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Abstract: - Critical infrastructure now faces greater vulnerabilities and a higher risk of cyberattacks as a result of the (IIoT) quick 

expansion. The security and dependability of industrial systems must be ensured by identifying and thwarting these threats. In this paper, 

we use a hybrid approach of deep learning and RNN called hybrid deep random neural network (HDRNN) to offer a novel method of 

identifying cyber-attacks in the IIoT.The proposed HDRNN model combines the benefits of random neural networks with deep learning 

to improve the detection of IIoT cyberattacks. The deep learning component makes use of deep neural networks' capacity to extract 

intricate features from unstructured data, while the random neural network component offers robustness and adaptability to manage 

changing attack patterns.Realistic threats and benchmark datasets such as UNSW-NB15and DS2OS are used in experimental evaluations. 

High accuracy, precision, and recall rates are attained by the model, which successfully detects a variety of assaults including infiltration, 

data manipulation, and denial of service.The suggested HDRNN model offers a promising approach for improving the security of IIoT 

systems by precisely identifying cyber-attacks in real-time. The model's hybrid nature enables enhanced detection capabilities, 

adaptability to changing attack patterns, and a reduction in false positives, enabling efficient threat mitigation and protecting crucial 

infrastructure in the IIoT context. 

Keywords: Deep Learning Network, Neural Network, Cyberattacks, Intrusion detection, Feature extraction, Industrial 

Internet of Things 

I. INTRODUCTION 

In recent time industrial IoT and security plays an important role in the 4.0 industry. This shift in the paradigm has 

resulted in changes to business conceptions, industrial processes, logistical services, and strategic plans aimed at 

boosting domestic industries [1]. The Internet of Things (IIoT) services are built on a foundation of Internet of 

Things (IoT) devices, intelligent communication protocols, and sophisticated security mechanisms [2]. These 

technologies provide a great deal of management flexibility for industrial operations when combined with the 

global Internet [3]. The quality of the industry, resource efficiency, and productivity are all increased.Due to the 

wide range of sensors, controllers, and actuators available today, businesses can gather and analyse large amounts 

of data to make informed business decisions. Additionally, IIoT makes it easier to detect errors and irregularities 

in intelligent industrial systems.The IIoT ecosystem provides a difficulty in terms of effectively using these 
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devices due to this resource limitation. Therefore, great thought must be given to maximising the use of the 

resources at hand in order to assure the best performance and lifetime of these gadgets. 

The existence of edge devices has created a potential point of exploitation for third parties within the IIoT 

ecosystem. An IoT device's vulnerability could provide unauthorised access to important business plans, corporate 

data, and industrial records, as well as the communication of bogus data to cloud servers. Operational 

inefficiencies, financial losses, and reputational harm can all be brought on by such security breaches. Therefore, 

implementing effective cybersecurity measures in the IIoT is a key responsibility in modern industrial 

circumstances [5]. The classification of intrusion detectors is based on their signature or anomaly. In order to 

identify potential attacks, signature-based detection looks for specific patterns or signatures connected to well-

known types of intrusions. These patternstypically drawn from a database of reported assaultsare used to track 

down and towards related attempts in real time. The effectiveness of systems for segue-based attack detection is 

questionable when it comes to new or previously unknown attack patterns. 

The focus of anomaly-based intrusion detection systems during a crisis is on identifying deviations from the 

system's expected behaviour. They establish a baseline of typical behaviour and provide alerts whenever the 

observed behaviour differs significantly from the average. The ability of anomaly-based infiltration systems to 

identify new or emerging threats without the need for pre-established signatures is one of their advantages. But 

since it's so hard to tell the difference between benign and malignant abnormalities, they can also result in more 

false positives.Because they are excellent at spotting novel and unidentified attacks, anomaly-based IDSs are 

useful in the context of IIoT security. To recognise and highlight various and original attack patterns, these 

detection algorithms make use of machine/deep learning classifiers [7]. Deep learning (DL) techniques' use in 

creating cybersecurity solutions has recently drawn a lot of attention from both academia and business. By 

skilfully analysing the vast amounts of data produced by industrial systems, DL methods have the ability to 

produce improved results [8]. 

Designing reliable and highly efficient attack detection techniques for the IIoT, notwithstanding the gains made, 

continues to be a difficult task. The development of comprehensive and adaptable IDS systems is significantly 

hampered by the specific features of the IIoT environment [10], such as the resource-constrained nature of edge 

devices, dynamic network topologies, and evolving attack vectors.Current research is focused on exploiting large-

scale industrial data, optimising network designs, and refining model training methods to improve the capabilities 

of DL-based anomaly detection models. The accuracy and effectiveness of detection algorithms can also be 

increased by adding domain expertise, contextual data, and anomaly prioritisation techniques [11]. 

II. REVIEW OF LITERATURE 

Comparing the proposed method to cutting-edge techniques, it demonstrated greater performance.These 

illustrations show the creative methods researchers are employing to create powerful attack detection systems 

utilising DL. Researchers use LSTM networks to improve their capacity for accurately classifying attacks and 

capturing temporal dependencies, while CNNs are used to extract pertinent information from IoT data[10]. 

Such improvements in attack detection algorithms for DL-based attacks are essential for enhancing the security of 

IIoT environments. These algorithms contribute to reducing risks, mitigating potential losses, and maintaining the 

ongoing operation of industrial systems by increasing the accuracy and efficiency of attack detection.In order to 

find vulnerabilities in IIoT networks, Zolanvari et al. [11] showed an approach using machine learning. Using a 

real-world testbed, the researchers successfully classified threats such as backdoor, common injection, and 

structured query language injection. They were able to identify and prevent some assault types thanks to their 

strategy. Li et al. [12] presented a deep migration learning-based approach for threat detection in IoT-enabled 

smart cities. To evaluate the effectiveness of their model, they used the KDD CUP 99 dataset. The experimental 

results demonstrated improved accuracy and quicker detection times as compared to other approaches. The 

proposed approach could effectively identify and respond to attacks in IoT-based smart city environments. 

Self-adaptive attack detection algorithms must be created in order to effectively recognise new and different 

assault patterns. Zhang et al. [13] created a hybrid technique based on a DBN and an improved GA. Attack 

classification was handled by the DBN, and the GA was employed to determine the appropriate number of hidden 

layer neurons. The suggested plan demonstrated increased assault detection and classification rates. The 

researchers evaluated the performance using the NSL-KDD dataset. These papers present the state-of-the-art 
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techniques that researchers are employing to enhance threat detection in IIoT environments. They want to create 

precise and effective detection systems that can adjust to new assault patterns by utilising machine learning and 

deep learning approaches. The performance and robustness of these systems are assessed using real-world testbed 

and a variety of datasets, making it possible to deploy them practically in IIoT networks [16]. 

It is significant to remember that these examples only scratch the surface of the research that is currently being 

done in the area, and new developments are always being made to create self-adaptive and intelligent attack 

detection algorithms that can successfully combat the changing threat landscape in IIoT systems [29]. 

Hassan et al.'s study [16] introduced a novel cyberattacks detection methodology that is designed especially for 

SCADA systems. The researchers merged a random tree technique with random subspace learning. The 

effectiveness of the suggested plan was assessed using 15 SCADA network datasets, proving its effectiveness in 

boosting the security of IIoT platforms.For IoT devices.  

A straightforward machine learning-based assault detection model was produced by Lee et al. [17]. They 

employed a support vector machine approach to extract information from attacks and a deep auto encoder to 

classify attacks. The model was validated using the AWID dataset, and it demonstrated outstanding accuracy of 

98%. Finding new and innovative cyberattacks in the context of IIoT systems is a challenging task. This was 

addressed in Saharkhizan et al.'s [18] suggestion of an improved deep learning model for attack detection. The 

system's accuracy, which the researchers verified using a dataset of Modbus network traffic, was 99%, made 

possible by the incorporation of LSTM modules into a group of detectors. 

In the IIoT network's fog computing layer, Souza et al. [19] suggested an attack detection method. They used a 

hybrid DNN and kNN technique for binary classification. The CICIDS datasets were used to assess the model's 

efficacy. For the IIoT network, Huang et al. [20] presented a unique failure detection technique. To put their idea 

into practise, they developed a deep neural network (DNN) based on the GBRBM. Modern techniques were 

outpaced by their model, which turned fault detection into a classification issue 

III. DATASET AVAILABILITY 

1.Dataset 1: 

A total of 357,952 samples make up the dataset, of which 10,017 samples are considered abnormal and 347,935 

samples are considered normal. It includes seven different sorts of attacks [2],An open-source dataset created by 

Pahl and Aubet [2, 3] has been made available for the purpose of exploring and studying security in the second-

generation Industrial Internet of Things (IIoT). This dataset is essential for assessing the efficacy of deep learning 

(DL) and machine learning (ML) algorithms in the context of smart city and smart factory architectures for 

cybersecurity. 

2. Dataset 2: 

In the field of cybersecurity, the UNSW-NB15 dataset is frequently used for creating and evaluating machine 

learning models, network security methods, and intrusion detection systems (IDS). It now serves as a benchmark 

dataset for assessing the effectiveness of various security measures.It is frequently used to assess how well 

machine learning-based cybersecurity systems work.There are 257,673 samples altogether in this dataset, 164,673 

of which have been classified as anomalous, and 93,000 of which have been classified as normal [24]. 

Table 1: Description of Dataset 

Dataset No of 

Records 

Attributes No of 

Attacks 

Classes Normal Anomaly 

DS2OS 357,952 13 4 2 347,935 10,017 

UNSE-NB15 257,673 49 9 2 93,000 164,673 
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IV. METHODOLOGY 

1. Convolution Neural Networks (CNN): 

The classification of Big Data is a common challenge for CNNs. They are made up of pooling layers for 

dimensionality reduction and convolutional layers that automatically identify pertinent characteristics from input 

photos. CNNs are frequently employed in computer vision problems because they are good at capturing spatial 

dependencies [19]. 

• Layer of Input: A collection of photographs are input as a matrix of pixel values. 

• Convolutional Layer: To extract local characteristics from the input image, convolutional filters (also known 

as kernels) are employed. A definition of the convolution operation is: 

 

Where, If I is the input picture, K is the convolutional filter, and S(i, j) is the value at position (i, j) in the 

feature map. 

• Activation Function: To introduce non-linearity, an activation function, such as ReLU, is applied element-

by-element: 

𝐴(𝑥) = 𝑀𝑎𝑥(0, 𝑥) 

• Pooling Layer: Max or average pooling is used to reduce the spatial dimensions of the feature maps while 

keeping the most important features. 

2. Random Neural Network (RaNN): 

The RaNN (Random Neural Network) model is intended to mimic how the human brain transmits signals. 

Because of its higher generalisation skills, it is favoured. RaNN's lower processing requirements and highly 

distributed architecture thus make it proper for arrangement on IoT devices with limited resources [5].A neuron's 

potential in RaNN serves as a proxy for its condition. RaNN layers of neurons probabilistically exchange 

excitatory and inhibitory pulses. Only a positive signal can be cancelled by an inhibitory spike; otherwise, it has 

no impact (potential vtxt(t) = 0). Neuron Xt is at its optimum state when Vtxt(t) = 0. In contrast, neuron xt is in an 

excited state if vtxt(t) > 0. 

∑ Q +  (yt, xt) +  Q − (yt, xt) +  D(xt) =  1

X

y=1

, ∀x                    (1) 

There exist probability Q(yt, xt) and Q-(yt, xt) for positive excitatory or negative inhibitory signals, respectively, 

when delivering signals to the following neuron yt. The signal leaving the network has a probability of d(xt) as 

well. 

Hx =   
µ+(𝑥𝑡)

𝑓 (𝑥𝑡) + µ−(𝑥𝑡)
   (2) 

Where, 

µ+(𝑥𝑡)  = ∑ ayf (yt) Q+ (yt, xt)  + ε (xt)u
v=1    (3) 

µ−(𝑥𝑡)  = ∑ ayf (yt) Q− (yt, xt)  + ε (xt)u
v=1    (4) 

In the RaNN model, an activation function that considers the excitatory inputs µ+(𝑥𝑡), the inhibitory inputs 

µ−(𝑥𝑡), and the firing rate f(xt) determines the output axe of a neuron x. The excitatory and inhibitory inputs from 

neuron yt to neuron xt are denoted by the weights wt+(xt, yt) and wt-(xt, yt), respectively. 

wt+(xt, yt)  =  f (x) Q+ (xt, yt)  ≥  0   (5) 

wt−(xt, yt)  =  f (x) Q− (xt, yt)  ≥  0   (6) 

Rate expression written as: 

𝑓 (𝑥𝑡) =  (1 −  d (xt))
−1

∑ [𝑊+(xt, yt) + 𝑊𝑡−(xt, yt)]𝑡
𝑢=1   (7) 
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3. Gradient Descent Algorithm: 

The GDM is a typical method of enhancing ML real-life examples. It is a way to predicting minimize the error of 

instances by adjusting the weights and biases of the system. The algorithm works by calculating the gradient of 

the error function with respect to the weights and biases and then adjusting the values of the weights and biases in 

the direction of the negative gradient. This process repeats until the error is minimized to a satisfactory degree. 

The learning library has ways to make gradient descent work better by using different methods. 

• Initialize the parameters: Begin by assigning random or predetermined values to the model's parameters, 

commonly denoted as. 

• Define the cost function: Describe the cost function, also known as the loss function J(), which calculates the 

difference between the model's predicted and actual values. The effectiveness of the model is quantified by 

this function. 

• Calculate the gradient: Determine the cost function's gradient with respect to the parameters. The gradient 

gives the surface of the function's steepest ascent's direction and amplitude. 

The error cost function calculated as: 

𝐸𝑘 =  
1

2
∑ αx (qx −  bxk )2

𝑥

𝑥=1

 , αx ≥  0 

The weights v+(x, y) and v-(x, y) can be changed throughout the optimisation process if two randomly linked 

neurons u and v are connected. These weights are updated using the gradient descent technique in an effort to 

reduce the error cost function. 

The weight update expressions for v+(x, y) and v-(x, y) are as follows: 

v + (x, y): =  v + (x, y) −  α ∗  
∂J

∂w
+ (𝑥, y) 

v − (x, y): =  v − (x, y) −  α ∗  
∂J

∂w
− (x, y) 

In the context of the gradient descent algorithm and the given equations, the partial derivatives of Equations can 

be calculated using vector and matrix notation if is the learning rate and dx/w+(u, v) and dx/w-(u, v) represent the 

derivatives of the activation functions with respect to the weights.The HDRaNN proposed architecture for 

cyberattack detection is included in the proposed technique displayed in Figure 1. The two main components of 

the HDRaNN model are the multilayer perceptron (MLP) and the deep random neural network (DRaNN). Three 

MLP layers, three recurrent neural network (RNN) layers, three output layers, and an input layer make up the 

design. 

 

Figure 1: Proposed Method for network attack detection 
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The model includes dropout regularisation to guarantee robustness and avoid overfitting. With less dependency on 

specific neurons and improved generalisation skills, this method randomly removes some units during training.To 

get the best results, the HDRaNN architecture was refined through a process of trial and error. The model was 

modified to suit the needs of each dataset because two distinct datasets, DS2OS and UNSW-NB15, were 

employed. 

V. RESULT AND DISCUSSION 

The model HDRaNN was used with the data from DS2OS and UNSW-NB15, and numerous experiments were 

run to gauge its effectiveness. The learning rate plays a significant role in the speed at which the algorithm learns 

in the model's deep learning component.To maximise the model's productivity during a specific training time, the 

appropriate training pace is essential. Although it may result in better learning, a very low learning rate might also 

cause learning to take longer. The model could, however, quickly converge to a solution that is suboptimal or even 

reach a local optimum if the learning rate is set too high. 

Table 2: Attack distribution of Dataset 1 

Class  Count Train Test 

Normal 348076 260950 87126 

DoS 5780 4340 1440 

Malicious-Control 890 670 220 

Malicious-Operation 804 600 204 

Scan  530 400 130 

Spying 124 90 34 

Wrong Setup 1547 1150 397 

Probing 342 250 92 

Table 3: Attack distribution of Dataset 2 

Class  Total Training Testing 

Normal 93000 69457 23543 

Fuzzer 2330 1956 374 

Backdoor 24245 16872 7373 

Analysis 2680 1978 702 

Exploit 13879 9870 4009 

Generic 44550 32879 11671 

DoS 58871 46871 12000 
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ShellCode 16355 11232 5123 

Worms 1512 953 559 

Other 175 92 83 

With a total of 348,076 samples, the "Normal" class has the most samples overall, of which 260,950 are used for 

training and 87,126 are set aside for testing. The remaining classes have smaller sample numbers and represent 

different styles of attacks.The distribution shown here, which shows the number of examples available for each 

class and the division between training and testing subsets, is crucial to note because it depicts the distribution of 

classes in the dataset. 

 

Figure 2: Comparison of performance metrics of proposed method for Dataset 1 

The dataset consists of 93,000 samples in total, which are divided into various groups for training and testing. The 

majority of the samples belong to the "Normal" class, with 69,457 cases designated for training and 23,543 

instances for testing. This class indicates instances of typical network behaviour or non-attacks.Different kinds of 

cyberattacks are represented by a number of other classes. There are 374 testing samples and 1,956 training 

samples for the "Fuzzer" class. 16,872 training instances and 7,373 testing instances make up the "Backdoor" 

class. Likewise, there are 1,978 training samples and 702 test samples in the "Analysis" class as discussed in table 

3. 

With varying quantities of training and testing samples, the classes "Exploit," "Generic," "DoS," "ShellCode," and 

"Worms" reflect numerous forms of attacks. With 92 training samples and 83 testing samples, the "Other" class 

has fewer instances.In the subject of cybersecurity, this dataset is crucial for developing and testing machine 

learning algorithms. Researchers and practitioners can evaluate the effectiveness of their models for identifying 

and categorising various cyberattacks by distributing samples across classes. The models may be trained and 

evaluated successfully since distinct training and testing sets are available. 
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Figure 3: Comparison of performance metrics of Proposed method for Dataset 2 

The performance metrics of various algorithms for detecting cyberattacks are summarised in the table 4.The RNN 

model obtains a 0.64 accuracy, 0.78 precision, 0.93 recall, 0.8 specificity, 0.69 F1 score, and 0.78 AUC.With 

accuracy of 0.81, precision of 0.96, recall of 0.85, specificity of 0.85, F1 score of 0.95, and AUC of 0.94, the GD 

(Gradient Descent) model performs better.With an accuracy of 0.86, precision of 0.89, recall of 0.74, specificity of 

0.76, F1 score of 0.87, and AUC of 0.78, the CNN (Convolutional Neural Network) model continues to advance. 

Table 4: Proposed method Accuracy comparison 

Model 
Model 

Accuracy 

Model 

Precision 

Model 

Recall 

Model 

Specificity 

Model 

F1 

Score 

Model 

AUC 

RNN 0.64 0.78 0.93 0.8 0.69 0.78 

GD 0.81 0.96 0.85 0.85 0.95 0.94 

CNN 0.86 0.89 0.74 0.76 0.87 0.78 

HDRaNN (Proposed 

Method) 
0.98 0.97 0.94 0.96 0.97 0.98 

 

 

Figure 4: Accuracy comparison for proposed method with other ML method 
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The proposed HDRaNN (Hybrid Deep Random Neural Network) approach, however, performs better than the 

other models. The HDRaNN model outperforms all other metrics tested, demonstrating its potency in identifying 

cyberattacks. In comparison to the previous models, it greatly increases accuracy, precision, recall, and F1 score. 

The model's great ability to distinguish between attack and non-attack occurrences is indicated by the high 

AUC.These results show that the proposed HDRaNN technique outperforms the other tested models in terms of 

accuracy and overall performance, making it a potential strategy for cyberattack detection. 

VI. CONCLUSION 

This article addresses the important cybersecurity issues that the IIoT sector raises in light of the increasing 

number of IoT devices that operate on insecure networks and generate substantial data. We offer HDRaNN , a 

novel technique for cyberattack detection in IIoT networks that combines the advantages of a deep-random neural 

network (DRNN) and a multilayer perceptron. We conducted experiments utilising the DS2OS and UNSW-NB15 

IIoT security-related datasets to assess the efficacy of our suggested strategy. To evaluate the superiority of our 

strategy, a number of performance indicators were computed. The results demonstrate the exceptional 

performance of the recommended HDRaNN approach. For the DS2-OS and UNSWNB-15 datasets, respectively, 

its accuracy in classifying 16 various assault types was over 98% and 99%. When tested, our suggested method 

outperformed existing deep learning-based approaches in each performance indicator. The outcomes show how 

effective and trustworthy the HDRaNN technique is at spotting cyberattacks in IIoT networks.It demonstrates the 

capability of deep learning-based solutions to handle security concerns in the IIoT space, enhancing overall 

industrial cybersecurity. 
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