground MCS clusters or contours representing pixels equivalent to a 

temperature below or equal to 220K in white color with a black background. 

1.3. Hue Channel Segmentation based on SAT technique combined with Thresholding (SATHT)  

This approach combines the Source Apportionment Technique (SAT) in [7] with the Thresholding technique. 

  

Algorithm: Hue Channel Segmentation based on SAT technique combined with Thresholding (SATHT) 

 

Input: RGB BT image 𝑖(𝑥, 𝑦) 

Output: Segmented output image 𝑜(𝑥, 𝑦) 
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1.  First, Hue channel Segmentation based on the Thresholding technique is performed with input RGB image 

𝒊(𝒙, 𝒚) to get thresholded image 𝒐(𝒙, 𝒚). Here the image 𝒐(𝒙, 𝒚) consists of MCS contours. This step is used to 

get the center pixels of cloud contours representing cold temperatures below 220K. These center point locations 

of each cloud contour act as a multiple local minimum over the entire image. 

2. Center points of each cloud contour are taken as seed points, and SAT is applied on the Hue channel image 

𝒉(𝒙, 𝒚) as per the technique used in [7].  

3. Pixel values representing minimum BT in a region of interest, i.e. cloud contour center points within a given 

image 𝒉(𝒙, 𝒚) are selected as a seed point 𝑷𝟎.  

4.  Around the seed point 𝑷𝟎, each 5×5 neighboring pixel is considered pixel 𝑷𝟏.  

5. Only those pixels are retained where the ratio 𝑷𝟏/𝑷𝟎 < 𝑹 .𝑹  is chosen, so neighboring pixel values indicate 

temperature value below BT threshold, i.e., 220K.  

6. Then 𝑷𝟏 acts as a new 𝑷𝟎. Again, step (5) is repeated until no new neighboring pixel satisfies the condition of 

𝑷𝟏/𝑷𝟎 < 𝑹 or the new pixel value does not represent the minimum brightness temperature below the BT 

threshold.  

7. The binary image is created with retained pixels indicating white pixels and the remaining pixels having a black 

background.  

 

The SAT extracts a single MCS within an image. Multiple MCS can be found in one image, hence multiple MCS 

must be identified. One way of using the SAT method to extract multiple cold cloud objects is by considering every 

pixel as a seed point. However, it takes a very long time to execute, and it will not be efficient. To extract multiple 

MCS representing deep convective regions with temperatures below 220K, segmentation based on Hue channel 

Thresholding is applied as a first step. Then the centroids of these extracted cloud contours are passed to the SAT 

as a seed point beside the pixel representing minimum BT in a localized region. Here SAT is applied on the hue 

channel image 𝒉(𝒙, 𝒚) with multiple seed points. As image pixels are segmented with the Thresholding Hue value 

representing temperature below 220K, it covers all pixels equivalent to temperatures below 220K. It avoids applying 

the SAT to every pixel of an image. 

1.4. Hue Channel Segmentation based on K Means Clustering combined with Thresholding (KMCHT) 

Reference [34] proposed K means clustering algorithm (KMC) which is widely used for image segmentation [35]. 

It divides data points into a fixed number of homogeneous groups called clusters. There are two steps while 

implementing the K means clustering algorithm. The first step calculates k number of cluster centers, i.e., centroids. 

The second step assigns each data point to the cluster with the nearest centroid. The nearest centroid is assigned 

based on the distance between the centroid and the respective data point. The most commonly used distance is 

Euclidean distance. The K-means method iterates until the sum of distances between each data point, and its cluster 

centroid is minimized. K means the clustering algorithm for image segmentation is explained below. 

 

Algorithm: Hue Channel Segmentation based on K Means Clustering combined with Thresholding (KMCHT) 

 

Input: RGB BT image 𝑖(𝑥, 𝑦)  

Output: Segmented output image 𝑜(𝑥, 𝑦) 

1. Let 𝒊(𝒙, 𝒚) be an input image with 𝒙 ∗  𝒚 pixels to be clustered into k clusters and 𝒄𝒌 are the cluster centers.  

2. Initialize the number of clusters k as well as respective centers.  

3. For every pixel of an image, calculate the Euclidean distance d as in (12), between the center points and every 

pixel of an image using the relation given below.  
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4. 𝒅 =  ‖𝒊(𝒙, 𝒚) − 𝒄𝒌‖          (12) 

5. Assignment of all the pixels to the nearest center based on distance 𝒅.  

6. Once all pixels have been assigned, recalculate the new position of the cluster center with the relation given in 

(13) below.  

𝒄𝒌 = 𝟏/𝒌 ∑ ∑ 𝒊(𝒙, 𝒚)𝒎−𝟏
𝒙=𝟎

𝒏−𝟏
𝒚=𝟎             (13) 

Where x varies from 0 to m-1, y varies from 0 to n-1 

7. If no data point was reassigned, then stop, otherwise repeat steps 4 and 5.  

8. Reshape the pixels of the cluster into the output image 𝒑(𝒙, 𝒚). 

  

On the image obtained at the output of KMC, segmentation based on Hue channel Thresholding is applied, as shown 

in Fig. 2. 

 

 

 

 

Figure 2.   KMC technique combined with Hue Thresholding Technique 

Here all the pixels representing the Hue value below the temperature equivalent of 220K are retained as a white 

foreground, and other pixels are part of the black background. The challenge with KMC is that it requires a value 

of K, or the number of clusters, to be determined before the clustering process can begin. Different K values are 

tested to address this issue. For KMC-based segmentation, the optimum value of K is chosen.  

Once the segmentation is performed for all three methods, post-processing in the form of morphological operation 

of closing, i.e., dilation following erosion operation is performed. It is required to close the void areas generated at 

the output of the segmentation due to the pixels representing the map areas in the form of thin lines which didn’t 

represent the pixel value below minimum BT criteria [36].  

III. EVALUATION METHODS 

The quantitative performance indicators used to compare different segmentation models are listed below [36].  

1.5. Pixel Accuracy (A)  

Image segmentation is considered a binary classification problem as it generates the binary mask. Here, 1 indicates 

the positive value i.e., a white pixel, and 0 indicates the negative value, i.e. a black pixel. Pixel accuracy is a ratio 

of the correctly classified or identified pixel values divided by the total number of pixels [37] as shown in (14). It 

ranges from 0 to 100. For MCS identification, there are two classes, white cloud clusters representing BT below 

220K (True Positives) and the remaining pixels as a black background (True Negatives).  

𝐴 = (𝑇𝑝 + 𝑇𝑛)/(𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛)   (14) 

Where 𝑇𝑝 is true positive, 𝑇𝑛 is true negative, 𝐹𝑝 is false positive and 𝐹𝑛 is false negative. Computations of these 

values using output images representing segmented clouds and ground truth images are shown by (15) below. 

𝐹𝑝 = ∑ ∑ 𝑖𝑓(𝑛𝑜𝑡 𝑔(𝑥, 𝑦) & 𝑜(𝑥, 𝑦) == 1)𝑚−1
𝑥=0

𝑛−1
𝑦=0   

𝐹𝑛 = ∑ ∑ 𝑖𝑓(𝑔(𝑥, 𝑦) & 𝑛𝑜𝑡 𝑜(𝑥, 𝑦) == 1)𝑚−1
𝑥=0

𝑛−1
𝑦=0   

𝑇𝑝 = ∑ ∑ 𝑖𝑓(𝑔(𝑥, 𝑦) & 𝑜(𝑥, 𝑦) == 1)𝑚−1
𝑥=0

𝑛−1
𝑦=0   

KMC for image 
segmentation 

Hue channel 

segmentation 

based 
Thresholding 

Technique 

𝒊(𝒙, 𝒚) 𝒑(𝒙, 𝒚) 𝒐(𝒙, 𝒚) 
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𝑇𝑛 = ∑ ∑ 𝑖𝑓(𝑛𝑜𝑡 𝑔(𝑥, 𝑦) & 𝑛𝑜𝑡 𝑜(𝑥, 𝑦) == 1)𝑚−1
𝑥=0

𝑛−1
𝑦=0        

 (15) 

Where x varies from 0 to m-1, y varies from 0 to n-1 

𝑔(𝑥, 𝑦) – Ground truth image pixel intensity at (𝑥, 𝑦). 

𝑜(𝑥, 𝑦) − Output image pixel intensity at (𝑥, 𝑦) 

(𝑥, 𝑦) ∈  {0 ≤ 𝑥 ≤ 𝑚 − 1, 0 ≤ 𝑦 ≤ 𝑛 − 1} 

1.6. Mean Precision (𝑷𝒓), Recall (𝑹𝒄) and F1 score (𝑭𝟏) 

Precision determines the percentage of the cold cloud pixels, i.e., white pixels correctly detected (True Positive) out 

of the total number of white pixels (total of true and false positive) within the segmented image as shown in (16). 

Recall determines the percentage of total correctly identified cold cloud white pixels, as shown in (17). Precision 

and recall are defined by referring [37] and ranges between 0 and 1.  

Pr = 𝑇𝑝 /(𝑇𝑝 + 𝐹𝑝)          (16) 

𝑅𝑐 = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑛)          (17) 

F1-score is defined as the harmonic mean of precision and recall [23]. It ranges between 0 and 1. 

𝐹1 = 2(Pr 𝑥 𝑅𝑐)/(𝑃𝑟 + 𝑅𝑐)    (18) 

4.1 Intersection over Union (IoU or the Jaccard Index)  

IoU is defined as the area of intersection of the predicted, i.e. cold cloud white pixels within the segmented image 

and the ground truth image, divided by the area of the union of cold cloud white pixels within both the images [37] 

as in (19). 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =  |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|    (19) 

Where A represents ground truth image, B represents predicted segmented images, and IoU ranges between 0 and 

1.  

IV. RESULTS AND DISCUSSION 

As mentioned all three methods of MCS identification based on the Hue channel of the HSV color model are 

implemented on the IR BT images. 

1.7. Hue channel Segmentation based on Thresholding technique (HT) 

Various hue values were applied to threshold the image to select the pixel values representing the temperature below 

220K, and the outcomes were compared. It was necessary to experiment with various Hue values in order to 

determine the ideal Hue value threshold.  Several Hue threshold levels were experimented with. Ground truth images 

were used to evaluate the segmentation methods. Section 4 provides an explanation of the quantitative metrics used 

to assess segmentation performance based on HT at various Hue threshold values. Performance metric values are 

evaluated for each image, and the average or mean is computed for each metric over all the images. 
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Table 1.  Evaluation metrics for Hue channel segmentation based on the Thresholding technique (HT) 

Hue 

Value 

Threshold 

Mean 

IoU 

Mean 

Pixel_ 

Accurac

y 

Mean 

Precisio

n 

Mean 

Recall 

Mean   

F1_ 

Score 

Time 

required 

for 

execution 

in seconds 

29 0.499 99.63 0.970 0.506 0.660 55.33 

30 0.755 99.82 0.978 0.767 0.859 55.83 

31 0.848 99.89 0.97 0.86 0.917 55.56 

32 0.891 99.92 0.960 0.924 0.942 55.52 

33 0.893 99.92 0.930 0.957 0.943 55.67 

34 0.873 99.90 0.892 0.975 0.932 55.62 

35 0.842 99.87 0.852 0.985 0.913 55.81 

36 0.804 99.83 0.809 0.991 0.890 55.42 

37 0.760 99.78 0.763 0.994 0.863 56.09 

38 0.709 99.71 0.711 0.996 0.82 55.58 

39 0.631 99.59 0.632 0.997 0.771 60.26 

40 0.52 99.36 0.527 0.998 0.686 55.72 

 

Table 1 shows the mean values of IoU and all other metrics such as Pixel accuracy, Precision, Recall, and F1-Score 

are good at the Hue threshold of 33. IoU measures the similarity between the ground truth and the output images. 

IoU is considered a more reliable metric for image segmentation and object detection [38]. Mean IoU is good (0. 

893) with a Hue threshold of 33. With further increase in Hue threshold value IoU and other metrics values decrease. 

Thus, Hue threshold value 33 is used further to compare the results with SATHT and KMCHT. 

1.8. Selection of k value for Hue Channel Segmentation based on K Means Clustering combined with 

Thresholding (KMCHT) 

The value of k, i.e. number of clusters, is an important parameter for K means clustering implementation as its value 

significantly impacts the results obtained. At different k values, the segmentation performance of KMCHT is 

evaluated using quantitative metrics. Each image’s performance metric values were analyzed, and an average or 

mean was computed for each metric over all images. These metric values are shown in Table 2. It is seen that Mean 

values of IoU and all other metrics such as Pixel accuracy, Precision, Recall, and F1-Score are good at k equal to 

47. Though the k value is increased further, IoU oscillates around 0.83. It is seen that optimum results are at K = 47 

with respect to execution time. As the k value increases further, there is no significant performance gain. However, 

execution time increases. Therefore, the value of k is chosen as 47 for the segmentation based on KMCHT.  
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Table 2. Evaluation metrics for K-means cluster with different values of k 

k Mean 

IoU 

Mean 

Pixel_ 

Accurac

y 

Mean 

Precisio

n 

Mean 

Recall 

Mean 

F1_Scor

e 

Time 

required 

for 

execution 

in seconds 

21 0.666 99.74 0.851 0.786 0.773 6594.69 

25 0.755 99.80 0.837 0.897 0.850 7743.72 

30 0.786 99.83 0.847 0.926 0.872 8934.56 

35 0.808 99.84 0.842 0.955 0.891 10347.67 

40 0.816 99.84 0.851 0.955 0.896 12876.97 

41 0.816 99.84 0.851 0.955 0.896 11960.48 

42 0.822 99.85 0.848 0.964 0.901 12226.44 

43 0.826 99.85 0.853 0.964 0.904 12573.16 

44 0.823 99.85 0.858 0.955 0.901 12841.94 

45 0.821 99.85 0.852 0.959 0.899 13407.13 

46 0.83 99.86 0.86 0.961 0.906 13509.61 

47 0.831 99.86 0.862 0.96 0.906 13673.36 

48 0.828 99.86 0.855 0.964 0.905 13998.92 

49 0.831 99.86 0.858 0.964 0.907 14258.06 

50 0.83 99.86 0.86 0.962 0.906 14595.54 

 

1.9. Hue Channel Segmentation based on SAT technique combined with Thresholding (SATHT) 

As seen in the method SATHT, P0 is taken as a seed pixel. The ratio of 𝑃1/𝑃0  is calculated where P1 is a 

neighboring pixel within 5x5 pixels around P0. For retention of the pixels representing temperature below 220K, 

parameter R is taken such that 𝑃1/𝑃0 < 𝑅. The value of R is selected empirically by testing different R values and 

observing the performance of each R as shown in Table 3. After R = 4, there is a minimal variation in the values of 

the performance metrics. Therefore, R values are taken in the multiples of 5. It has been observed from R = 35 that 

there is no increase in the values of the performance metrics. Therefore, R is selected as 35. 

1.10. Evaluation of different techniques  

The performance of all three methods is evaluated for each of the calculated metric values. Fp, Fn, Tp and Tn values 

are computed using (15) and are used to calculate the performance metrics. As given in Tables 1, 2, and 3 mean 

performance metrics values calculated over all images are shown as Mean IoU, Mean Pixel Accuracy, Mean 
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Precision, Mean Recall, and Mean F1 score along with execution time. 

Table 3. Evaluation metrics for SATHT with different values of R 

Valu

e of 

R 

Mean 

IoU 

Mean 

Pixel_ 

Accurac

y 

Mean 

Precisio

n 

Mean 

Recall 

Mean  

F1_ 

Score 

Time 

required 

for 

execution 

in seconds 

1 0.114 99.32 0.974 0.114 0.199 253.22 

2 0.842 99.87 0.922 0.907 0.913 260.11 

3 0.865 99.89 0.922 0.934 0.927 284.91 

4 0.882 99.90 0.922 0.953 0.936 301.89 

5 0.884 99.91 0.922 0.954 0.937 322.43 

10 0.888 99.91 0.922 0.959 0.940 488.04 

15 0.888 99.91 0.922 0.960 0.940 512.60 

20 0.891 99.91 0.922 0.96 0.942 548.92 

25 0.891 99.91 0.922 0.964 0.942 586.11 

30 0.892 99.91 0.922 0.964 0.942 603.52 

35 0.893 99.91 0.922 0.966 0.943 639.04 

40 0.893 99.91 0.922 0.966 0.943 682.02 

45 0.893 99.91 0.922 0.966 0.943 660.11 

50 0.893 99.91 0.922 0.966 0.943 687.94 

55 0.893 99.91 0.922 0.966 0.943 668.85 

60 0.893 99.91 0.922 0.966 0.943 677.76 

65 0.893 99.91 0.922 0.966 0.943 646.51 

70 0.893 99.91 0.922 0.966 0.943 638.92 

The best results for these performance metrics are obtained for the Thresholding method with a Hue value threshold 

of 33, for the K-means cluster with a value K of 47, and metrics for SATHT values R of 35. These results are shown 

in Fig. 3 to 4.  
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 From these charts, both HT and SATHT give better results than the  MCHT method. Both these techniques produce 

similar results in terms of the mean values of performance metrics over all images. The execution time required for 

the HT, SATHT, and KMCHT is 55.67 seconds, 548.92 seconds, and 13,673.36 seconds respectively. As SATHT 

and KMCHT are iterative, execution time is high. For SATHT as only contour centers are taken as seed points, 

relative execution time is less as compared to KMCHT. As the nature of cloud cluster formation is non-deterministic 

with many smaller MCSs during initiation and dissipation stages for MCS life cycle study, where the number of 

clusters varies rapidly, KMCHT is not useful. As compared to SATHT, the HT method is more sensitive to the pixel 

intensities making it susceptible to noise. Small variations in the intensity values may affect the segmentation output. 

If the temperature gets changed from 220K to 200K to consider more deep convection it needs more manual efforts 

and becomes tedious to find the optimum value of the threshold for HT. Here only advantage of using HT is faster 

execution. If images are generated with a duration of 30 minutes it becomes beneficial to use the proposed SATHT 

method for the cold cloud segmentation as it gives more stable output.  

1.11. Qualitative Analysis 

As clouds get formed with indefinite shapes and sizes, it becomes tedious as well as a time-consuming job to create 

its ground truth manually, therefore for the analysis, 15-20 images from each month of 2016 were chosen based on 

varying shapes and cloud counts per image. As an example, Fig. 1 shows the typical BT measurements from 

Kalpana-1 on June 3, 2016, at 1745 UTC. Fig. 5 to 8 show the ground truth image, as well as outputs of the methods 

KMCHT, SATHT, and HT, respectively, for the RGB image shown in Fig. 1 From Fig. 5 and 7, KMCHT showed 

a few extra contours unrelated to pixels representing below 220K. The Mean Intersection of Union (MIoU) 

performance parameter for KMCHT is around 0.83, whereas for SATHT and HT it is above 0.89. Ideally, it should 

be 1. Therefore, it can be concluded that SATHT and HT methods give better output than KMCHT.  

It is crucial to detect the MCS accurately as significant features such as cloud area, location, and direction of 

movement can further be extracted while processing MCS tracking. The true detection of MCS leads to correct 

lifetime estimation and investigation of their characteristics. Therefore, a better characterization of MCS would help 

to improve the numerical weather forecasting capabilities. 

 

Figure 5. Ground Truth Image of the segmentation of clouds below 220K for Fig. 1 

Figure. 3. Mean IoU, Mean Precision, Mean Recall and 

Mean F1 Score for cold cloud segmentation applied in 

Fig. 1 using HT, KMCHT, and SATHT  

 

Figure 4. Mean Pixel Accuracy cold cloud 

semantic segmentation applied in Fig. 1 using 

HT, KMCHT, and SATHT  
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Figure 6. Segmentation of clouds below 220K using HT of Fig. 1 

 

Figure 7. Segmentation of clouds below 220K using KMCHT of Fig. 1 

 

Figure 8. Segmentation of clouds below 220K SATHT of Fig. 1 

V. CONCLUSION 

This research presents three Hue channel-based algorithms for MCS identification utilizing RGB images based on 

IR brightness temperature. The techniques employed include the Hue channel segmentation based on the 

Thresholding technique (HT), the proposed Hue channel segmentation based on the SAT technique combined with 

Thresholding (SATHT), and the Hue channel segmentation based on K Means Clustering coupled with 

Thresholding (KMCHT). The goal of this work is to assess the effectiveness of MCS identification strategies so that 

the optimal method may be used.  
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These approaches’ effectiveness is assessed using performance metrics like Mean IoU, Mean Pixel Accuracy, Mean 

Precision, Mean Recall, and Mean F1 Score. The Hue value threshold of 33 produces the best results for the HT 

technique. With a quick execution time of about 56 seconds, it is more sensitive as well as tedious to get the optimum 

threshold value.  It has been noted that SATHT produces superior MCS cloud detection outcomes compared to HT 

and KMCHT approaches considering more robust and stable output. With a dataset of 200 images, using SATHT 

the performance metrics Mean IoU, Mean Pixel Accuracy, Mean Precision, Mean Recall, and Mean F1 Score, are 

0.893, 99.91, 0.922, 0.966, and 0.943, respectively.  

The accurate cloud identification step is an important factor for accurate MCS tracking. The SATHT approach 

provides the best results for accurate MCS cloud identification over other techniques. The results of traditional 

segmentation algorithms provide an edge over the advanced techniques of Deep Learning techniques against the 

cost of the requirement of huge labeled satellite image data and computational power. This justifies the usage of 

traditional techniques for MCS detection using segmentation. This work will be expanded further to track MCS for 

better forecasting and nowcasting. 
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