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Abstract: - Recently, video streaming gained popularity due to a lot of live streaming platforms with better Quality of Experience (QoE). 

However, transmitting video data over networks facing critical challenges because of maintaining video quality. With the goal of ensuring 

error resilience video streaming, this research proposes a novel Hybrid Multiple Description Coding and Image Pyramid (HMDC-IP) 

algorithm to enhance video transmission performance under varying network conditions. The MDC technique splits the video into multiple 

independently decodable descriptions, providing video recovery in case of packet loss. Simultaneously, the Image Pyramid method creates 

multiple resolution layers, allowing for flexible reconstruction of the video when data is lost. Notably, if all channels are received, then 

there will be no loss. Besides, polyphase permuting & splitting are applied to rearrange and split the image data into different polyphase 

components. After splitting, the data undergoes coefficient splitting which separates the image coefficients to allow finer control over 

encoding. These coefficients are then processed with arithmetic encoding to a form of entropy coding that compresses the data efficiently. 

On the decoding side, the descriptions are received and processed in reverse order. The system starts with arithmetic decoding, coefficient 

merger, polyphase inverse permuting & residual merger, and finally, the image is up-sampled through the Image Pyramid to restore the 

original resolution. Performance evaluation is carried out by measuring key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), and Error Recovery Rate (ERR). The results demonstrate that the proposed HMDC-IP framework significantly 

improves video quality, minimizes packet loss impact, and enhances error resilience compared to traditional methods. 

Keywords: Multiple Description Coding, Image Pyramid, Error Resilience, Video Streaming, Quality of Experience, Image 

Compression 

 

I.INTRODUCTION  

Error Resilience Video Streaming refers to the set of techniques applied to ensure that the quality and continuity 

of video streams are maintained when transmission errors, packet losses, or network instability arise [1]. Video 

streaming over unreliable networks such as the internet or wireless networks often suffers transmission 

interruptions caused by packet loss, latency, or jitter that decrease video quality [2]. For this purpose, several error-

resilient techniques have been developed, with an emphasis on protecting video data against such disturbances so 

that there can be real-time playback even if there is some amount of data loss over some time. From simple error 

correction codes to more complex techniques like Multiple Description Coding, forward error correction, and 

redundancy-based schemes, the techniques have themselves been a passage of development over time [3] [4]. The 

goal of error resilience techniques is to detect data loss and recover from it to deliver smooth, interruption-free 

video with no perceptible degradation in video quality [5]. 

The main benefits of Error Resilience video streaming techniques are that the video received would look of better 

quality for periods of fluctuating network conditions, less buffering, and higher continuity of playback, especially 

in those environments where the rate of packet loss is high [6]. These methods also possess the property of low 

overhead data transmission, achieving a good balance between video quality and bandwidth usage. However, the 

error-resilient methods can be expensive in terms of computation, leading to increased latency. This is not very 

helpful for those applications that demand real-time processing [7] [8]. Other techniques may raise bandwidth 

usage and be less efficient in networks having constrained bandwidths. Part of the issue in designing an optimal 

error-resilient solution is a trade-off between the strength of error correction and video quality [9]. 
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Another emerging approach said to increase the resilience of errors in video streaming is Hybrid Multiple 

Description Coding (MDC) and Image Pyramid techniques. In MDC, the video stream is divided into multiple 

descriptions which are transmitted as different separate streams [10]. Although some of the descriptions are lost, 

it would still be possible to reconstruct a low-quality version of the video for use when there is resilience against 

packet loss. This hybrid scheme combines information from the image pyramid, representing images at different 

levels of detail, to permit efficient video transmission [11]. The pyramid of image offers the advantage of 

scalability within layers, whereby lower resolution information is transmitted first such that if higher layers are 

lost, there is always some sort of a residual, viewable level of video. Indeed, this hybrid approach proves to be 

effective in bandwidth limitation as well as video quality under variable network conditions [12]. 

Indeed, a number of advanced techniques for compressing and transmitting videos have been developed; some are 

strong in rate-distortion performance and others are weak. Examples of recent advances include the neural video 

codec using an efficient entropy model that captures spatial and temporal dependencies for improved rate-

distortion performance with high computational demands, which limits its real-time applicability [13]. Mobile 

cloud gaming frameworks are adaptive to the changing network conditions to provide for both motion-to-photon 

latency and visual quality while suffering in adverse bandwidth or packet loss environments [14]. DeepWiVe is 

an end-to-end Joint Source-Channel Coding (JSCC) approach including video compression and bandwidth 

allocation of deep neural networks and reinforcement learning, but its complexity and dependency on correct 

channel estimation are challenges in dynamic networks. Ultimately, the error-resilient coding scheme for 

transmitting underwater video using convolutional neural networks and multiple description coding achieves a 

balance between coding efficiency and error resilience but can fail catastrophically in the worst-case packet loss 

scenarios or fail to generalize well to other settings [15]. Based on the above-mentioned disadvantages, a new 

hybrid scheme that integrates MDC with Image Pyramid techniques is designed towards increasing error resilience 

and adaptability that overcome the challenges currently faced by both these techniques. The key contributions are: 

• To design an MDC model to enhance resilience by generating multiple independently decodable video 

streams. In case of partial data loss, the video quality is preserved through available descriptions, ensuring 

smoother playback despite packet loss. 

• To construct an Image pyramid to generate multi-resolution layers of the video. Lower-resolution layers 

enable partial reconstruction when higher-resolution frames are unavailable, maintaining video continuity under 

degraded conditions through adaptive scaling. 

• Develop an efficient HMDC-IP encoding and decoding system capable of dividing the input source data 

into multiple descriptors and reconstructing the original data from these descriptors. 

This article is structured as a recent literature on video streaming techniques in Section II. Section III explains the 

proposed architecture. Experimentation and results are given in Section IV. Section V concludes the research. 

II. LITERATURE STUDY 

A. Recent Research 

In 2022, Li et al [16] presented a new entropy model for neural video codecs that measured spatial and temporal 

correlations to improve the prediction of probability distribution of quantized latent representations. For temporal 

redundancy reduction, it has a latent prior and for spatial redundancy reduction, it has a dual spatial prior. Also, 

the proposed model included a content-adaptive quantization mechanism which enabled smooth rate control and 

dynamic bit distribution, enhancing rate-distortion efficiency. The experimental outcomes revealed that the 

proposed neural video codec achieves 18.2% lower bitrate than H.266 (VTM) at the highest compression level on 

the UVG dataset. 

In 2022, Alhilal et al [17] proposed an end-to-end cloud gaming framework for improving user experience in 

mobile cloud gaming by controlling the impact of volatile network conditions. The framework adjusted video 

source rates and frame-level redundancy depending on real-time network metrics to reduce motion-to-photon 

(MTP) delay and shield frames from loss. When applied and evaluated against current approaches, the framework 

maintained an MTP latency of less than 140 ms and a visual quality of more than 31 dB in all circumstances.  

In 2022, Tung and Gündüz [18] suggested DeepWiVe, a new end-to-end JSCC video transmission technique that 

utilizes DNNs to combine video coding, channel coding, and modulation. Some of the features include a DNN 
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decoder that estimated residual without feedback of distortion, which helped to improve video quality in cases of 

occlusion, and camera movement. The scheme also employed the RL technique to adapt bandwidth allocation 

between video frames hence enhancing picture quality. As shown in the previous simulation, DeepWiVe has better 

performance than the H.264 and H.265+ with LDPC codes which avoided the cliff effect in classical 

communication systems. 

In 2021, Zhang and Gu [19] developed an error-resilient coding method for underwater video transmission that 

combined CNN with MDC to deal with transmission errors and packet losses. Due to the use of information 

derived from inter-frame motion, the approach improved the safety of significant areas of the video. It involved 

digitizing video sequences into two forms of descriptions within a given bit rate constraint. Using underwater 

video datasets with various packet loss rates for simulation, the authors proved the efficiency of the method and 

its higher efficiency compared to other video coding methods. 

In 2021, Minallah et al. [20] proposed the transmission scheme of H.264/AVC compressed video streams using 

IRCC with multidimensional Sphere Packing (SP) modulation and Differential Space-Time Spreading Codes 

(IRCC-SP-DSTS). It evaluated three error protection strategies: They included Regular Error Protection (REP), 

Irregular Error Protection scheme-1 (IREP-1), and Irregular Error Protection scheme-2 (IREP-2) in which video 

data was protected differently. The performance of these methods was evaluated using the EXtrinsic Information 

Transfer (EXIT) Chart and other parameters such as Bit Error Rate (BER) and PSNR. The results demonstrate 

that the IREP-2 scheme has an additional 1 dB E_b/N_0 gain over IREP-1 and 0.6 dB over REP at the expense of 

a 1 dB PSNR loss. 

In 2021, Hu et al. [21] presented a dynamic adaptive Light Field (LF) video transmission scheme to obtain high 

compression and near-distortion-free LF video in a stable network environment. Moreover, it presented a 

description scheduling algorithm to improve the quality of the video in case of partial data loss and delay. This 

was done using the MDC strategy, in which a novel Graph Neural Network (GNN) model was employed for LF 

video compression. The experiment results showed that the scheduling algorithm increased the decoding quality 

by 3% to 15% increased the robustness of the video streaming system against packet loss or errors and supported 

different types of receivers. 

In 2022, Wang et al. [22] suggested a novel framework of Spatial-Frequency Multiple Description Video Coding 

(SF-PMDVC) was proposed for HEVC. It improved coding efficiency by using an adaptive perceptual redundancy 

allocation scheme in accordance with visual saliency. The experimental outcome showed that the proposed SF-

PMDVC scheme outperformed other MDC techniques in terms of error tolerance and reconstructed video quality. 

In 2022, Li et al. [23] presented an UnderWater-WZ which was an enhanced Wyner-Ziv coding scheme for video 

transmission over underwater acoustic channels. The approach adopted the use of MJPEG coding to manage the 

error range while using motion compensation time interpolation together with calibration information to create 

good side information. Experimental outcomes showed that this scheme enhanced the video reconstruction quality 

by 2.6 to 3.5 dB when the maximum packet loss ratio was 20% which was very close to the error-free condition. 

In 2022, Alaya and Sellami [24] proposed VSMENET as a new inter-layer approach for transmission of 

multimedia streams in VANETs. Its main goal was to constantly adjust transmission rates with reference to the 

physical rate within the network to minimize instances of video playback for the users. This included enhancing 

video quality, smart encoding on RSUs, and coordinating computation tasks and video data accessibility. When 

compared with the current techniques in the NetSim simulator, VSMENET has achieved more than 9% 

enhancement in the average video packet lifetime and delivery rate. 

In 2022, Zhao et al. [25]described a low bit-rate image compression using MDC that addressed the rate-distortion 

minimization problem at its deepest level. It comprised an MD multi-scale encoder, MD cascaded-Resblock 

decoders, and arithmetic coding employing learnable scalar quantizers and conditional probability models. The 

framework synthesised and quantised MD tensors and reconstructed images with cascaded-Resblock networks 

with the help of which the framework has a parameter-sharing symmetric structure to reduce the network 

complexity. 



J. Electrical Systems 20-3 (2024): 7604-7627 

7607 

B. Problem Statement 

Table I presents the advantages and disadvantages of various methods for video streaming. The rapid growth of 

video streaming services, along with the widespread adoption of high-bandwidth networks like 5G, has made 

ensuring reliable and high-quality video delivery over fluctuating networks a critical challenge. Traditional video 

streaming methods struggle to maintain quality under dynamic conditions, such as packet loss, bandwidth 

variations, and network congestion. Recent advances in AI have further enhanced these methods by enabling 

dynamic bitrate adaptation and error correction strategies, optimizing video quality based on real-time network 

conditions. However, despite these advances, deploying these techniques for real-time video streaming continues 

to face significant challenges. Video streaming algorithms typically struggle with high computational complexity 

and real-time adaptation. Optimizing the trade-off between video quality, bandwidth efficiency, and 

computational load remains particularly challenging in heterogeneous 5G networks, where bandwidth fluctuations 

can be rapid and unpredictable. Additionally, ensuring low-latency processing while maintaining high QoE across 

various network environments remains an unresolved issue, necessitating the development of novel strategies for 

better video streaming. 

Table I: Achievements and Limitations of Various Methods for Video Streaming 

Authors, 

Year 
Technique Database Advantage Disadvantage 

Li et al, 

2022 

Entropy model 

leveraging spatial and 

temporal dependencies 

UVG dataset 

Reduced temporal and 

spatial redundancy, 

adaptive quantization 

Complexity in 

implementation 

Alhilal et 

al, 2022 

End-to-end distortion 

model for mobile 

cloud gaming 

Real & 

emulated 

wireless 

networks 

Balanced MTP latency 

and visual quality, 

adapted to varying 

network conditions 

High network 

variability impacted 

performance 

Tung and 

Gündüz, 

2022 

JSCC with DNN 

Tested on 

H.264, H.265, 

LDPC 

Overcame cliff effect, 

graceful degradation, 

optimized bandwidth 

allocation 

Required specific 

training for each 

channel condition 

Zhang and 

Gu, 2021 

Error-resilient coding 

with CNN and 

multiple descriptions 

Underwater 

video datasets 

Efficient handling of 

packet loss, extra 

protection for regions of 

interest 

Balancing between 

coding efficiency and 

error resiliency was 

complex 

Minallah et 

al, 2021 

IrRegular 

Convolutional Codes 

(IRCC) with SP 

H.264/AVC 

Improved PSNR and 

BER metrics, priority-

based protection 

schemes 

Complexity in 

choosing protection 

schemes 

Hu et al, 

2021 

Dynamic adaptive LF 

video transmission 

using GNN and MDC 

LF video 

datasets 

High compression 

efficiency, adapted to 

network conditions, 

reduced packet loss 

effects 

Difficulty in 

implementation due to 

complex data 

structures 

Wang et al, 

2022 
SF-PMDVC HEVC 

Reduced redundancy, 

improves coding 

efficiency and 

perceptual video quality 

Limited application to 

specific coding 

structures in HEVC 

Li et al, 

2022 

Improved Wyner-Ziv 

coding scheme for 

deep-sea 

communication 

Underwater 

acoustic 

channels 

Solved long-distance 

wireless communication 

issues, controlled error 

range 

Limited to underwater 

video transmission 

scenarios 
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Alaya and 

Sellami, 

2022 

Inter-layer multimedia 

stream transmission in 

VANET (VSMENET) 

NetSim 

simulator 

Eliminated downtime, 

dynamic video quality 

adaptation, efficient 

data management 

High dependency on 

network conditions 

Zhao et al, 

2022 

Deep MDC for image 

compression 
Custom datasets 

Optimized rate-

distortion minimization, 

adaptive quantization 

for spatial variation 

Complexity in training 

and implementation 

 

III.AN OPTIMAL VIDEO STREAMING MODEL 

A. Proposed Architecture 

Fig. 1 shows the overview of the proposed video streaming model. This research introduces a novel error-resilient 

video streaming model HMDC-IP that employs MDC and an Image Pyramid framework to improve video 

transmission performance in fluctuating network conditions. The HMDC technique divides the video into multiple 

independently decodable descriptions, enabling partial recovery when packet loss occurs. Concurrently, the Image 

Pyramid method generates multiple resolution layers, allowing flexible reconstruction at reduced quality if higher-

resolution data is lost. In case, if all channels are received, then there will be no loss. Furthermore, polyphase 

permuting & splitting are applied to rearrange and split the image data into different polyphase components. Then, 

coefficient splitting takes place to separate the image coefficients which allows finer control over encoding. These 

coefficients are further processed with an arithmetic encoding that forms an entropy coding by compressing the 

data efficiently. The output of this process consists of several independent descriptions such as Descriptor 

(0,1, … , 𝑁) which are transmitted independently over the network. On the decoding side, the descriptions are 

received and processed in reverse order. The system starts with arithmetic decoding to reconstruct the encoded 

coefficients. Besides, a coefficient merger is added to merge the coefficients and the polyphase inverse permuting 

& residual merger is used to recombine the polyphase components and residual information. Eventually, Image 

Pyramid up-sampling is performed to restore the original resolution. Simulations are conducted under various 

network conditions, evaluating key performance indicators such as PSNR, SSIM, and ERR. 

 

Fig 1: Overview of the Proposed HMDC-IP Model 

B. Data Collection 

For comprehensive testing of HMDC-IP, a variety of pre-recorded video files are collected to simulate real-world 

scenarios. This is achieved through a custom video collection from Short Videos accessible through 



J. Electrical Systems 20-3 (2024): 7604-7627 

7609 

https://www.kaggle.com/datasets/mistag/short-videos [Access Date: 03/10/2024], ensuring diversity in content 

and technical specifications. 

Camera/Device Capture: Videos are captured using high-definition cameras, and mobile phones. This method 

enables the collection of original, uncompressed video files, which are critical for testing the full potential of 

HMDC-IP. The captured videos reflect a range of environments and lighting conditions to test the robustness of 

the HMDC-IP model in different scenarios. 

Standard Formats: To ensure compatibility with commonly used video processing tools, the captured videos are 

saved in standard formats such as MP4. 

Resolution Variations: It is important to capture videos in multiple resolutions, such as 360p, 720p, 1080p, and 

4K, to assess how HMDC-IP performs across different quality settings. Lower resolutions are used to simulate 

bandwidth-limited environments, while higher resolutions test the system's ability to maintain video quality under 

optimal conditions. 

Content Types: To fully evaluate HMDC-IP’s adaptability, the video dataset includes a variety of content types 

like nature documentaries. 

C. Proposed HMDC-IP Encoding Procedure 

In this approach, MDC with an Image Pyramid framework is combined to enhance error resilience and video 

transmission in dynamic network environments. The process is divided into five key phases including block 

partitioning, Image Pyramid downsampling, polyphase permuting and splitting, coefficient splitter, and arithmetic 

encoding and the corresponding inverse procedures and final output reconstruction. Each phase contributes to the 

overall system's robustness, flexibility, and efficiency. 

Frame Extraction: Each video is broken down into individual frames for easier processing  as shown in Eq. (1), 

where 𝑓𝑖 states individual frames in the video sequence, and 𝑓𝑛 denotes the total number of frames. 

𝑓𝑖 = {𝑓1, 𝑓2, … , 𝑓𝑛}      (1) 

HMDC Design: It is a robust video coding technique used to enhance error resilience during network transmission 

[26]. HMDC divides the video stream into multiple independent descriptions, enabling partial recovery of the 

video even when some descriptions are lost. This technique ensures that instead of complete failure, video quality 

degrades gracefully in the presence of packet loss or network fluctuations. 

HMDC Encoder: The encoder divides the video stream into multiple descriptions, each of which is decoded 

independently. This allows for graceful degradation, meaning that even if some descriptions are lost during 

transmission, the remaining descriptions can still be used to reconstruct the video at reduced quality. Let the 

original video stream be denoted as 𝑉. It is divided into 𝑁 independent descriptions 𝐷1 , 𝐷2, … , 𝐷𝑁 as shown in Eq. 

(2), in which 𝐷𝑖  signifies 𝑖𝑡ℎ description. 

𝑉 = ∑ 𝐷𝑖
𝑁
𝑖=1        (2) 

Each description 𝐷𝑖  represents different aspects of the video, such as different frequency components, spatial 

regions, and frames at varying resolutions. Different descriptions are assigned to spatial and frequency 

components. For example, one description encodes low-frequency details, while another encodes high-frequency 

details. Also, each description is encoded separately and transmitted over independent network paths. The 

encoder's function is to transform the input video into multiple independent descriptions that are efficiently 

transmitted and decoded. 

Block Partitioning: For HMDC, the video frames need to be divided into small blocks [27] to simulate network 

transmission as stated in Eq. (3), in which 𝐹 represents the video frame (comprising multiple descriptions in the 

HMDC setup), 𝑃𝑖  refers to 𝑖𝑡ℎ packet, representing a segment of the video frame, where 𝑖 = 1,2, … , 𝑛, and 𝑛 

indicates the total number of packets into which the frame is divided. 

𝐹 = {𝑃1, 𝑃2, … , 𝑃𝑛}      (3) 

https://www.kaggle.com/datasets/mistag/short-videos
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For a given video frame 𝐹 with size 𝑆 (in bits), and assuming each block can hold 𝑆𝑝 bits, the total number of 

packets 𝑛 is calculated as per Eq. (4), where 

𝑛 =
𝑆

𝑆𝑝
        (4) 

Eq. (5) defines each block 𝑃𝑖  containing a portion of the video frame data. 

𝑃𝑖 = 𝐹[𝑖 × 𝑆𝑝: (𝑖 + 1) × 𝑆𝑝]     (5) 

Eq. (5) represents the portion of the frame that corresponds to the 𝑖𝑡ℎ packet, from the starting index 𝑖 × 𝑆𝑝 to the 

end index (𝑖 + 1) × 𝑆𝑝. At this point, the output block is non-overlapping 16 × 16 macroblocks. 

Image Pyramid Downsampling: To further improve error resilience and adaptive quality control, an Image 

Pyramid Framework [28] is applied to each description. The image pyramid is a multi-resolution representation 

of the video where different layers represent the video at different resolutions. For each description 𝐷𝑖 , an image 

pyramid is generated by downsampling the video into multiple layers of varying resolutions. Let 𝐿0 represent the 

original resolution of the description, and 𝐿𝑘 represent the 𝑘𝑡ℎ downsampled layer, where 𝑘 indicates the level of 

downsampling as given in Eq. (6). Specifically, higher 𝑘 means more downsampling and a lower resolution. 

𝐿𝑘(𝐷𝑖) = 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑖 , 2𝑘)    (6) 

Here, 𝐿𝑘(𝐷𝑖) signifies 𝑘𝑡ℎ layer of the pyramid for description 𝐷𝑖 , and 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑖 , 2𝑘) denotes 

downsampling 𝐷𝑖  by a factor of 2𝑘. The downsampling process allows flexibility in reconstructing the video at 

different quality levels, depending on how much data is received. After downsampling, 8 × 8 blocks are obtained 

within each macroblock. Now, the HMDC-IP involves a two-level splitting process such as Polyphase 

permuting and splitting, and coefficient splitter. 

Polyphase Permuting and Splitting: It is used to divide the 8 × 8 image block into multiple sub-blocks which are 

then encoded independently [29]. For an image block 𝐼(𝑢, 𝑣), the polyphase components are extracted by sampling 

the image at regular intervals. Now, the image 𝐼(𝑢, 𝑣) is decomposed into multiple sub-images 𝐼𝑖(𝑢, 𝑣), where 

each sub-image corresponds to one of the polyphase components as shown in Eq. (7), in which 𝑁 refers to number 

of components i.e, (0 𝑡𝑜 3), and 𝐼𝑖(𝑢, 𝑣) represents each polyphase component.  

𝐼(𝑢, 𝑣) = ∑ 𝐼𝑖(𝑢, 𝑣)𝑁−1
𝑖=0      (7) 

At this point, labelling the pixels in each sub-image 𝐼𝑖(𝑢, 𝑣) to create a new sequence (2 × 2) group that helps 

improve error resilience. In HMDC, this step helps distribute the spatial and frequency components of the image 

across different descriptions. Here, polyphase sampling permutes the image blocks into a 4-description split, the 

pixel at the location (𝑢, 𝑣) of the image 𝐼(𝑢, 𝑣) is distributed across four different polyphase components such as 

label 0 which is assigned to the pixel in the top-left corner of each 2 × 2 group, label 1 which is assigned to the 

pixel in the top-right corner, label 2 which is assigned to the pixel in the bottom-left corner and label 3 which is 

assigned to the pixel in the bottom-right corner as stated in Eq. (8), where 𝐼0, 𝐼1, 𝐼2, and 𝐼4 indicates the polyphase 

components. 

𝐼𝑖(𝑢, 𝑣) = [𝐼0(𝑢, 𝑣), 𝐼1(𝑢, 𝑣), 𝐼2(𝑢, 𝑣), 𝐼3(𝑢, 𝑣)]   (8) 

Polyphase permuting [29] rearranges the pixels with the same labels into specific sub-blocks of the 8 × 8 block 

as follows: 

• Pixels with label 0 are moved to form the top-left 4 × 4 block of the 8 × 8 block. 

• Pixels with label 1 are moved to form the top-right 4 × 4 block. 

• Pixels with label 2 are moved to form the bottom-left 4 × 4 block. 

• Pixels with label 3 are moved to form the bottom-right 4 × 4 block. 

The permuting process is performed before splitting, and it uses a lost description estimation approach. This means 

that the rearrangement is done in a way that helps to recover lost data if some descriptions are missing during 

transmission. By redistributing the pixel information across different descriptions, the system better estimates and 

recovers lost data. Polyphase splitting takes the permuted image and divides it into separate descriptions. Each 
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8 × 8 block is split into two sub-blocks, referred to as coefficient splitter A0 and coefficient splitter A1. The 

permuted block is then divided into sub-descriptions in such a way that each description contains unique 

information, and all descriptions together fully reconstruct the original image as formulated in Eq. (9), 𝑃𝑖(𝐼(𝑢, 𝑣)) 

means a function that permutes and selects the 𝑖𝑡ℎ polyphase component from the image. 

𝐷𝑖 = 𝑃𝑖(𝐼(𝑢, 𝑣)),    ∀𝑖 ∈ {0,1, … , 𝑁 − 1}    (9) 

Thus, each description 𝐷𝑖  is an independent representation of the image 𝐼(𝑢, 𝑣).  

Coefficient Splitter: After polyphase permuting, a coefficient splitter takes place [30]. The 8 × 8 block is split into 

two diagonal blocks, 𝐴0 and 𝐴1, as part of the first-level splitting. Here, 𝐴0 contains the top-left and bottom-right 

4 × 4 blocks from the permuted 8 × 8 block. 𝐴1 contains the top-right and bottom-left 4 × 4 blocks from the 

permuted 8 × 8 block. In the case of any remaining 4 × 4 blocks that are not part of the primary two sub-blocks 

(𝐴0 and 𝐴1), those pixels are set to zero (all-zero residual pixels). This means that the remaining blocks, which 

are marked with an “𝑥” in the process, are filled with zero values. The encoder does not need to encode these 

blocks because they do not contain any meaningful data i.e., all their pixels are zero. The splitting process of the 

8 × 8 block is shown in Eq. (10). 

𝐵 = [
𝐵00 𝐵01

𝐵10 𝐵11
]       (10) 

Similarly, 𝐴0, and 𝐴1 blocks carry the essential visual data diagonally as represented in Eq. (11), in which 𝐵𝑖𝑗  

denotes each 4 × 4 sub-block. 

𝐴0 = [
𝐵00 0

0 𝐵11
] , 𝐴1 = [

0 𝐵01

𝐵10 0
]    (11) 

For each block, 𝐴0 and 𝐴1 are further split diagonally in the second-level splitting. The process creates 𝐵0 and 

𝐵1 blocks, referred to as the even (𝐸𝑏𝑙𝑜𝑐𝑘𝑠) and odd (𝑂𝑏𝑙𝑜𝑐𝑘𝑠). For block 𝐴0, this results in 𝐴0𝐵0 which contains 

values from Block 0 (top-left) and Block 3 (bottom-right) of 𝐴0, and 𝐴0𝐵1 which contains the remaining values 

from the diagonally opposite elements of 𝐴0. Similarly, for 𝐴1, this results in 𝐴1𝐵0 which contains values from 

Block 1 and Block 2 of 𝐴1, and 𝐴1𝐵1 which contains the diagonally opposite elements of 𝐴1. Now, the encoded 

data consists of the compressed representation of each block (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0 and 𝐴1𝐵1), the offset values 𝒪 

and the residual coefficients 𝑅. After the splitting, the blocks undergo upsampling to reduce residue so as to 

minimize error in image reconstruction. The next step is to calculate the residual values by subtracting the 

reconstructed block (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0 and 𝐴1𝐵1) from the original 16 × 16 block i.e., 𝒪16×16 = 𝕆8×8 − ℛ, in 

which 𝒪16×16 includes original 16 × 16 block, 𝕆8×8 defines original 8 × 8 block, and ℛ refers to reconstructed 

block. The residue provides information about the remaining error after reconstruction. The offset value is 

calculated as the absolute minimum of the residue. This offset is needed to efficiently represent the error in a 

compressed form i.e., 𝒪 = min(|ℝ|). As a result of two-level splitting, every residual macroblock is split into 

four macroblocks, one for each descriptor.  

Arithmetic Encoding: It is a sophisticated method of lossless compression that encodes a sequence of symbols 

into a single floating-point number [31]. The four descriptors including 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1 represent 

different blocks of data that are processed through splitting and residual calculations. These descriptors are then 

compressed using arithmetic encoding. Each descriptor (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1) is treated as a symbol in 

the input stream. The blocks are distributed equally across the descriptors, ensuring balanced quality among the 

macroblocks. This helps prevent any one descriptor from becoming too heavily weighted and degrades the 

compression efficiency or the visual quality of the decoded frames. Besides, arithmetic encoding dynamically 

adjusts the range for each descriptor based on its probability in the data stream. Now, the first block is assigned to 

the first descriptor, the second one is assigned to the second descriptor, etc. The blocks are equally distributed in 

each macroblock in order to make the resulting descriptors that have balanced quality.  Algorithm 1 shows the 

pseudocode of the HMDC-IP encoding procedure. Fig. 2 displays the HMDC-IP encoding procedure. 

Algorithm 1: Pseudocode of HMDC-IP Encoding Procedure 

Input  A frame from the input buffer 
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Output  Compressed Descriptors (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, 𝐴1𝐵1), arithmetic-encoded 

Step 1 Block Partitioning 

Divide the input frame into non-overlapping 8 × 8 blocks for processing. 

Step 2 Image Pyramid Down Sampling 

Downsample the image using a pyramid-based approach. 

Reduce the 8 × 8 blocks into 4 × 4 blocks while retaining important features. 

Step 3 Polyphase Permuting & Splitting 

Label the pixels in the 8 × 8 block with numbers 0, 1, 2, 3 (for each 2 × 2 pixel group). 

Rearrange pixels into 4 × 4 blocks. 

Pixels labeled 0 go to the top-left 4 × 4 block. 

Pixels labeled 1 go to the top-right 4 × 4 block. 

Pixels labeled 2 go to the bottom-left 4 × 4 block. 

Pixels labeled 3 go to the bottom-right 4 × 4 block. 

Step 4 Coefficient Splitting 

1. First-Level Splitting 

Split the permuted 8 × 8 block into two coefficient blocks 𝐴0 and 𝐴1. 

Each of these blocks contains two 4 × 4 blocks (diagonally chosen) 

2. Second-Level Splitting 

Split each 4 × 4 block into two groups, creating 𝑂𝑏𝑙𝑜𝑐𝑘𝑠 and 𝐸𝑏𝑙𝑜𝑐𝑘𝑠. 

Distribute these diagonally to form macroblocks 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1. 

Step 5 Residue Calculation for Error Minimization 

Find the Up-sampled values in each block 

Calculate residue 𝑅 

Estimate offset 𝒪 

Step 6 Arithmetic Encoding 

Descriptor Generation 

Create descriptors 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1 from the macroblocks. 

Arithmetic Encoding 

For each descriptor, apply arithmetic encoding. 

Assign shorter codes to more frequent descriptors and longer codes to less frequent descriptors based 

on symbol probabilities. 

Compress the encoded data. 

 

 

Fig 2: Encoding Procedure of Proposed HMDC-IP Model 

D. Proposed HMDC-IP Decoding Procedure 

  The proposed HMDC-IP decoder is responsible for reconstructing the video from the descriptions 

received over the network. In the HMDC-IP framework, each description is decoded independently, and the 
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decoder partially reconstructs the video even when some descriptions are lost due to packet loss or transmission 

errors. The decoder's functionality includes gracefully degrading the video quality as fewer descriptions are 

received. The decoding process follows the reverse operations of encoding to recover the original data. It involves 

arithmetic decoding, coefficient merging, and polyphase inverse permuting to reconstruct the image.  

Arithmetic Decoding: The first step is to decode the encoded data. Arithmetic decoding reconstructs the original 

sequence of symbols using the same probabilities and coding ranges applied during encoding [32]. Each descriptor 

(𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1) is independently decoded. Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} be the original coefficients 

used in the image. During decoding, the arithmetic decoder uses the encoded number 𝐸𝑏𝑙𝑜𝑐𝑘𝑠 , along with the 

symbol probabilities, to reverse the encoding process and recover the original sequence 𝑆. For each symbol 𝑠𝑖, a 

range is determined based on cumulative probabilities 𝑃(𝑠𝑖), and this range is used to identify the decoded value. 

If 𝑅 =  [𝑙, ℎ] is the range determined by the encoder for the symbol, the next symbol is decoded by determining 

its corresponding probability as given in Eq. (12), and (13), in which 𝑃𝑙𝑜𝑤(𝑠𝑖) and 𝑃ℎ𝑖𝑔ℎ(𝑠𝑖) states cumulative 

probabilities of symbol 𝑠𝑖.  

𝑙𝑖 = 1 + (ℎ − 𝑙) ∙ 𝑃𝑙𝑜𝑤(𝑠𝑖)      (12) 

ℎ𝑖 = 1 + (ℎ − 𝑙) ∙ 𝑃ℎ𝑖𝑔ℎ(𝑠𝑖)     (13) 

For each of the four descriptors (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1), this process is repeated to recover their 

respective pixel coefficients. 

Coefficient Merger: Once the descriptors are decoded, the coefficient merger step is applied. This step reverses 

the coefficient splitting done during encoding. Let 𝐶1 and 𝐶2 represent the two blocks that were split during 

encoding. These coefficients are merged in pairs to reconstruct larger blocks. For each descriptor, a pair of blocks 

is merged, which involves adding residual data to reconstruct the original coefficients. For the merging of 

coefficients 𝐶1 and 𝐶2  from descriptor 𝐴0𝐵0 and 𝐴0𝐵1, Eq. (14) is used and this process is repeated for all the 

descriptors. 

𝐶𝑚𝑒𝑟𝑔𝑒𝑑 = 𝐶1 + 𝐶2      (14) 

Polyphase Inverse Permuting and Residual Merger: Polyphase permutation is a reordering of coefficients during 

encoding to ensure better compression. The inverse polyphase permuting step during decoding restores the 

coefficients to their original positions in the block. Next, the residual data merge process takes place. During 

encoding, residuals were calculated and encoded. The decoded residual values from descriptors (after arithmetic 

decoding) are added back to the merged coefficient blocks. Let 𝑃−1 denote the inverse polyphase permuting 

function and the original block 𝐵𝑖𝑗 is restored by applying inverse permutation as expressed in Eq. (15), where 𝐵𝑖𝑗  

defines 8 × 8 block obtained by inversely permuting the 𝐴0 and 𝐴1 blocks. 

𝐵𝑖𝑗 = 𝑃−1(𝐴0, 𝐴1)      (15) 

In the case where the decoder does not receive all the descriptors (for example, when one of the blocks such as 

𝐴1𝐵1  is missing), frequency estimation is used to predict the lost values. This prediction is based on neighboring 

blocks and the residual domain. If 𝐴1𝐵1 is lost, the neighboring block 𝐴0𝐵1 is used to predict the missing values. 

The idea here is that 𝑂𝑏𝑙𝑜𝑐𝑘𝑠 of 𝐴1𝐵1 are predicted from 𝑂𝑏𝑙𝑜𝑐𝑘𝑠 of 𝐴0𝐵1 and 𝐸𝑏𝑙𝑜𝑐𝑘𝑠 of 𝐴1𝐵1 are predicted from 

𝐸𝑏𝑙𝑜𝑐𝑘𝑠 of 𝐴0𝐵1 is explained in Eq. (16), where 𝜀𝑂 and 𝜀𝐸 signifies small prediction errors based on local 

characteristics. 

𝑂𝐴1𝐵1 = 𝑂𝐴1𝐵1 + 𝜀𝑂,  𝐸𝐴1𝐵1 = 𝐸𝐴1𝐵1 + 𝜀𝐸    (16) 

In addition to prediction based on neighboring blocks, residual domain prediction further refines the accuracy of 

estimation. The residual block 𝑅 represents the difference between the original block and the predicted block as 

shown in Eq. (17), where 𝑅𝐴1𝐵1 indicates residual for block 𝐴1𝐵1, 𝐵𝐴1𝐵1 addresses original block, and 𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

specifies predicted blocks based on neighboring blocks. 

𝑅𝐴1𝐵1 = 𝐵𝐴1𝐵1 − 𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑       (17) 
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The residual domain is critical for estimating missing values in the block, as residual data contains finer details of 

the image. The residual values are then encoded with an offset value. The offset value is the minimum absolute 

value from the residual block as stated in Eq. (18). 

𝑂𝑓𝑓𝑠𝑒𝑡 = min(|𝑅|)       (18) 

This offset is applied to compress the residual values. All four cases of missing descriptors (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, 

and 𝐴1𝐵1) are predicted in the horizontal direction. For missing 𝑂𝑏𝑙𝑜𝑐𝑘𝑠, prediction comes from the left-

neighboring 𝑂𝑏𝑙𝑜𝑐𝑘𝑠. For missing 𝐸𝑏𝑙𝑜𝑐𝑘𝑠, prediction comes from the right-neighboring 𝐸𝑏𝑙𝑜𝑐𝑘𝑠 . This ensures that 

the blocks are reconstructed even when some descriptors are missing by using the structure of neighboring blocks. 

Image Pyramid Upsampling: During decoding, the received descriptions are reconstructed through an 

upsampling process from the Image Pyramid. If full descriptions are received, the highest-resolution layers are 

reconstructed. If only partial descriptions are received, lower-resolution layers are used for reconstruction. If only 

the 𝑘𝑡ℎ layer is received, the decoder upsamples it back to the original resolution using an interpolation technique 

as stated in Eq. (19), where 𝐿0
′ (𝐷𝑖) refers to an upsampled version of the 𝑘𝑡ℎ layer 𝐿𝑘(𝐷𝑖), reconstructed to the 

original resolution, and 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐿𝑘(𝐷𝑖), 2𝑘) addresses upsampling the 𝑘𝑡ℎ layer by a factor of 2𝑘. 

𝐿0
′ (𝐷𝑖) = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐿𝑘(𝐷𝑖), 2𝑘)     (19) 

The upsampling process attempts to reconstruct the original resolution from the lower-resolution layers. Fig. 3 

shows the downsampling and upsampling process in Image Pyramid. 

 

Fig 3: Image Pyramid Procedure in Proposed HMDC-IP 

Output Video Frame Buffer:  Let 𝑁 represent the total number of descriptions, and let 𝑀 be the number of 

received descriptions where 𝑀 ≤ 𝑁. Each received description, denoted by 𝐷𝑖  (for 𝑖 = 1,2, … , 𝑀), contains a 

unique portion of the video content, and the goal is to reconstruct the video using these 𝑀 descriptions. The total 

video stream 𝑉 is perfectly reconstructed if all descriptions {𝐷1, 𝐷2, … , 𝐷𝑁} are received. The reconstructed video 

𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 is expressed in Eq. (20). 

𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = ∑ 𝐷𝑖
𝑁
𝑖=1       (20) 

However, when fewer than 𝑁 descriptions are received, that is 𝑀 descriptions, the video can still be reconstructed 

at a lower quality. The video decoder uses the available 𝑀 descriptions to partially recover the video as shown in 

Eq. (21), in which 𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  means video reconstructed from the received descriptions, 𝑀 represents a number of 

received descriptions (which is less than or equal to 𝑁), and 𝐷𝑖  signifies 𝑖𝑡ℎ description received. 
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𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = ∑ 𝐷𝑖
𝑀
𝑖=1       (21) 

If fewer descriptions are received, the reconstructed video will be of lower quality, as less information is available 

to the decoder. The quality of the video is proportional to the number of descriptions received. For instance, if all 

descriptions 𝑁 are received, the video quality is maximum. On the other hand, if only 𝑀 descriptions are received, 

where 𝑀 < 𝑁, the video quality will degrade but still be viewable. The level of degradation is a function of the 

number of missing descriptions as formulated in Eq. (22), in which 𝑄𝑣𝑖𝑑𝑒𝑜 states quality of the reconstructed video, 

which depends on the number of received descriptions 𝑀 out of the total 𝑁. 

𝑄𝑣𝑖𝑑𝑒𝑜 = 𝑓(𝑀, 𝑁)      (22) 

Depending on the number of lost packets, the video stream is fully or partially reconstructed. The video 

quality 𝑄𝑣𝑖𝑑𝑒𝑜 of the reconstructed video is modelled as a function of the number of received descriptions 𝑀 and 

the total number of descriptions 𝑁 as shown in Eq. (23), in which 𝑄𝑚𝑎𝑥  specifies maximum possible video quality 

(achieved when all 𝑁 descriptions are received), 𝑀 denotes number of descriptions actually received, and 𝑁 

indicates total number of descriptions in the HMDC scheme.   

𝑄𝑣𝑖𝑑𝑒𝑜 = 𝑄𝑚𝑎𝑥 ∙ (
𝑀

𝑁
)      (23) 

In the case of lost descriptions due to network issues, the decoder adapts by reconstructing the video using the 

remaining descriptions. The final video stream quality is determined by the amount of lost data that is recovered. 

Finally, the video frame buffer stores the reconstructed frames as they are generated during the decoding process. 

These frames are ready for error resilience transmission or storage. Algorithm 2 explains the pseudocode of 

proposed HMDC decoding procedure. Fig. 4 portrays the architecture of proposed HMDC-IP. 

Algorithm 2: Pseudocode of Proposed HMDC-IP Decoding Procedure 

Input  Encoded data containing descriptors (𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1)  

Residual data 

Offset values (for adjusting residuals) 

Output  Reconstructed image blocks 𝑉 

Step 1 Retrieve Encoded Data  

Compressed representation of blocks 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1 

Offset values 

Residual coefficients 

Step 2 Arithmetic Decoding 

For each descriptor 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, and 𝐴1𝐵1, perform arithmetic decoding to recover the 

compressed coefficients based on Eq. (12), and (13). 

𝐷𝑒𝑐𝑜𝑑𝑒𝑑_𝐶𝑜𝑒𝑓𝑓 ← 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐_𝐷𝑒𝑐𝑜𝑑𝑒(𝐴𝑖𝑗)  

∀{𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, 𝐴1𝐵1}  

Step 3 Coefficient Merging 

Apply coefficient merger to recombine split blocks into original 8 × 8 blocks. 

Use the inverse of the splitting process to recombine the 4 × 4 blocks as per Eq. (14) 

Step 4 Polyphase Inverse Permuting 

Apply polyphase inverse permuting on the merged coefficients to restore the original ordering of the 

pixels using Eq. (15). 

If any descriptor is missing, perform frequency estimation to reconstruct the lost descriptor via Eq. 

(16). 

Reconstruct the blocks using residual data as per Eq. (17). 

Add residual coefficients to the predicted coefficients to reconstruct the original block. 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘 ← 𝐵𝑖𝑗 + 𝑅 − 𝑂𝑓𝑓𝑠𝑒𝑡  

Step 5 Upsampling 

Upsample the 8 × 8 blocks by merging smaller blocks into larger blocks and upsample them using 

Eq. (19) 

Step 6 Final Video Frame Buffer  
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Fig 4: Decoding Procedure of Proposed HMDC-IP Model 

IV.SIMULATION RESULTS 

A. Simulation Setup 

The proposed HMDC-IP model was developed via MATLAB 2021a on Intel core® i5 processor @2.6GHz, 16 

GB RAM, 64-bit OS. Here, the Short Videos Dataset was employed for transmission. Additionally, a comparative 

study is performed to validate the competence of proposed HMDC-IP in handling video streaming over other 

methods such as Web Real-Time Communications (WebRTC) [34], Light-weight Featurized Image Pyramid-

Single Shot Multibox Detector (LFID-SSD) [35], Deep Deterministic Policy Gradient (DDPG) [36], and 

Transmission Control in Live Video (TCLiVi) [37]. The performance of proposed HMDC-IP is estimated through 

several metrics such as PSNR, SSIM, bitrate, bandwidth utilization, ERR, computational efficiency, and latency. 

B. Performance Metrics 

Compression Ratio (CR): It is the proportion of original frame size to compressed frame size [38] as defined in 

Eq. (24). 

CR =
Original frame Size

Compressed frame Size    
      (24) 

PSNR: The generally used objective metric for measuring video quality is the PSNR [39]. Eq. (25) is used to 

obtain the PSNR. 

𝑃𝑆𝑁𝑅 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒 = 10 ∗ 𝑙𝑜𝑔10 (2552

𝑀𝑆𝐸 ⁄ )    (25) 

SSIM: A Method for calculating how similar two images are called the SSIM [40]. The SSIM value is a decimal 

number between -1 and 1, with 1 indicating that two frames are structurally identical as expressed in Eq. (26). 

𝐹𝑟𝑎𝑚𝑒 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑧1)(2𝜎𝑋𝑦+𝑧2 )

(𝜇2
𝑥+𝜇2

𝑦+𝑧1)(𝜎2
𝑥+𝜎2

𝑦+𝑧2 )
   (26) 

In the original and denoised image, 𝑥 and 𝑦 stand for windows, 𝜎 and 𝜇 stand for the standard deviation and mean 

of 𝑥 and 𝑦, and 𝑧1 and 𝑧2 stand for constants. 

PSNR Percentage: Eq. (27) is used to determine the percentage of PSNR loss between two images. 

Percentage Decrease =
PSNR1−PSNR2

PSNR1   
 ∗ 100   (27) 

Where 𝑃𝑆𝑁𝑅1 is the PSNR of the original frame or PSNR of first image and 𝑃𝑆𝑁𝑅2 is the PSNR of the 

reconstructed frame or PSNR of second image. 

C. Algorithmic Analysis 

Results and achievements of proposed HMDC-IP are addressed here. Fig. 5 shows the sample frames extracted 

from the natural documentary video with various qualities such as 360p, 480p, 720p, and 4K. Here, each frame 

represents a distinct resolution, where Fig. 5 (a) shows the original quality available in the dataset, 360p in Fig. 
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5(b) offers a low-resolution video with reduced clarity, suitable for low bandwidth conditions, 480p in Fig. 5(c) 

provides a moderate resolution, balancing quality and bandwidth usage, 720p in Fig. 5(d) is a high-definition 

resolution, delivering clearer visuals with more detail, and 4K in Fig. 5(e) is ultra-high definition, offering the 

highest level of detail and sharpness. These frames highlight how varying resolutions affect the visual quality and 

detail of the same content. Higher resolutions like 720p and 4K display finer details in the natural environment, 

such as the texture of leaves and the sharpness of wildlife, while lower resolutions like 360p and 480p show a 

noticeable degradation in detail and clarity. This comparison is useful to demonstrate the impact of resolution on 

video quality in different bandwidth scenarios. 

  

(a) 

  

(b) 

  

(c) 

  

(d) 
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(e) 

 

Fig 5: Sample Video Frames showing (a) Original Quality, (b) 360p, (c) 480p, (d) 720p, and (e) 4K 

The HMDC-IP algorithm uses benchmark videos to assess the performance of the algorithms. The suggested 

technique performs in terms of compressed file size, compression ratio, PSNR, SSIM, and processing time. It is 

assumed that while some descriptors are completely lost, others are received with no information lost. Side 

reconstruction is the term used to describe such a scenario. The performance of side reconstruction is evaluated 

independently for the first, second, and third missing descriptors. The outcomes are measured by the 

reconstruction qualities of no loss, 1, 2, and 3 descriptor losses, the frame-by-frame quality comparison, and the 

qualities in the packet-loss situation. If all the descriptor data is received, then the mean square error value is zero. 

The frames of these videos have dimensions of 720 × 1280. The total pixels of the image are 2764800. Processing 

times vary depending on the network speed, frame size and software. A smaller frame size takes less time, but a 

larger frame size requires more processing time. 

Table II: PSNR of Various Estimation Techniques in Various Descriptor-Loss Situations 

Method Name 
One Descriptor 

loss 

Two Descriptor 

loss 
Three Descriptor 

loss 

Average Descriptor 

loss 
Same Diff 

Proposed HMDC-IP 42.13 36.95 35.85 34.46 37.35 

Hybrid-SF 33.95 33.51 32.39 31.34 32.70 

Hybrid-S 33.51 33.51 32.05 31.34 32.47 

Hybrid-F 33.95 32.99 32.39 31.14 32.56 

 

According to (  & Tsai, 2009), a comparison is made between the experimental outcomes of the proposed 

algorithm and other methods. Different frames were used to evaluate the proposed scheme, and its effectiveness 

and performance were compared to those of earlier studies. Table II displays the results of using the Foreman 

sequence of 248 frames. The table presents a comparison of loss values across different methods when 

using one, two, or three descriptors. The methods evaluated include proposed HMDC-IP, hybrid-SF, 

hybrid-S, and hybrid-F (Hsiao & Tsai 2009). Each method's performance is assessed using different 

numbers of descriptors loss, and the results are presented. The average PSNR of four one -descriptor loss 

cases and four three-descriptor loss cases, respectively, is displayed in the one-loss and three-loss columns. 

There are six scenarios for two-descriptor loss: two of these scenarios involve the loss of two descriptors within 

the same residual domain (e.g., A0B0 and A0B1), and four scenarios involve the loss of two descriptors from 

distinct residual domains (e.g., A0B0 and A1B0). All 14 examples' average PSNR are displayed in the average 

column. The weakest performers are Hybrid-S and Hybrid-F, according to the results. Fig. 6 shows the 

PSNR of proposed HMDC-IP over various estimation techniques. 
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Fig 6: PSNR of Proposed HMDC-IP over Various Estimation Techniques 

The proposed scheme not only improves the PSNR value and SSIM value, but also increases the visual quality of 

the reconstructed images and compression ratio. 

Table III: Various Video Frame Values of 360p Resolution 

Image Name Compressed File Size Compression Ratio Processing Time (s) 

Frame 1 405956 6.8 57 

Frame 2 405939 6.8 58 

Frame 3 405981 6.82 57.5 

Frame 4 405941 6.81 55 

Frame 5 405930 6.81 56.2 

Table III shows the various video frame values of 360p resolution and provides data on the compression 

performance of five different video frames, focusing on three key metrics such as compressed file size, 

compression ratio, and processing time. 

 

Fig 7: PSNR value for Various Video Frames of 360p Resolution 

Fig. 7 shows the PSNR values of the one descriptor loss, two descriptor loss and three descriptor loss of various 

video frames of 480p Resolution. The PSNR decreases in the video frames between one descriptor loss and two 

descriptor loss are 5.2, 5.1, 5.5, 5.3 and 5 and two descriptor loss and three descriptor loss are 1.9, 2.1,2, 2.1, and 

2.1. The video frame’s PSNR percentage decreases between one descriptor loss and two descriptor losses, which 

are 12.29, 12.11, 12.97, 12.47, and 11.79, and between two descriptor loss and three descriptor losses, which are 

5.12, 5.67, 5.42, 5.64, and 5.61. 
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Fig 8: SSIM value for Various Video Frames of 480p Resolution 

Fig. 8 shows the SSIM values of various video frames of 480p Resolution. In the given video, all the channel data 

is received, so the SSIM value is 1. One descriptor loss image shows high SSIM values, indicating minimal 

information loss. Two and three descriptor loss images achieve slightly lower SSIM values and occur with medium 

information loss. Table IV presents data on the compression performance of five different mobile frames. 

It includes three key metrics including compressed file size, compression ratio, and processing time for 

each frame. 

Table IV: Various Video Frame Values of 480p Resolution 

Image Name Compressed File Size Compression Ratio Processing Time (s) 

Frame 1 426965 6.48 58 

Frame 2 426978 6.5 58.4 

Frame 3 426954 6.48 57 

Frame 4 426934 6.47 56 

Frame 5 426938 6.47 59 

 

Fig. 9 displays the PSNR values of the one descriptor loss, two descriptor loss and three descriptor loss of 702p 

video frames. The PSNR decreases in the video frames between one descriptor loss and two descriptor loss 

are 3.9, 4.3,4, 4.1, and 4 and two descriptor loss and three descriptor loss are 2.3, 2.3, 2.2, 2.4, and 2.The 

720p video frame ’s PSNR percentage decreases between one descriptor loss and two descriptor losses, which are 

12.29, 12.11,12.97, 12.47, and 11.79, and between two descriptor loss and three descriptor losses, which are 9.72, 

10.64, 9.97, 10.12, and 9.95. 

 

Fig 9: PSNR value for Various Video Frames of 720p Resolution 
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Fig. 10 shows the SSIM value of the 4K video frames. One descriptor loss frame quality is higher. If two descriptor 

loss the frame quality is medium. Three descriptor loss the image quality is acceptable. Since all of the descriptor 

data is received in the mobile video, the SSIM value is 1. High SSIM values in one descriptor loss image indicating 

less information loss. Images with two and three descriptor losses exhibit slightly lower SSIM values and medium 

information loss. 

 

Fig 10: SSIM value for Various Video Frames of 720p Resolution 

Table V displays the 4K video frame values and provides information on the compression performance for five 

4K video frames, detailing the compressed file size, compression ratio, and processing time for each frame.  

Table V: 4K Video Frame Values 

Image Name Compressed File Size Compression Ratio Processing Time (s) 

Frame 1 434582 6.37 54 

Frame 2 434563 6.37 57.8 

Frame 3 434507 6.36 59 

Frame 4 434505 6.36 56 

Frame 5 434501 6.36 57 

 

The PSNR values for the 4K video frame’s one, two, and three descriptor losses are displayed in Fig. 11.The 

PSNR decreases in the 4K video between one descriptor loss and two descriptor loss are 5.2, 5.4,5.8, 5.3, 

and 4.9 and two descriptor loss and three descriptor loss are 2.4, 2.9, 2.3, 1.8, and  1.9.The 4K video frame’s 

PSNR percentage decreases between one descriptor loss and two descriptor losses, which are 12.90, 13.23,12.97, 

14.18, and 12.12, and between two descriptor loss and three descriptor losses, which are 6.83, 6.19, 6.55, 6.11, 

and 5.35. 

 

Fig 11: PSNR value for Various Video Frames of 4K Resolution 
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Fig. 12 displays the SSIM value for 4K video frames. Frame quality will be higher for one descriptor loss. Medium 

frame quality will result from the loss of two descriptors. The picture quality will be sufficient even if three 

descriptors are lost. With the Medical Video providing all of the description data, the SSIM value is 1. There is 

less information loss in one descriptor loss image when the SSIM values are high. There is a medium information 

loss and a slight decrease in SSIM values in images with two and three descriptor losses. 

 

Fig 12: SSIM value for Various Video Frames of 4K Resolution 

D. Comparative Analysis 

In this section, the efficacy of proposed HMDC-IP is validated with several performance metrics over other video 

streaming methods. Fig. 13 displays the performance of proposed HMDC-IP over Other Models for various 

metrics such as PSNR, SSIM, ERR, bitrate, bandwidth utilization, computational efficiency, and latency. For all 

metrics, the proposed HMDC-IP exposed superior performance and proved its competence in video streaming.  

  

(a) (b) 

  

(c) (d) 
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Fig 13: Performance of Proposed HMDC-IP over Other Models for (a) PSNR, (b) SSIM, (c) ERR, (d) Bitrate, 

(e) Bandwidth Utilization, (f) Computational Efficiency, and (g) Latency 

Table VI: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 360p Video 

Quality 

Metric WebRTC LFIP-SSD DDPG TCLiVi Proposed HMDC-IP 

PSNR (dB) 32 33 31 34 35 

SSIM 0.91 0.92 0.9 0.93 0.94 

Bitrate (Mbps) 2 2 2 2 2 

Bandwidth Utilization (%) 82 83 80 85 86 

ERR 75 78 70 79 80 

Computational Efficiency (GFLOPS) 3 3.2 2.8 3.5 3.8 

Latency (ms) 60 65 55 68 70 

 

Table VII: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 480p Video 

Quality 

Metric WebRTC LFIP-SSD DDPG TCLiVi Proposed HMDC-IP 

PSNR (dB) 34 36 33 37 38 

SSIM 0.93 0.95 0.92 0.96 0.96 
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Bitrate (Mbps) 3 3 3 3 3 

Bandwidth Utilization (%) 85 87 84 88 89 

ERR 78 81 75 83 85 

Computational Efficiency (GFLOPS) 3.5 3.8 3.4 4 4.2 

Latency (ms) 70 75 65 78 80 

 

Table VIII: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 720p 

Video Quality 

Metric WebRTC LFIP-SSD DDPG TCLiVi Proposed HMDC-IP 

PSNR (dB) 38 40 36 41 42 

SSIM 0.96 0.97 0.95 0.98 0.98 

Bitrate (Mbps) 6 6 5 6 6 

Bandwidth Utilization (%) 88 89 86 90 91 

ERR 85 87 83 88 90 

Computational Efficiency (GFLOPS) 5 5.3 4.8 5.5 6 

Latency (ms) 90 95 85 98 100 

 

Table IX: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 4K Video 

Quality 

Metric WebRTC LFIP-SSD DDPG TCLiVi Proposed HMDC-IP 

PSNR (dB) 40 43 39 44 45 

SSIM 0.98 0.99 0.97 0.99 0.99 

Bitrate (Mbps) 10 12 9 14 15 

Bandwidth Utilization (%) 90 92 89 93 94 

ERR 90 91 88 92 95 

Computational Efficiency (GFLOPS) 8 8.5 7.5 9 9.2 

Latency (ms) 120 125 115 130 130 

 

Table VI summarizes the performance metrics to validate the effectiveness of each approach in handling video 

quality, including transmission efficiency of various models, such as WebRTC, LFIP-SSD, DDPG, TCLiVi, and 

the proposed HMDC-IP for 360p video streaming. The proposed HMDC-IP achieves the highest PSNR at 35 dB 

with an SSIM of 0.94, representing better quality and clarity compared to other models, whose PSNR ranges 

between 31 and 34 dB, with SSIM ranging between 0.90 and 0.93. All the models maintain a bitrate of 2 Mbps to 

ensure consistent data transmission. The bandwidth utilization for the proposed model is also the best, at 86%, 

effectively optimizing available resources. HMDC-IP has an ERR value of 80, outperforming others in the range 

of 70-79. Additionally, its computational efficiency is higher at 3.8 GFLOPS compared to others, which range 

from 2.8 to 3.5 GFLOPS. However, the latency for HMDC-IP is higher at 70 ms, remaining comparable to other 

models. Overall, the HMDC-IP model shows significant gains in video quality and efficiency for 360p streaming.  

The evaluation of the HMDC-IP for 480p video quality is presented in Table VII, showing major improvements 

across metrics compared to other models. HMDC-IP achieves a PSNR of 38 dB, the best among the models for 

superior video quality. SSIM follows this trend at 0.96, matched only by TCLiVi. All models maintain a bitrate 

of 3 Mbps, but HMDC-IP leads in bandwidth utilization at 89%. ERR is also best for HMDC-IP at 85, 
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demonstrating effectiveness in recovering from packet loss, with computational efficiency at 4.2 GFLOPS, higher 

than others. The latency for HMDC-IP is recorded at 80 ms, slightly higher but competitive. 

Table VIII presents the evaluation of 720p video quality, with HMDC-IP continuing to stand out. It achieves the 

highest PSNR at 42 dB and SSIM at 0.98, underscoring its ability to deliver excellent video quality. While all 

models maintain a bitrate of 6 Mbps, HMDC-IP leads in bandwidth utilization at 91%. The ERR reaches 90, 

indicating good video integrity even during network fluctuations. Computational efficiency is strong at 6 

GFLOPS, demonstrating optimal performance without excessive resource demand. The latency increases to 100 

ms, consistent with higher resolutions. 

Finally, Table IX presents the performance of HMDC-IP for 4K video quality, showing further improvements 

across all metrics. The peak PSNR is 45 dB with an SSIM of 0.99, marking it as the top performer in video quality. 

Bandwidth utilization reaches 94%, with a bitrate increase to 15 Mbps, showing efficiency in resource 

management. ERR improves to 95, highlighting strong error resilience. Computational efficiency reaches 9.2 

GFLOPS, outperforming other models. Latency stabilizes at 130 ms, suggesting that while the model excels in 

quality and efficiency, careful management is required to ensure responsiveness in high-resolution applications. 

Thus, HMDC-IP demonstrates consistent superior performance metrics across various video qualities, making it 

highly effective for modern video streaming applications. 

E. Discussion 

The proposed HMDC-IP model showcases significant advancements in video streaming quality across various 

resolutions, outperforming existing models in metrics such as PSNR, SSIM, bandwidth utilization, and ERR. By 

using a hybrid approach that MDC with an Image Pyramid framework, the proposed HMDC-IP effectively 

mitigates the adverse effects of packet loss while maintaining video quality and bandwidth usage. The use of 

arithmetic encoding and decoding, further enhances the system's adaptability under varying network conditions, 

making it a robust solution for real-time video applications, including live streaming, video conferencing, and 

multimedia content delivery. In transmission, one or more loss of descriptors is evaluated for various video 

qualities. For one descriptor loss, the proposed HMDC-IP model exposed better PSNR, SSIM, and ERR scores 

than 2 or more descriptor loss. On the other hand, when all descriptors are received, the model exhibits high PSNR, 

SSIM equals to one and better ERR.   

However, despite its notable advantages, the proposed HMDC-IP model is not without limitations. The latency 

associated with higher resolutions, particularly in 4K video streaming, remains a concern, potentially impacting 

user experience (QoE) in latency-sensitive applications. Additionally, while the computational efficiency is 

commendable, the model requires substantial resources, which could limit its applicability in environments with 

constrained computational power. Future work could focus on addressing these limitations by optimizing 

processing efficiency and reducing latency, thereby enhancing the practicality of proposed HMDC-IP in diverse 

real-world scenarios. 

V.CONCLUSION 

This research introduced HMDC-IP, a hybrid error-resilient video streaming model that employed hybrid MDC 

and an Image Pyramid framework to improve video transmission performance in fluctuating network conditions. 

The MDC technique divided the video into multiple independently decodable descriptions, enabling partial 

recovery when packet loss occurred. Concurrently, the Image Pyramid method generated multiple resolution 

layers, allowing flexible reconstruction at reduced quality if higher-resolution data was lost. To optimize system 

performance, arithmetic coding was employed to ensure efficient use of bandwidth and computational resources. 

Simulations were conducted under various network conditions, evaluating key performance indicators such as 

PSNR, SSIM, and ERR. Future work could explore the integration of ML techniques to optimize the HMDC-IP 

model for real-time decision-making in dynamic network conditions. Additionally, developing adaptive 

algorithms that minimize latency while maintaining video quality across all resolutions would enhance user 

experience (QoE). Investigating the application of the model in different video content types such as fast motion 

like sports, slow motion like natural documentaries, talking heads like interviews, and specifically, medical videos 

and network scenarios could provide insights into its scalability and robustness. Furthermore, incorporating edge 

computing solutions could reduce the computational load on devices, making the system more efficient. 
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