P. Mahendru^{1*}, I. K. Bhat²

Advancements in Laser Cladding and Iron based Alloys- A Review

Abstract: - This study briefs about the latest developments in Laser Cladding and alloying process which helps improving the surface properties of substrate. Laser cladding is one of the material deposition technique which helps in lengthening the surface life of Base materials in power generation industries. A thick layer of materials which helps in improving the substrate properties deposited. It helps in enhancing the mechanical properties like wear, corrosion resistance, hardness. Laser cladding in comparison to other deposition techniques provides better powder efficiency, low distortion due to low power requirement, good surface uniformity, better binding property. Independent metal alloys, ceramics, composites are used to enhance the surface of the material used. Iron based alloys are the most common alloy with better mechanical properties, other independent metal alloys like aluminum alloy, nickel alloy, tungsten alloy can be used. In this review, the study of iron based alloys for laser cladding has been explained. Also, the effecting laser parameters on microstructure, material composition, mechanical properties and thermal properties are considered. The material characterization techniques like XRD, SEM, XPS, DSC, scratch test, corrosion & erosion test are discussed. The issue emerges and the possibilities in Laser cladding for Iron based alloyed are briefed.

Keywords: Laser Cladding, Iron Based Alloys, Characterization Techniques

INTRODUCTION

Iron and its alloys has a great application for making the equipment of Oil & Gas Industry, Hydro turbines, power generation industry etc. due to its corrosion resistance, heat resistance, better toughness. However its application is limited due to surface stiffness, friction & wear resistance. To enhance the surface properties, addition of elements on surface is recommended by surface deposition methods. The deposition methods like magnetron sputtering, Spark Plasma Sputtering, Arc melting, Electron Beam Melting, Plasma Spray Process, Laser cladding etc. Laser cladding process among all deposition techniques helps in generating strong metallurgical bond with minimum dilution to add on the properties which are rust, abrasion and wear protection. This process also helps in providing better microstructure with better structural ability.

To improve the surface properties, surface cladding or surface alloying process can be used. Through Laser Cladding, expensive metals in the form of powders sprayed on cheap base metal so that mechanical and physical properties of the surface can be improved. Laser cladding is a technology which is used in Industrial applications via coating and new alloys development.

Iron based alloys .i.e. high entropy alloys in which four or more elements can be added to see the microstructural and tribological properties. These high entropy alloys show high strength, good wear resistance, better hardness, toughness and oxidation resistance. Due to its characteristics, these alloys have application in manufacturing parts of high temperature range. However the cost involved in manufacturing those parts are high so these alloys have found their application in improving the surface properties. Researchers have found potentials in high entropy alloys to use for improving the surface of cheap metals which can be used in further applications. Different deposition techniques have been used to deploy these high entropy alloys on base metals. Laser cladding is among the better techniques to deposit alloys in the form of powder on base metals. Fe-based alloys can also be used to create a range of microstructures with specific qualities, such as corrosion resistance. Different class of alloys in addition to totally amorphous Fe-based alloys, are still being studied. In order to design corrosion-resistant

^{1*} Research Scholar, Department of Mechanical Engineering, Manav Rachna University, Faridabad, India. Email: piyush.mech01@gmail.com

²Professor, Department of Mechanical Engineering, Manav Rachna University, Faridabad, India Email: ikbhat13@gmail.com

^{*}Corresponding Author: P. Mahendru, Email: piyush.mech01@gmail.com

amorphous Fe-based alloys, alloying elements that boost glass-forming ability (GFA) and assure passive film formation must be considered. Boron is added to Fe-based alloys to improve their GFA, whereas chromium is required for corrosion resistance.

Due to the advancement in surface advancement techniques, deposition through laser is being widely used for uniformity in micro structure, low dilution rate, improved metallurgical properties. It improves metal properties and thermal stability of substrate. During the laser cladding process, the powder composite is fed on to the base metal surface via laser beam through nozzle. The substrate melts due to heat coming from laser that creates a metal pool and this metal powder pool strikes the substrate to solidify the substrate. Alterated metals, alloys, ceramics, composites, rare earth oxide, and solid lubricants in powder form are among the materials used for cladding and metal alloying like aluminum, titanium, Cobalt etc. are some of the metallic materials utilized for cladding on iron alloy. These metal alloys are also employed in common ceramic materials used for coating. Coating operations on iron based alloys are also done with metal matrix composites.

Laser Surface Cladding

To make a clad layer on the picked substrate, gear requires a ton of power laser for heat source to execute the movement. It might be isolated into four sorts reliant upon the powder dealing with technique: coaxial powder structure wire, preplaced powder system, off turn powder structure and preplaced powder methodology for dealing with. Coaxial LC is the most by and large utilized LC system. Powder system and powder structure with pre-set powder Figure 1 is a layout. Coaxial powder system and preplaced powder structure layout. The laser shaft lights the substrate, causing a liquid to relax make .When the powder is expelled from the powder dealing with ramble, it assembles in a pool. The powder fed into the machine and reacts with laser in liquid form and produce cladding layer and produces a cladding layer. Rather than having the common axis powder system, the cladding material in the already placed powder structure is to put it place on the substrate. The preplaced powder is then ease using a beam column, and the break up puddle is quickly cool down to outline a cladding layer. Cladding region, interfacial area, warmed affected section, and base metal are the four pieces of LC tests. All around, the preplaced powder methodology is more straightforward to use and makes more prominent cladding.

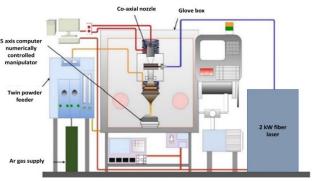


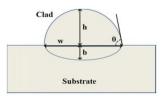
Fig. 1. Schematic arrangement of laser cladding test setup [1].

Laser Type Selection

While picking LST processes, numerous factors are thought of. One of the parts to ponder while picking a laser type is the material to be dealt with. Beat taking care of is usually used with heat-fragile and tenacious materials. It's moreover huge that the established plan of state of the art materials in incessant and beat laser modes may differentiate. Moreover, profitable properties basically sway the decision of laser for a specific application.

Crystallization Behavior

Available microstructure depends on the temperature slant and the solidifying rate. High ratio prompts planar development; with a reduction in temperature slope and increase in solidifying rate, the columnar plan is refined while a low G/R degree prompts equal grains dendritic development. High cooling rates (103-108 K/s) may be refined in LST. In this way, in LC and LSA, the dendritic development is indisputable. Microstructural reshapes with variation in cooling rates. They observed that laser check speed basically affected the microstructure of the made globule. They similarly tracked down that in reliable laser mode, columnar dendritic plan is outlined and


orientated toward the point of convergence of the globule, while in beat laser mode, heaps of dendrite are arbitrarily organized. Because of irregular dissolving and re-hardening, the fluid pool goes through an amazing change. These results in pile ups of columnar dendrites rather than relentless improvement from the interface. Solidifying takes place at the interface, after which the establishing front advances to the top surface of the fluid pool. Section from fluid and solid base interface had high grains, which are an immediate consequence of seriously establishing time.

Laser Cladding Process Parameters

Clad height, clad width, and clad significance are numerical limits of the clad layer. The clad thickness is the measure of the clad height and significance; it is at times suggested as the total clad stature. Figure traces a crossportion image of a singular clad layer math with clad viewpoints displayed by arrangement. A strong blend associate between the substrate and the covered material is required for the laser cladding process. To acquire pure individual properties of covering material, the clad significance ought to be basically pretty much as immaterial as could be expected. The clad layer's debilitating is used to choose the clad quality.

Powder Feed Rate

One of the most fundamental parts for covering or cladding quality is the powder feed rate. Wear resistance, hardness, clad height and width, porosity, and covering thickness are two or three the essential factors that are strongly impacted by powder feed rate A wide extent of covering designs can be cladded on the specific substrate by changing the powder feed rate on iron based mix covered substrate. It will help in growing the hardness of the substrate, crumbling deterrent.

Techniques for Alloy Feeding

There are two techniques for getting clad/composite material for covering. Preplaced powder sworn statement (remelting methodology) and co-declaration (mix system) are the two methodologies. The dealing with clad/mix material varies according to these philosophy. The powder to be alloyed is first mixed in with demonstrated added substances (polyvinyl alcohol) to make a slurry. This slurry is applied in a uniform coat to the substrate and allowed to dry and set. Small hardness, wear resistance, and disintegration obstacle all improved, as shown by the researchers. To check out the effect of Si expansions in a covering. By using a preplaced cycle, clad CuFe-based composite powder with various groupings of silicon on a medium carbon steel substrate. They found that Si-clad coatings have preferable characteristics over various coatings. The powder feeder deals with the clad/mixture powder onto the laser column and, consequently, onto the mellow pool in the blend system. Powder can be dealt with at a combination of focuses to the laser bar. This point is zero degrees for coaxial dealing with systems.

Various spouts with different math and atom stream configuration are moreover open. Off-turn, four-stream, and coaxial structure dealing with spouts have been utilized. The atom stream plans for specific spouts. Other than powder dealing with systems wire dealing with clad/blend material may moreover be used An amazing overview of articles suggests that globules made utilizing remelting strategies are inclined to more imperfections.

Materials & its Alloys for Cladding

Independent Metals & Alloys

Particular cycle limits significantly influence the microstructure of iron-based, nickel-based and cobalt-based coatings, which in this way changes the wear resistance and utilization hindrance of the coatings. The solidifying communication and microstructure of Inconel 718 compound under different LC process limits. It was found that the microstructure of the cladding layer was columnar dendrites and smaller than expected dendritic particles. The G/R extent reduces as the laser power increases from 150 W to 300 W and the checking speed increases from 4

mm/s to 6 mm/s, and the interface assistant arm scattering lessens from 1.08 to 0.98. Similarly, the augmentation of powder dealing with rate also progressed the plan of equiaxed pearls. Regardless, how to exactly control the powder feed rate needs further exploration. The microstructure and properties of LC Ni-Cr-B-Si mix on a low carbon steel substrate, and the results showed that the coatings under different temperature inclines have particular debilitating rates. Coatings with low break thickness and high carbide volume division have incredible scratched region hindrance. The examination found that it is chiefly stick wear at high temperature, and it has incredible scratched region resistance and high temperature oxidation obstacle appeared differently in relation to the substrate.

High entropy alloys

High entropy blends (HEAs) is similarly called multi-standard combination and it breaks the arrangement considered regular mixtures reliant upon several parts. Studies have shown that HEA partake in the advantages of high strength and hardness, incredible wear obstacle and utilization resistance, and high temperature progressing hindrance. Lately, it has been extensively used in LC on aeronautics, device and various fields. Table 1 summarizes the basic ascribes and properties of LC HEAs lately. Different parts have different properties. For instance, Al, Ti, Mo and various parts are useful for the game plan of BCC solid course of action, yet Cu, Co, Ni and various parts are useful for the improvement of FCC solid course of action. Among them, the development of Cu part will similarly convey a nanophase and Co part can chip away at the flexibility and wear hindrance of the composite. In the meantime, Ni can additionally foster the disintegration resistance and high temperature oxidation deterrent of the mixture.

Metal matrix composites

Metal lattice composites have in like manner become one of the material structures for laser cladding on account of their high strength and extraordinary wear resistance. At this point, the developed time of MMCs in laser cladding principally joins particle upheld stage and fiber developed stage. The particle developed time of LC MMCs is essentially stoneware creation like WC, NbC, TiN, and so on Furthermore, the choice of atom developed materials and the metal powders are basic in LC. All around, in addition to the organizing of real property for materials ought to be considered, yet moreover the particle developed stage and the metal grid ought to have a particular dissolvability and without severe substance reactions. At this point, LC atom upheld MMCs have been thought about by various analysts. Regardless MMCs materials, for instance, nickel-based, iron-based and cobalt based, HEAs that have emerged actually are consistently being used as the metal framework for LC MMCs

Coating with rare earth oxide

he phenomenal earth oxide, for instance, CeO2, La2O3 and Y2O3 are securing wide reputation in surface planning for updating the surface properties of metallic parts. The CeO2 and La2O3 are light weight extraordinary earth oxide while Y2O3 is huge weight exceptional earth oxide. Huge weight extraordinary earth oxides are reliably better compared to the light weight exceptional earth oxides for update in the surface properties of magnesium blends. The development of Y2O3 in the covering refines the microstructure and holds high proportion of laser energy. It is portrayed that fine and short dendritic development was obtained with extension of unprecedented earth oxide compound. Furthermore, it was seen that the choice of Y2O3 changes the columnar development over to equiaxed structure, which prompts extension in wear resistance, hardness, and utilization impediment of covered materials. To chip away at the properties of covering, has used different proportion of Y2O3 in the covering material containing Al and Cu

Characterization Techniques for Coating

X-Ray diffraction investigation (XRD), checking electron microscopy (SEM), energy dispersive spectroscopy (EDS), Vickers miniature hardness testing, erosion and wear testing, and consumption obstruction testing would all be able to be utilized to evaluate the presentation of the saved covering. The stages contained in the covering assume a huge part in deciding the surface properties of the covered material. The XRD test can decide the presence of stages. The surface characteristics of a covering are impacted by its microstructure and essential substance. In contrast with coarse grain structure, fine grain structure creates great characteristics. SEM investigation can uncover the covering's microstructure and surface shape. EDS investigation can be utilized to

decide the compound natural organization of covered materials. The wear characteristics of materials are vigorously affected by their hardness. Subsequently, Vickers miniature hardness testing is utilized to decide it. Various kinds of tribometers can be utilized to decide the coefficient of grating and wear rate. The consumption test showed the substance solidness of material at different natural conditions subsequently, it is tried by consistent likely rectifier. As the high consumption potential and low erosion current is vital for better erosion obstruction.

Conclusion & Future Scope

For cladding, it requires great amount of power, this reason can prompts dissipation of iron substrate, which shows the disappointment in cladding process. Accordingly laser having low power requirement is proposed for covering on iron compounds. Different prospects in the event that powerful laser is utilized for handling then the cycle boundaries like working power, examining speed, argon stream supply, rate of powder feeding, and mark measurement ought to be hold appropriately. It was found from the writing concentrate on that analysts have utilized independent metal covering, amalgam, metal framework composite covering, high entropy compound covering, uncommon earth oxide added covering, and nanoparticles supported covering to expect want properties like high hardness, magnificent erosion opposition and high wear obstruction. From mentioned writing concentrate on it has been tracked down that: covering from metal grid composite creates excellent properties. By writing audit it is observed that the iron based metal network composite is generally utilized by scientists for creating covering surface on iron amalgam substrate by laser process. The expansion of uncommon earth oxide in the cladding material upgrades the wear obstruction, hardness level, and erosion opposition because of its grain cleaning and laser power retention inclination. The expansion of nanoparticle in the covering can improve the properties of covering because of its better mechanical properties. Additionally, nanoparticle makes block in disengagement development, which prompts expansion in hardness and wear obstruction. The difficult thing in laser cladding of iron combination is corrosion which can be reduced by adding other metal powders. Hence the material having comparable actual properties, great wettability, comparative warm development coefficient and almost equivalent modulus of flexibility to iron composite ought to be chosen. The greater part of the specialists have created metal lattice composite covering on the outer layer of iron compounds, which delivers great properties. It is proposed that the covering with high entropy compound, uncommon earth oxide added substance and nanoparticle support might be the better decision for additional examination work on laser cladding on iron amalgam.

References

- [1] J. Liu, H. Yua, C. Chen, F. Weng, J. Dai, Research and development status of laser cladding on magnesium alloys: A Review, Opt. Las. Eng., Opt. Las. Eng. 93 (2017) 195–210.
- [2] Y.u. Guo, Yingqiao Zhang, Zhiyong Li, Shouzheng Wei, Tao Zhang, Liuqing Yang, Shengyao Liu, Microstructure and properties of in-situ synthesized ZrC-Al3Zr reinforced composite coating on AZ91D magnesium alloy by laser cladding, Surf. Coat. Technol. 334 (2018) 471–478.
- [3] S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder, Appl. Surf. Sci. 225 (2004) 124–134.
- [4] J. Dutta Majumdar, I. Manna, Mechanical properties of a laser-surface-alloyed magnesium-based alloy (AZ91) with nickel, Scr. Mater. 62 (2010) 579–581.
- [5] Z. Mei, L.F. Guo, T.M. Yue, The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite, J. Mater. Process. Technol. 161 (2005) 462–466.
- [6] C. Tan, H. Zhu, T. Kuang, J. Shi, H. Liu, Z. Liu, Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition, J. Alloy. Compd. 690 (2017) 108–115.
- [7] K. Huang, X. Lin, Changsheng Xie, T.M. Yue, Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance, Bull. Mater. Sci. 36 (1) (2013) 99–105.
- [8] O. Asghar, L. Li-Yan, M. Yasir, L.i. Chang-Jiu, L.i. Cheng-Xin, Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Cladding, Coatings 10 (2020) 638.

- [9] C. Wang, T. Li, B. Yao, R. Wang, C. Dong, Laser cladding of eutectic-based Ti–Ni– Al alloy coating on magnesium surface, Surf. Coat. Technol. 205 (2010) 189–194.
- [10] A. Dziadon', R. Mola, L. Błaz, The microstructure of the surface layer of magnesium laser alloyed with aluminium and silicon, Mater. Charact. 118 (2016) 505–513.
- [11] A. Fabre, J.E. Masse, Friction behaviour of laser cladding magnesium alloy against AISI 52100 steel, Tribol. Int. 46(2012)247-253.
- [12] E. Chen, K. Zhang, J. Zou, Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders, Appl. Surf. Sci. 367 (2016) 11–18.
- [13] F. Liu, Y. Ji, Q. Meng, Z. Li, Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31B, Vacuum 133 (2016) 31–37.
- [14] M. Qian, D. Li, S.B. Liu, S.L. Gong, Corrosion performance of laser-remelted Al–Si coating on magnesium alloy AZ91D, Corros. Sci. 52 (2010) 3554–3560.
- [15] Y. Yang, H. Wu, Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders, Mater. Lett. 63 (2009) 19–21.
- [16] P. Volovitch, J.E. Masse, A. Fabre, L. Barrallier, W. Saikaly, Microstructure and corrosion resistance of magnesium alloy ZE41 with laser surface cladding by Al–Si powder, Surf. Coat. Technol. 202 (2008) 4901–4914.
- [17] Y. Lei, R. Sun, Y. Tang, W. Niu, Experimental and thermodynamic investigations into the microstructure of laser clad Al–Si coatings on AZ91D alloys, Surf. Coat. Technol. 207 (2012) 400–405.
- [18] Y. Gao, C. Wang, H. Pang, H. Liu, M. Yao, Broad-beam laser cladding of Al–Cu alloy coating on AZ91HP magnesium alloy, Appl. Surf. Sci. 253 (2007) 4917–4922.
- [19] Guanghui Meng, T.M. Yue, Xin Lin, Haiou Yang, Hui Xie, Xu Ding, Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites, Opt. Laser Technol. 70 (2015) 119–127.
- [20] T.M. Yue, H. Xie, X. Lin, b.H.O. Yang, G.H. Meng, Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates, J. Alloy. Compd. 587 (2014) 588–593.
- [21] Chao Wang, Juanjuan Li, Tao Wang, Linjiang Chai, Chong Deng, Yueyuan Wang, Yun Huang, Microstructure and properties of pure titanium coating on Ti-6Al4V alloy by laser cladding, Surf. Coat. Technol. 416 (2021) 127137.
- [22] Jianguo Chen, Qiushi Li, Bing Sun, Qiuhong Zhao, Zejun Wang, Weifei Niu, Xuan Wang1, Lihua Dang, Qingjun Ma, Effects of CeO2 on Microstructural Evolution, Corrosion and Tribology Behavior of Laser Cladded TiC Reinforced Co-based Coatings, Int. J. Electrochem. Sci., 16 (2021) Article ID: 210511, doi: 10.20964/2021.05.10.
- [23] Guangyu Han, Youfeng Zhang, Microstructure and Corrosion of Laser Cladding Coatings on Titanium Alloy with Nd2O3, J. Eng. Mater. Technol. January Vol. 143 (2021), 011007-1.
- [24] Kaiming Wang, Du. Dong, Guan Liu, Baohua Chang, Yuxiang Hong, Microstructure and properties of WC reinforced Nibased composite coatings with Y2O3 addition on titanium alloy by laser cladding, Sci. Technol. Weld. Joining
- 24 (5) (2019) 517–524.
- [25] Yuling Gong, Meiping Wu, Xiaojin Miao, Chen Cui, Effect of CeO2 on crack sensitivity and tribological properties of Ni60A coatings prepared by laser cladding, Adv. Mech. Eng. 13 (4) (2021) 1–12.
- [26] O.S. Fatoba, E.T. Akinlabi, S.A. Akinlabi, S. Krishna, Influence of Rapid Solidification and Optimized Laser Parameters Relationship on the Geometrical and Hardness Properties of Ti- Al-Cu Coatings, Mater. Today:. Proc. 18 (2019) 2859–2867.

- [27] Yanan Liu, Lijun Yang, Xuejiao Yang, Tiangang Zhang, Ronglu Sun, Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.09.063.
- [28] Alex Pizzatto, Moises Felipe, Teixeira, Alexsandro Rabelo, Tiago Falcade, Adriano Scheid, Microstructure and Wear Behaviour of NbC-Reinforced NiBased Alloy Composite Coatings by Laser Cladding, Mater. Res. 24(3) (2021), DOI: https://doi.org/10.1590/1980-5373-MR-2020-0447 M.
- [29] Samar Reda Al-Sayed Ali, Abdel Hamid Ahmed Hussein, Adel Nofal, Salah Ibrahim Hassab Elnaby, Haytham Elgazzar, A contribution to laser cladding of Ti-6Al-4V titanium alloy, Metall. Res. Technol. 116 (2019) 634.
- [30] Max Baranenko Rodrigues, Rafael Gomes Nunes Silva, Milton Pereira, Régis Henrique Gonçalves e Silva and Erwin Werner Teichmann, Effect of dynamic wire feeding on deposition quality in laser cladding process, J. Laser Appl. 32, 022065 (2020); doi: 10.2351/7.0000097.