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Abstract: Landmine detection is the biggest challenge today, especially with the explosion of anti-tank and anti-

personnel landmines, bombs, and unexploded ordnance. Many countries around the world are at risk from buried 

landmines. Various techniques automatically detect and recognize subsurface objects. However, they have 

limitations and must be more reliable when applied to all soils with different mediums to provide accurate results. 

Ground penetrating radar (GPR) uses electromagnetic signals to identify subsurface objects, and it detects 

landmines deeper with minimal metallic content than other sensors. Advances in deep learning techniques could 

revolutionize anti-personnel landmine detection and classification, demonstrating incredible results with high 

accuracy rates. The paper explores applying the deep learning approach (AlexNet) architecture using simulated 

GPR data to enhance the identification of landmines and similar underground objects. This study utilizes gprMax 

software to simulate the GPR data of buried objects. Subsequently, the data is implemented and analyzed within 

the MATLAB environment. Our findings demonstrate that AlexNet outperforms a standard convolutional neural 

network (CNN) model, achieving higher accuracy, precision, recall, and F1 scores in classifying metal pipes, metal 

tiffin boxes, and plastic tiffin boxes buried underground. It highlights the potential of deep learning for landmine 

detection using GPR data. 

Keywords: AlexNet, Convolutional Neural Network, Ground Penetrating Radar, Landmine Detection, Subsurface 

Objects 

 

I. INTRODUCTION 

Landmines claim countless lives and livelihoods every year. They pose a serious threat to civilians, causing severe 

injuries and loss of life. There is a critical need to develop faster and more accurate landmine detection methods 

and technologies [1]. More than 60 countries and territories are still suffering from landmines, which continue to 

kill and injure civilians, destroy livelihoods, deny land use, and disrupt essential services [2]. Landmine Monitor 

2022 reported that 117,350 anti-personnel landmines were cleared and destroyed worldwide in 2021. Around 5,544 

casualties from landmines, explosive remnants of war (ERW), and improvised explosive devices (IEDs) were 

reported, including 2,182 deaths; half of those killed or maimed were children [3]. Metal detectors are a standard 

method that struggles to identify landmines with low metal content, and they are prone to generating false positives 

due to harmless metal objects in the soil [4]. Traditional landmine detection methods, such as metal detectors, can 

be unreliable depending on the soil composition and the type of landmine. Furthermore, soil conditions such as 

moisture levels, mineral content, and electrical conductivity can significantly hinder the effectiveness of metal 

detectors [2].  

GPR emerges as a breakthrough technology in landmine detection. It offers a non-intrusive approach to 

identifying buried objects such as metals, concrete, pipes, landmines, cables, etc., [5], especially those with low 

metal content, by analyzing their unique electromagnetic (EM) signature. GPR emits EM waves into the subsurface 

and examines the reflected signals to identify anomalies caused by buried objects exhibiting different dielectric 

properties than the surrounding soil [6]. The technology holds promise for deeper detection of landmines, 

particularly those with minimal metallic content. The transmitter antenna starts with individual radar traces known 

as A-scans. The process continues with consecutive radar traces in a specific direction, termed B-scans, 
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culminating in generating a set of B-scan images [7]. GPR mainly identifies buried objects, detects subsurface 

structures using EM waves, and visualizes them as hyperbolic patterns [8]. It is also widely used in geology, 

archeology, civil, environmental, military, and mining applications. Figure 1 shows the components of the GPR 

process. 

 

Figure 1. Components of Ground Penetrating Radar [9] 

The paper explores applying deep learning techniques for landmine classification using GPR data, 

specifically a deep convolutional neural network (DCNN) architecture called AlexNet. Deep learning has 

demonstrated significant achievements in image recognition tasks, and this research investigates its potential to 

revolutionize landmine detection by enhancing the accuracy and effectiveness of GPR data analysis.  

II. DEEP LEARNING TECHNIQUES FOR LANDMINE DETECTION USING GPR IMAGES 

Deep learning is vital in identifying and classifying landmines, especially when dealing with noisy and cluttered 

GPR data. Deep learning techniques help interpret data better, mainly when there’s a lot of environmental and 

experimental noise. Researchers have increasingly explored CNN-based methods to recognize hyperbolas and 

classify buried objects in GPR data. These methods excel at finding detailed patterns and features in GPR images, 

which help detect and classify buried landmines more accurately. Table 1 presents landmine detection results using 

a CNN technique utilizing GPR B-Scan Images.  

Table 1 

Landmine detection based on CNN technique using GPR B-Scan Images 

 

 

L. E. Besaw et al. [10] employed a support vector machine (SVM) to detect buried explosive hazards 

Year Author Technique Dataset Metrics 

2015 L.E. Besaw et al., [10] SVM AP, AT mines  Pd - 0.9 

2017 S.Lameri et al., [11] Data-driven Simulated Acc - 95% 

2018 M.T. Pham et al., [12] RCNN, HOG, and Haar-like Real, Simulated CI - 0.7 

2019 N.Kim et al., [13] DCNN Real Acc - 98% 

2019 H. Harkat et al., [14] MOGA, RBF Real Acc - 89% 

2020 M. Elsaadouny et al., [15] LeNet-5 Fashion-MNIST Acc - 95% 

2020 U. Ozkaya et al., [16] CSVM Simulated  Acc - 95% 

2021 F. Hou et al., [17] Mask-CNN, DGIoU Real Acc - 58% 

2022 P.Srimuk et al., [18] MRCNN, SVM Real IoU - 91% 

2022 H.Wang et al., [19] DCNN, GAN Simulated EI - 93 % 

2022 N. Barkataki et al., [20] Scharr Operator Simulated VL - 9.87 

2023 M. Wang et al., [21] SPDM, LARM Real, Synthetic  P - 96.2% 

2023 H. Liu et al., [22] YOLOv3 Real P - 95.6% 

2023 Z. Wang et al., [23] RCNN Synthetic, Sandbox  MSE - 3637.31 

2024 H. Fang et al., [24] SimTrans-GPR Annotated Acc -  87.62% 
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(BEHs) and false alarm (FA) signatures in B-scan images of GPR. They achieved better detection with fewer false 

alarms but needed more precise visualization of subsurface objects. S. Lameri et al. [11] worked on small, highly 

accurate image patches but required different antenna polarizations. M.T. Pham et al. [12] adopted hyperbola 

reflections to detect buried objects using a region-based convolutional neural network (RCNN) with a high 

confidence index (CI). They used a histogram of oriented gradients (HOG) and Haar-like feature extraction 

compared to the cascade object detector (COD). N. Kim et al. [13]  used C-scan GPR data to classify underground 

objects using DCNN. They reduced false positives, which is crucial for urban areas.  

H. Harkat et al. [14] selected features using the radial basis function (RBF) using a multi-object genetic 

algorithm (MOGA) and classified them with and without target images. M.Elsaadouny et al. [15] implemented 

LeNet-5 CNN trained with a larger dataset of Fashion-MNIST, comparing results with transfer learning from the 

GPR dataset. Transfer learning appeared more effective but required further research. U. Ozkaya et al. [16] 

developed a convolutional support vector machine (CSVM) classification method to identify materials used for 

buried objects, reducing training time by incorporating more real-world GPR B-Scan images and multitask 

learning. F. Hou et al. [17]  implemented a mask region-based CNN (MRCNN) with Distance-Guided Intersection 

over Union (DGIoU) for accurately detecting hyperbolic signatures of rebars in GPR images.  

P. Srimuk et al. [18] implemented automatic detection of buried IEDs using an RCNN based on GPR B-

Scan image hyperbolic patterns. It performed well but required preprocessing for GPR images. H. Wang et al. [19] 

used a DCNN as a multilayer feature fusion network to extract image feature maps. Generative adversarial 

networks (GAN) generated realistic GPR B-SCAN images for better GPR target detection. They calculated the 

evaluation index (EI) based on precision (P) and recall (R) to improve target detection accuracy. N. Kim et al. [25] 

involved 2D grid images with B and C-scan images to train DCNN for subsurface object classification, validated 

with field data from South Korea. N. Barkataki et al. [20] used a CNN model to estimate the size of subsurface 

objects. They processed simulated data with Sobel, Laplacian, Scharr, and Canny operators to detect top-level 

hyperbolic properties. The Scharr operator performed best with ten hidden layers.  

 M. Wang et al. [21] developed a deep learning network for precise pipeline size and location detection, 

incorporating simultaneous localization and mapping (SLAM) for GPR position estimation. Their approach, 

employing the subsurface pipeline detection module (SPDM) alongside the localization and aboveground 

reconstruction module (LARM) framework, yielded high precision. H. Liu et al. [22] utilized You Only Look 

Once version 3 (YOLOv3) to locate underground pipelines. They estimated a pipeline’s buried position and depth 

by transforming hyperbolic responses into binary images. Z. Wang et al. [23] successfully reconstructed defect 

signals of rebars using unsupervised learning. They achieved low mean square error (MSE) with simulated data 

and moderate MSE with real-world noise. The CNN-based deep learning models presented here use different 

techniques, such as B and C-Scan images of landmines. H. Fang et al., [24] employed weak-shot learning for the 

classification of pipelines, and the model has reliable in cross-domain transfer learning. 

The landmine detection techniques used actual data from minefields and landmine-free areas. In the study, 

the authors utilized synthetically generated data and data acquired from controlled sandbox experiments. Notably, 

researchers have increasingly employed artificially generated GPR data, created using simulation tools like 

GprMax, to classify underground objects [12], [17],  [25], [21].  

 A LeNet architecture was proposed [11] and trained on real GPR data. The evaluation showed that a 

LeNet model using a patch size of 64 achieved 95% accuracy and 97% Area Under the Curve (AUC). [25] retrieved 

B and C-scan images from multichannel GPR to generate the 2D image grid for classification using deep neural 

network produced 98% accuracy. The CNN model [15] implemented LeNet-5 trained with fashion MNIST dataset 

and made with the highest precision and accuracy. YOLOv3 was adopted [22] to recognize the underground 

pipelines and attained less error. Studies have employed various CNN architectures and techniques, including 

RCNNs, LeNet, and SVM integration, achieving promising results. However, challenges remain, particularly the 

limited availability of real-world GPR data for training and validation. 

 

III. PROPOSED METHODOLOGY 

3.1 Simulated GPR Data Acquisition 

gprMax, an open-source GPR simulation software that utilizes GPU acceleration, was used to generate B-scan 

images of buried objects [26]. The simulation scenario encompassed a metal cylinder, metal tiffin box, and plastic 

tiffin box at varying depths, a domain measuring 0.39 meters, 0.10 meters, and 0.20 meters in the x, y, and z-
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directions, respectively, and to minimize side wall reflections, an absorbing boundary condition is implemented. 

The spatial discretization of each cell uses a spacing of 0.002 meters in all three directions (x, y, and z). The source 

(magnetic dipole) and receiver are at (0.02, 0.05, 0.15) and (0.07, 0.05, 0.15) meters. The source and receiver 

antennas move together with steps of 0.01 meters in the x-direction. The domain box under the subsurface is 

defined from (0, 0, 0) to (0.39, 0.1, 0.15) meters as halfspace and airgap region above the ground from (0, 0, 0.15) 

to (0.39, 0.10, 0.20) meters as free space.  

 

Figure 2. Simulation Model for Buried Metal Cylinder 

One of the simulation scenarios with a metal cylinder as an object, depicted in Figure 2 with a radius of 

0.019 meters, is buried from (0.21, 0.02, 0.05) to (0.21, 0.08, 0.05) meters and modeled as a perfect electric 

conductor (PEC). We varied the diameter (1 cm to 4 cm) and horizontal placement of cylindrical objects, along 

with their depth (1 cm to 7 cm) and material properties (relative permittivity: 1 to 20). 

The simulation involves gathering 30 A-scans along the scan traces to form a B-scan while also 

considering three buried objects of different types. A separate B-scan image with no buried objects (background 

scan) was acquired to account for natural background noise. Figure 3 shows the raw B-Scan images of the buried 

metal pipe and tiffin box and the plastic tiffin box simulated through the gprMax simulation software [27]. Table 

2 summarizes the simulation scenarios, including the types of buried objects, their material properties, diameter 

range, depth range, relative permittivity, and the corresponding number of B-scans generated for each object type. 

The process generated 1157 raw B-scan datasets, categorized into three distinct object types. 

Table 2 

Buried Object Parameter for Simulated Dataset 

Object Type Material Number of B-Scans 

Metal Pipes PEC 532 

Metal Tiffin Boxes PEC 536 

Plastic Tiffin Boxes PVC 449 

 

 

 

 

 

 

 

 

 

Figure 3. Raw B-Scan Images 

3.2 Background B-Scan Acquisition 

Acquire a separate B-Scan image (background scan) with no buried objects. A background B-Scan image can be 

acquired in a controlled environment or by identifying an area in the field data free from landmines. Figure 4 

represents the B-scan image of background clutter acquired under identical soil conditions without buried objects. 

   

Metal Pipe Metal Tiffin Box Plastic Tiffin Box 
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They depict the natural background noise from the ground, transmitter, and receiver antennas without including 

simulated landmines or other underground objects. 

 
Figure 4. Background B-Scan Images without buried object 

3.3 Clutter-free B-Scan 

Background subtraction is a common technique in various imaging applications, including GPR. In the context of 

landmine detection, background subtraction aims to remove unwanted background noise and reflections from the 

raw B-Scan image, leaving a clearer picture of potential buried objects. The technique assumes that the background 

clutter remains relatively constant across different B-Scans collected under similar conditions (same soil 

properties, antenna configuration, etc.). Performing pixel-wise subtraction entails subtracting the pixel value of 

each location in the raw B-Scan image (R (x, y)) from its corresponding pixel value in the background B-Scan (B 

(x, y)). The process yields the clutter-free B-Scan (CF (x, y)) as calculated by Equation 1. The subtraction 

eliminates standard background noise in both scans, enhancing the clarity of features potentially connected with 

buried objects in the resulting B-Scan image. Figure 5 illustrates clutter-free B-Scan Images. 

CF(x, y)  =  R(x, y)  −  B(x, y)       (1) 

 

 

 

 

 

 

 

 

Figure 5. Clutter-free B-Scan Images   

3.4 Pseudocode for CNN and AlexNet-based Image Classification 

The system utilizes a CNN architecture, specifically AlexNet, for landmine classification. The pseudocode outlines 

the general steps for training a CNN/AlexNet on GPR image data, including data loading, network definition, 

analysis of the network, training options, testing, performance evaluation, and visualization. 

Pseudocode for Image Classification using CNN and AlexNet 

1. Load Data 

    - Load image datastore from data_directory & Split data into training and validation sets 

2. Load CNN / Pre-trained Network 

    - Define CNN / AlexNet architecture  

3. Analyze Network Architecture 

4. Define Training Options and Train the Network 

    - Train CNN/AlexNet on training data with defined options 

5. Test the Network  

    - Make predictions & Calculate accuracy 

6. Visualize performance  

    - Confusion matrix 

 

MATLAB [28] facilitates deep learning analysis of B-Scan GPR data. This powerful platform offers a 

comprehensive environment for data manipulation, feature extraction, model development, training, evaluation, 

and visualization, making it ideal for interpreting GPR data for landmine detection. 

3.5 CNN Architecture 

Figure 6 illustrates the architecture of the simple CNN architecture that takes a grayscale image as input, sized at 

521 x 664 x 1 pixels, and processes it through several stages to classify it into different categories. The first three 

   
Metal Pipe Metal Tiffin Box   Plastic Tiffin Box 
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convolutional layers, each with increasing numbers of filters like 8, 16, and 32, extract progressively more complex 

features from the image. There can be additional layers, such as batch normalization and Rectified Linear Unit 

(ReLU) activation, between the convolutional and pooling layers to improve the training speed, introduce non-

linearity, and promote sparsity to enhance the overall performance of the CNN. The network utilizes two max-

pooling layers to downsample the image size while retaining key features. Finally, a fully connected layer 

transforms the remaining features into a vector, and a Softmax layer outputs probabilities for each class. Table 3 

demonstrates the CNN architecture analysis and its configuration parameters. The confusion matrix is like a 

scorecard for the image classification model. Each row shows the actual object type buried underground (metal 

pipe, metal tiffin box, or plastic tiffin box). The columns show what the model predicted each image to be. Ideally, 

the numbers along the True Positives (TP) diagonal would be high, indicating the model correctly classified many 

images. False positives (FP) occur when the model makes a confident mistake, such as calling a metal tiffin box a 

metal pipe. False negatives (FN) are like missed detections, where the model misses the object entirely or assigns 

it to the wrong class altogether. Figure 7 displays CNN’s training progress. 

 
Figure 6. CNN Architecture 

The loss and accuracy curve visually represents CNN’s and AlexNet’s progress. Loss curves display the training 

and validation loss across 10 epochs, indicating the model’s learning and generalization performance. Similarly, 

accuracy curves illustrate the training and validation accuracy over ten epochs (113 iterations per epoch), reflecting 

the model’s classification accuracy. Figure 8 demonstrates the confusion matrix of CNN. 

Table 3 

CNN architecture analysis and configuration parameters 

Name Type Activations Learnable Properties 

imageinput Image Input 521 (S) × 664 (S) × 1 (C) × 1 (B) - 

conv_1 2-D Convolution 521 (S) × 664 (S) × 8 (C) × 1 (B) Weights 3 × 3 × 1 , Bias 1  × 1 

× 8 

batchnorm_1 Batch Normalization 521 (S) × 664 (S) × 8 (C) × 1 (B) Offset 1 × 1 × 8 , Scale 1 × 1 × 

8 

relu_1 ReLU 521 (S) × 664 (S) × 8 (C) × 1 (B) - 

maxpool_1 2-D Max Pooling 260 (S) × 332 (S) × 8 (C) × 1 (B) - 

conv_2 2-D Convolution 260 (S) × 332 (S) × 16 (C) × 1 

(B) 

Weights 3 × 3 × 8 , Bias 1  × 1 

× 16 

batchnorm_2 Batch Normalization 260 (S) × 332 (S) × 16 (C) × 1 

(B) 

Offset 1 × 1 × 16 , Scale 1 × 1 

× 16 

relu_2 ReLU 260 (S) × 332 (S) × 16 (C) × 1 

(B) 

- 

maxpool_2 2-D Max Pooling 130 (S) × 166 (S) × 16 (C) × 1 

(B) 

- 

conv_3 2-D Convolution 130 (S) × 166 (S) × 32 (C) × 1 

(B) 

Weights 3 × 3 × 16 , Bias 1  × 1 

× 32 

batchnorm_3 Batch Normalization 130 (S) × 166 (S) × 32 (C) × 1 

(B) 

Offset 1 × 1 × 32 , Scale 1 × 1 

× 32 

relu_3 ReLU 130 (S) × 166 (S) × 32 (C) × 1 - 



   J. Electrical Systems 20-11s (2024): 1510-1522 

 

 

1516 

 

 

(B) 

fc Fully Connected 1 (S) × 1 (S) × 3 (C) × 1 (B) Weights 3 × 690560 , Bias 3  × 

1  

softmax Softmax 1 (S) × 1 (S) × 3 (C) × 1 (B) - 

classoutput Classification Output 1 (S) × 1 (S) × 3 (C) × 1 (B) - 

 

 
Figure 7. Training Progress of Convolutional Neural Network 

   

Figure 8. Confusion Matrix of Convolutional Neural Network 

3.6 Architecture of AlexNet 

AlexNet was one of the first CNNs to succeed significantly on a large image classification benchmark dataset 
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(ImageNet). It paved the way for developing more profound and powerful CNN architectures today in various 

computer vision tasks. Figure 9 illustrates the architecture of the AlexNet.  

The input image of AlexNet architecture, sized at 227 x 227 x 3 pixels, undergoes processing through a 

network of eight layers, comprising five convolutional layers denoted as Conv1 through Conv5, followed by three 

fully connected layers labeled FC6 to FC8. In convolutional layers, features are extracted from the image using 

learnable filters and applied to the previous layer’s output to generate feature maps. These filters help detect edges, 

lines, and other low-level features in the image. ReLU emphasizes them, normalization smooths learning, and 

pooling shrinks the image while capturing essential details. The fully connected layers take the features from the 

convolutional layers and convert them into class scores for different categories. The final (FC8) layer outputs the 

probability distribution for each class, allowing the network to classify the image. 

 
Figure 9. Architecture of AlexNet 

 
Figure 11. Confusion Matrix of AlexNet 

Table 4 illustrates the architecture analysis of AlexNet and its configuration parameters. Figure 10 displays 

AlexNet’s training progress. Figure 11 demonstrates the confusion matrix of AlexNet. 

Table 4 

Architecture analysis of AlexNet and configuration parameters 

Name Type Activations Learnable Properties 

data Image Input 227 (S) × 227 (S) × 3 (C) × 

1 (B) 

- 

conv1 2-D Convolution 55 (S) × 55 (S) × 96 (C) × 

1 (B) 

Weights 11 × 11 × 3 , Bias 1  × 1 × 

96 

relu1 ReLU 55 (S) × 55 (S) × 96 (C) × 

1 (B) 

- 

norm1 Cross Channel 

Normalization 

55 (S) × 55 (S) × 96 (C) × 

1 (B) 

- 



   J. Electrical Systems 20-11s (2024): 1510-1522 

 

 

1518 

 

 

 

pool1 2-D Max Pooling 27 (S) × 27 (S) × 96 (C) × 

1 (B) 

- 

conv2 2-D Grouped 

Convolution 

27 (S) × 27 (S) × 256 (C) × 

1 (B) 

Weights 5 × 5 × 48 , Bias 1  × 1 × 

128 

relu2 ReLU 27 (S) × 27 (S) × 256 (C) × 

1 (B) 

- 

norm2 Cross Channel 

Normalization 

27 (S) × 27 (S) × 256 (C) × 

1 (B) 

- 

pool2 2-D Max Pooling 13 (S) × 13 (S) × 256 (C) × 

1 (B) 

- 

conv3 2-D Convolution 13 (S) × 13 (S) × 384 (C) × 

1 (B) 

Weights 3 × 3 × 256 , Bias 1  × 1 × 

384 

relu3 ReLU 13 (S) × 13 (S) × 384 (C) × 

1 (B) 

- 

conv4 2-D Grouped 

Convolution 

13 (S) × 13 (S) × 384 (C) × 

1 (B) 

Weights 3 × 3 × 192 , Bias 1  × 1 × 

192 

relu4 ReLU 13 (S) × 13 (S) × 384 (C) × 

1 (B) 

- 

conv5 2-D Grouped 

Convolution 

13 (S) × 13 (S) × 256 (C) × 

1 (B) 

Weights 3 × 3 × 192 , Bias 1  × 1 × 

128 

relu5 ReLU 13 (S) × 13 (S) × 256 (C) × 

1 (B) 

- 

pool5 2-D Max Pooling 6 (S) × 6 (S) × 256 (C) × 1 

(B) 

- 

fc6 Fully Connected 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

Weights 4096 × 92 , Bias 4096  × 1 

relu6 ReLU 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

- 

drop6 Dropout 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

- 

fc7 Fully Connected 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

Weights 4096 × 4096, Bias 4096  × 

1 

relu7 ReLU 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

- 

drop7 Dropout 1 (S) × 1 (S) × 4096 (C) × 

1 (B) 

- 

fc Fully Connected 1 (S) × 1 (S) × 3 (C) × 1 

(B) 

Weights 3 × 4096 , Bias 3  × 1 

softmax Softmax 1 (S) × 1 (S) × 3 (C) × 1 

(B) 

- 

classoutput Classification Output 1 (S) × 1 (S) × 3 (C) × 1 

(B) 

- 
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Figure 10. Training Progress of AlexNet 

 

IV. RESULT AND ANALYSIS 

We compared the performance of a standard CNN model to AlexNet on a 3-class classification task. The task 

involved identifying metal pipes and metal and plastic tiffin boxes. We evaluated performance using precision, 

recall, F1-score, and accuracy metrics. 

4.1 Precision 

 Precision measures the exactness of the model’s positive predictions for a specific class using Equation 2. A 

particular class means it tells you what proportion of objects the model identified as a specific class (e.g., metal 

pipe) was that class. A high precision indicates the model rarely makes mistakes when classifying positive cases. 

 Precision (Metal Pipe)  =
𝑇𝑃1

(𝑇𝑃1+ 𝐹𝑃1 )
                         (2) 

4.2 Recall 

 Recall is a metric calculated using Equation 3 that is different from precision and reflects the model’s ability to 

catch all relevant instances of a specific class. It emphasizes how well the model identifies all the actual objects 

belonging to that particular class, highlighting its completeness for a specific category. 

Recall (Metal Pipe)  =
𝑇𝑃1

(𝑇𝑃1+ 𝐹𝑁1 )
                                 (3)   

4.3 F1-Score 

 We compute the F1-score using Equation 4. These metrics balance precision and recall by taking their harmonic 

means. 

   𝐹1 − 𝑆𝑐𝑜𝑟𝑒 (𝑀𝑒𝑡𝑎𝑙 𝑃𝑖𝑝𝑒) =  
(2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 1×𝑅𝑒𝑐𝑎𝑙𝑙1)

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1+𝑅𝑒𝑐𝑎𝑙𝑙1)
  (4) 

4.4 Accuracy 

 Equation 5 defines accuracy as a metric gauging a model’s overall performance in correct predictions. 

Accuracy (Metal Pipe) =  
(𝑇𝑃1+ 𝑇𝑃2+ 𝑇𝑃3 )

(Total Number of Predictions)
  (5) 

Where TP₁ refers to True Positives for metal pipe class, TP₂ for metal tiffin box, and TP₃ for plastic tiffin box. The 

performance evaluation of Table 5 compares a CNN and AlexNet for a 3-class image classification task involving 

metal pipes, metal tiffin boxes, and plastic tiffin boxes. The table shows that AlexNet achieved superior 

performance across all metrics for metal and plastic tiffin boxes, demonstrating its effectiveness in GPR image 

classification. The overall accuracy (97.10% for CNN, 98.90% for AlexNet) represents the proportion of images 
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correctly classified across all three classes. AlexNet outperforms CNN, indicating that it accurately classified a 

higher percentage of images. 

Table 5 

 Comparison of Classification Performance of CNN and AlexNet 

 

3-Class Classification Methodology Precision Recall F1-Score Accuracy 

 

Existing  

 

Shot Multi-Box Detector (SSD)  [29] 92.77% 76.61% 83.92% 
         - 

YOLO v3 [29] 94.62% 95.28% 94.45% 

Grid Images (Cavity) [25]   -   - -    92.00% 

Grid Images (Pipe) [25]   -   - -    98.00% 

 

 

Proposed (CNN) 

 

Metal Pipe   99.2%   100% 99.6% 

   97.10% Metal Tiffin Box   98.5%   95.6% 97.0% 

Plastic Tiffin Box   98.2%   100% 99.1% 

Proposed (AlexNet) 

Metal Pipe 97.8% 100% 98.9% 

98.90%   Metal Tiffin Box 100% 100% 100% 

Plastic Tiffin Box  99.1% 100% 99.5% 

 

4.5 Findings and Future Enhancements 

 The limited availability of real GPR data on landmines necessitates exploring methods for incorporating real-world 

data into the training process. Deep learning approaches using CNNs have shown promise in extracting features 

and potentially determining the size and shape of buried objects from GPR data. Future research directions include: 

• Utilizing pre-trained CNN models like AlexNet for transfer learning to improve target detection accuracy 

potentially. 

• Integrating multiple detection technologies for even more robust and reliable landmine classification.  

• Exploring different CNN architectures to identify the most suitable model for landmine classification.

 

V. CONCLUSION 

This paper investigated the application of deep learning, specifically the AlexNet architecture, for improved 

landmine classification using GPR images. Our findings demonstrate that AlexNet outperforms a standard CNN 

model in a 3-class classification task involving metal pipes, metal tiffin boxes, and plastic tiffin boxes.  

AlexNet achieved higher overall accuracy and superior precision, recall, and F1-score performance of all 

three classes compared to CNN. These results highlight the potential of deep learning, particularly CNNs like 

AlexNet, to revolutionize anti-personnel landmine detection using GPR data. Deep learning offers significant 

advantages for landmine detection, including increased detection probability, reduced false alarms, and enhanced 

precision in target positioning.  

The success of deep learning in GPR image classification paves the way for developing a fully automated 

landmine detection system. This research contributes to the ongoing effort to create safer environments for people 

worldwide. Future research explores different CNN architectures and potentially integrates multiple detection 

technologies to achieve even more robust and reliable landmine classification.  
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