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Abstract: - Imagine you are trying to classify software defect for a large dataset. How will you choose the best algorithm to do that? For the above 

problem we have various algorithms like Random Forest, Support Vector Machine, Neural Networks, Naive Bayes, K-Nearest Neighbours, 

Decision Tree, Logistic Regression etc. One of the most used methods is Random Forest algorithm, which uses multiple Decision Trees to make 

predictions. However, this algorithm relies on a complex calculation called Entropy, which measures the uncertainty in the data. Entropy is a 

function that uses natural logarithm which may be time consuming calculation. Is there a better way to calculate entropy? In this research, we 

have explored a different way to calculate the natural logarithm using the Taylor series expression. It is a series consisting of sum of infinite terms 

that approximates any function by using its derivatives. We further modified the Random Forest algorithm by replacing the natural logarithm with 

the Taylor series expression in the Entropy formula. We tested our modified algorithm on dataset and compared its performance with the original 

Entropy formula. We found that our modification in the algorithm has improved the accuracy of the algorithm on software defect prediction. 
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I. INTRODUCTION 

Software defects are bugs, errors, or faults in software that lead to incorrect results. Due to many tasks during 

software development are carried out by humans, which may arise many software defect problems. Defects can 

occur during the phases of software development such as requirement analysis, design, coding, testing, deployment, 

and maintenance. software testing is important for software products to maintain software quality and reliability. 

Rapid growth of software applications requires more testing which is expensive and time consuming. When it comes 

to software defect detection, software defect prediction techniques are considerably more economical than software 

testing and evaluations. Machine learning analyses input data and predicts output values using a variety of 

techniques. Machine learning techniques learn and enhance performance and contributing in the automation of the 

labelling process. 

Many researchers and academician contributions show that the probability of identifying software defect prediction 

models may be cost effective than the probability of identifying defect through the software inspections. Software 

Defect Prediction is a field of ongoing study where algorithmic and data-level approaches are used to discover 

software defects. The features of each technique and their applicability to programming defect predictions 

throughout programming development life cycle phases are explained by Mahesh Kumar et al. Expert opinions are 

the quickest and most straightforward method to obtain software inspection, however there is a significant degree 

of prediction uncertainty and prediction may be influenced by personal biases. However, when dealing with large 

amounts of data, Machine Learning-based models enhance their prediction accuracy by adjusting their parameter 
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values [1] .Model performance can be enhanced or the likelihood of incorrect model selection is minimized using 

ensemble learning. Bagging, Boosting, and Stacking are the three basic types of ensemble learning. Bagging is used 

to create statistical distributions and confidence intervals. Bias can be minimized by using boosting. Stacking 

determines the optimal way to integrate machine learning models [2]. 

II. RELATED WORK 

There are numerous data level and algorithm approaches that can be used for building prediction models, including 

data balancing, feature selection and machine learning algorithms. The literature provides descriptions of 

contributions made on defect prediction with empirical and conceptual approach by many researchers and 

academician. Table 1 shows some researchers contribution for software defect prediction. 

Table 1. Summary of related works 

Classifier used Dataset used Evaluation 

Measures 

Future Work/Scope 

SVM [3] CM1, PC1, JM1, PC3, 

KC1, EQ and JDT 

Precision, Recall, F1-

score, and Accuracy 

Model can be evaluated on different 

datasets to ensure its performance. 

NB, J48, RF, SVM, 

AdaBoost [4] 

Eclipse, Columba, and 

Scarab 

F1-measure and ROC Feature selection can be tested with 

deep learning  

AdaBoost, KNN, LR, 

NB and RF [5] 

PROMISE repository Accuracy, F-

Measure, 

Specificity, G Mean 

can be extended to predict cross-

project defects. 

KNN, NB, SVM [6]  PROMISE repository ROC curve Can be tested on large datasets. 

SVM, NB, RF [7]  

 

CM1, KC1, MC1, 

PC1, JM1, MW1, PC2,  

MCC, ROC, PRC, 

F1-score 

Model can be build using deep 

learning 

Feature selection and data balancing plays important role in enhancing performance of defect prediction model. 

Software feature becomes significant for the prediction if the inaccuracy grows due to altering feature values. Robust 

machine learning models are developed through complex interaction between software attributes and Shapley values 

can be applied to compute the degree of complexity between these attributes[8]. To improve the accuracy of software 

defect prediction, the best selected attributes are incorporated into the Random Forest classification process to 

provide more accurate results[9]. The author introduces a paradigm for predicting software defects that is based on 

heterogeneous attribute selection and nested stacking. To enhance the model's performance Nested-Stacking applies 

heterogeneous attribute selection approaches together with normalization to improve quality of data[10]. Gayatri et 

al identify appropriate attributes using a decision tree induction. The subset of attributes is made up of every 

characteristic identified in the Decision Tree Induction Rule. The classifier performs better when it learns this 

additional feature set using the same models[11]. Pham et al work using probabilistic categorization that identify 

the class value that maximizes the class's posterior probability for a given set of features[12]. Chennappan et al talk 

about data balancing which bias the result for the major number of classes if the data are imbalanced[13].  
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Defect prediction seems to be a major challenge for large amounts of data; hence, many machine learning methods 

have been used to build prediction model [21] [22]. 

Random Forest performs classification by using several decision trees that work together to form a decision forest. 

With comparatively high accuracy, it can handle huge datasets and multi-variable inputs; it excels at controlling 

imbalanced datasets. Multiple decision trees vote for their preferred outcomes, and random forest enhances the 

relationship between decision trees[14]. Using the Random Forests approach, a limited number of rows are selected 

at random from the total amount of data, and a collection of decision trees is constructed for every module to produce 

classification output[15]. Premalatha et al proposes a novel categorization and prediction technique for improving 

accuracy which is based on the Cost Random Forest algorithm, which minimizes the impact of faults in irrelevant 

software components[16]. 

A Bayesian network is a probabilistic visual model that reflects a joint distribution of probabilities across a set of 

independent random variables[17]. Uncertainty may be effectively handled by Bayesian networks. Using 

conditional probability, a Bayesian network can represent the relationship between information components and 

learn from uncertain data[14].The support Vector Machine is a linear classifier which performs binary classification 

using data on border points of the hyperplane. Using the kernel approach, which implicitly translates inputs into 

highly dimensional vector spaces, support vector machines can perform non-linear classification beyond linear 

classification[14].To increase the precision of classification, the support vector machine tries to select the optimal 

hyperplane with the biggest margins between data instances[18]. 

The KNN classifier is a slow method since it learns during the assessment step and maintains data samples 

throughout the learning step.[14] The KNN method determines the class of samples to be categorized based on the 

samples that are closest to each other.[15] Since K remains positive, a collection of objects with label information 

is used to select the neighbours. [16] To create the ideal classifier, the AdaBoost classifiers algorithm uses weak 

learner to train a group of classifiers. [17] To train a software defect prediction model, Yan Gao et al recommends 

application that combines the Backpropagation Neural Network method with Adaptive Boosting. AdaBoost avoids 

the overfitting issue and is an effective predictor for data that is unbalanced.[18]  

Multiple fundamental classifiers were combined by Yun ZHANG et al to create an integrated prediction model 

called as Combined defect predictor. Author used two types voting technique to build integrated model. First Ave 

voting aggregates confidence ratings and second Max Voting generates the highest confidence values from many 

fundamental classifiers[19]. Marwa Assim et al categorized data using eight machine learning methods that used 

percentage split and k-fold cross-validation with WEKA tool[20]. 

Discussing about unsupervised machine learning Xin Dong et al has explained K-Means clustering in very simple 

way. After choosing K cluster centers at random, place the element in the cluster that is the most equivalent to it by 

comparing its resemblance to the other clusters. Determine the cluster center for each cluster by taking the average 

of all the items within that cluster[2]. 

Some researchers build software defect model using deep learning approach. Through multi-layer processing, Deep 

Learning converts original minimal feature representation into a high-level feature. Using basic models, it can 

perform complicated categorization jobs[14]. Models of neural networks are derived from biological neural 

networks, which are made up of synapses and neurons. Neurons are modelled as nodes in a graphical network, with 

synapses acting as weighted edges connecting the nodes[17]. Artificial neurons contain artificial neural networks, 

which may be used as a non-linear classifier in machine learning applications. The input neurons are interconnected, 
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allowing them to operate simultaneously by communicating with one another through signals and calculating output 

using a non-linear function[21]. 

III. MATERIALS AND METHODS 

In this project we have implemented a modified version of Random Forest algorithm, which is a machine learning 

method that uses multiple decision trees to make predictions and classify the data. Entropy is a measure used to 

quantify the impurity or randomness in a set of examples. Entropy calculation by using natural logarithm is: 

                        𝐸 = −𝛴𝑝(𝑦𝑖) 𝑙𝑜𝑔2(𝑝(𝑦𝑖))                                 (1)      

 We have modified the algorithm by using Taylor series expression to approximate the natural logarithm used in 

the entropy formula to measure the quality of each node split in the various split in Decision Tress. Figure 1 shows 

detail workflow for our proposed framework for software defect prediction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed framework for software defect prediction 

3.1 Main Modules of Prediction model 

Class Node: Define the structure for the node of decision tree 

Class Decision Tree: Define the structure of decision tree and implement few functions for splitting, growing, and 

information gain from the dataset, etc. 

Class Random Forest: Define the structure of random forest and implement few functions for fitting the model, 

predicting outcomes, etc. 

Main methodology: For CM1 dataset, apply original and modified algorithm and evaluate and analyze the result 

and compare the performance of the modified algorithm with the original one.  

 

Software defect Repository 
Pre-Process data for model fitting 

Define Tress, Nodes, Entropy, best split 

Fit the Training data on the Defined Model 

 Calculate entropy using Taylor series 

Apply train_test_split (80:20) ratio 

Evaluate Model on Testing data 

Display Results of Accuracy, Precision, Recall and ROC-AUC Curve 
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3.2 Data Source:  

We have used CM1 NASA dataset to test the performance of our model. 

NASA Software Defect Repository: This is a publicly available dataset that was taken from a NASA-managed 

software defect repository. A wide range of NASA systems are included in the many NASA programmes. For 

example, CM1 stands for spacecraft instrumentation, whereas KC1, KC3, and MC2 stand for ground data storage 

management. The data transactions are managed by MW1, while the software for earth-orbiting satellites is denoted 

by PC1, PC2, PC3, and PC4. It includes a variety of attributes that are used as independent variables to determine 

whether a certain software is potentially flawed. These characteristics include, but are not restricted to, the program's 

complexity, the number of control flow statements, the number of lines of code, the number of comments contained 

within the code and many more attributes. The dependent variable 'Defective' represents the probability of a program 

being defective. 

3.3 Algorithm Selection and Modification:  

We chose the Random Forest algorithm as our base model because it has advantages such as reducing overfitting, 

handling missing values, and providing feature importance scores. We have modified the Random Forest algorithm 

by using the Taylor series expression to approximate the natural logarithm used in the Entropy formula. The Taylor 

series expression for natural logarithm is: 

Entropy  = ∑
(−1)𝑛+1

𝑛
(𝑥 − 1)𝑛

∞

𝑛=1
  from n = 0 to ∞                   (2) 

where, x is any positive number between 0 and 1. By using this approximation, we can calculate the natural 

logarithm for specific value of x using a finite number of terms.  

The use of Taylor series gives much higher degree of accuracy in entropy calculation compared to the natural 

logarithm. On the other hand, the natural logarithm function requires a complex algorithm that involves iterative 

methods, floating-point arithmetic, and error handling. Moreover, the Taylor series allows to customize the 

approximation by choosing the degree of the polynomial. We have implemented this modification by creating a 

custom function that takes an array of probabilities as an input and returns an array of approximated logarithms as 

output. Then we have used the above function in our Entropy formula for calculation of each node split. 

3.4 Training and Testing Model:  

We have trained our modified Random Forest algorithm on training data using different hyperparameters such as 

number of trees (n_trees), maximum depth (max_depth), minimum samples split (min_samples_split). We then 

used a grid search technique to find the optimal combination of hyperparameters for each dataset. We have tested 

our modified Random Forest algorithm on CM1 training dataset and evaluated its performance using various 

metrics. 

IV. THEORY AND CALCULATION 

We have selected 10 sample values from a CYCLOMATIC_DENSITY feature present in CM1 dataset. We will be 

finding the absolute value for each observation. The values are as follow: 

[0.2, 0.13, 0.15, 0.17, 0.12, 0.2, 0.14, 0.28, 0.11, 0.17]. We can calculate entropy for value (0.2) as follow,  
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E (0.2)  = 
(−1)1+1

1
(0.2 − 1)1  + 

(−1)2+1

2
(0.2 − 1)2  + 

(−1)3+1

3
(0.2 − 1)3  + 

(−1)4+1

4
(0.2 − 1)4  + 

(−1)5+1

5
(0.2 −

1)5 + 
(−1)6+1

6
(0.2 − 1)6 + 

(−1)7+1

7
(0.2 − 1)7 + 

(−1)8+1

8
(0.2 − 1)8 + 

(−1)9+1

9
(0.2 − 1)9 + 

(−1)10+1

10
(0.2 − 1)10 = 

1.60. Similarly, we can calculate for other points 

E (0.13) = 
(−1)1+1

1
(0.13 − 1)1  + …+ 

(−1)10+1

10
(0.13 − 1)10  = 2.04,  E (0.15) = 

(−1)1+1

1
(0.15 − 1)1  + …+ 

(−1)10+1

10
(0.15 − 1)10 = 1.89  

E (0.17) = 
(−1)1+1

1
(0.17 − 1)1  + …+ 

(−1)10+1

10
(0.17 − 1)10  = 1.77,  E (0.12) = 

(−1)1+1

1
(0.12 − 1)1  + …+ 

(−1)10+1

10
(0.12 − 1)10 = 2.12 

E (0.2)   = 
(−1)1+1

1
(0.2 − 1)1  + …+ 

(−1)10+1

10
(0.2 − 1)10  = 1.60,   E (0.14) = 

(−1)1+1

1
(0.14 − 1)1  + …+ 

(−1)10+1

10
(0.14 − 1)10 = 1.96 

E (0.28) = 
(−1)1+1

1
(0.28 − 1)1  + …+ 

(−1)10+1

10
(0.28 − 1)10  = 1.27,  E (0.11) = 

(−1)1+1

1
(0.11 − 1)1  + …+ 

(−1)10+1

10
(0.11 − 1)10 = 2.20 

E (0.17) = 
(−1)1+1

1
(0.17 − 1)1 + …+ 

(−1)10+1

10
(0.17 − 1)10 = 1.77 

Table 2. Entropy calculation values by Taylor series 

Value  0.2 0.13 0.15 0.17 0.12 0.2 0.14 0.28 0.11 

Entropy  1.6094 2.0402 1.8971 1.7719 2.1202 1.6094 1.9661 1.2729 2.2072 

V. RESULTS 

The existing technique uses Entropy with natural logarithm to calculate the quality of each node split in the decision 

tree. Here we are using the modified Entropy using Taylor series formula because we want to explore a different 

way to calculate the natural logarithm used in the original Entropy formula. Table 3 shows result obtained on 

applying original Entropy formula and the modified Entropy formula using Taylor’s series on CM1 dataset. From 

the results obtained by the random datasets, we can clearly observe the change in accuracy, precision and recall in 

the original Random Forest algorithm and the modified Random Forest algorithm. 

Table 3. Software defect prediction model result - Accuracy, precision, and recall 

Parameters Precision (0) Precision (1) Recall (0) Recall (1) Accuracy 

Original formula 0.88 0.5 0.98 0.11 0.8695 

Modified formula 0.88 1 1 0.11 0.884 



J. Electrical Systems 20-1s (2024): 84-91 

 

90 

rom this table we can easily conclude that, we can improve accuracy with a calculation of Entropy using the Taylor 

series. Figure shows ROC curve for training as well as testing dataset for both original Random Forest Algorithm 

and modified Random Forest algorithm. 

 

(a)     (b) 

Figure 2. (a) ROC curve for original Random Forest Algorithm; (b) ROC curve for modified Random 

Forest Algorithm 

From the above ROC curves, we can conclude that area under the Training ROC curve and area under the Testing 

ROC curve has significant changes in their result. 

VI. CONCLUSIONS 

This paper explored entropy calculation by using the Taylor series expression to approximate the natural logarithm 

used in the entropy formula to measure the quality of each node split. We have manually calculated entropy for 

selected 10 sample values from a CYCLOMATIC_DENSITY feature of CM1 dataset. We have implemented this 

entropy calculation in random forest algorithm and tested on CM1 dataset. Result indicate that it can improve 

accuracy and ROC curve shows that change in true positive rate which is good for testing dataset. Future work can 

be extended with predicting software defect in commercial dataset and building generalize model by testing software 

defect prediction on cross project. 
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