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Abstract: - Recently, video streaming gained popularity due to a lot of live streaming platforms with better Quality of Experience (QOE).
However, transmitting video data over networks facing critical challenges because of maintaining video quality. With the goal of ensuring
error resilience video streaming, this research proposes a novel Hybrid Multiple Description Coding and Image Pyramid (HMDC-IP)
algorithm to enhance video transmission performance under varying network conditions. The MDC technique splits the video into multiple
independently decodable descriptions, providing video recovery in case of packet loss. Simultaneously, the Image Pyramid method creates
multiple resolution layers, allowing for flexible reconstruction of the video when data is lost. Notably, if all channels are received, then
there will be no loss. Besides, polyphase permuting & splitting are applied to rearrange and split the image data into different polyphase
components. After splitting, the data undergoes coefficient splitting which separates the image coefficients to allow finer control over
encoding. These coefficients are then processed with arithmetic encoding to a form of entropy coding that compresses the data efficiently.
On the decoding side, the descriptions are received and processed in reverse order. The system starts with arithmetic decoding, coefficient
merger, polyphase inverse permuting & residual merger, and finally, the image is up-sampled through the Image Pyramid to restore the
original resolution. Performance evaluation is carried out by measuring key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Error Recovery Rate (ERR). The results demonstrate that the proposed HMDC-IP framework significantly
improves video quality, minimizes packet loss impact, and enhances error resilience compared to traditional methods.

Keywords: Multiple Description Coding, Image Pyramid, Error Resilience, Video Streaming, Quality of Experience, Image
Compression

I.INTRODUCTION

Error Resilience Video Streaming refers to the set of techniques applied to ensure that the quality and continuity
of video streams are maintained when transmission errors, packet losses, or network instability arise [1]. Video
streaming over unreliable networks such as the internet or wireless networks often suffers transmission
interruptions caused by packet loss, latency, or jitter that decrease video quality [2]. For this purpose, several error-
resilient techniques have been developed, with an emphasis on protecting video data against such disturbances so
that there can be real-time playback even if there is some amount of data loss over some time. From simple error
correction codes to more complex techniques like Multiple Description Coding, forward error correction, and
redundancy-based schemes, the techniques have themselves been a passage of development over time [3] [4]. The
goal of error resilience techniques is to detect data loss and recover from it to deliver smooth, interruption-free
video with no perceptible degradation in video quality [5].

The main benefits of Error Resilience video streaming techniques are that the video received would look of better
quality for periods of fluctuating network conditions, less buffering, and higher continuity of playback, especially
in those environments where the rate of packet loss is high [6]. These methods also possess the property of low
overhead data transmission, achieving a good balance between video quality and bandwidth usage. However, the
error-resilient methods can be expensive in terms of computation, leading to increased latency. This is not very
helpful for those applications that demand real-time processing [7] [8]. Other techniques may raise bandwidth
usage and be less efficient in networks having constrained bandwidths. Part of the issue in designing an optimal
error-resilient solution is a trade-off between the strength of error correction and video quality [9].
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Another emerging approach said to increase the resilience of errors in video streaming is Hybrid Multiple
Description Coding (MDC) and Image Pyramid techniques. In MDC, the video stream is divided into multiple
descriptions which are transmitted as different separate streams [10]. Although some of the descriptions are lost,
it would still be possible to reconstruct a low-quality version of the video for use when there is resilience against
packet loss. This hybrid scheme combines information from the image pyramid, representing images at different
levels of detail, to permit efficient video transmission [11]. The pyramid of image offers the advantage of
scalability within layers, whereby lower resolution information is transmitted first such that if higher layers are
lost, there is always some sort of a residual, viewable level of video. Indeed, this hybrid approach proves to be
effective in bandwidth limitation as well as video quality under variable network conditions [12].

Indeed, a number of advanced techniques for compressing and transmitting videos have been developed; some are
strong in rate-distortion performance and others are weak. Examples of recent advances include the neural video
codec using an efficient entropy model that captures spatial and temporal dependencies for improved rate-
distortion performance with high computational demands, which limits its real-time applicability [13]. Mobile
cloud gaming frameworks are adaptive to the changing network conditions to provide for both motion-to-photon
latency and visual quality while suffering in adverse bandwidth or packet loss environments [14]. DeepWiVe is
an end-to-end Joint Source-Channel Coding (JSCC) approach including video compression and bandwidth
allocation of deep neural networks and reinforcement learning, but its complexity and dependency on correct
channel estimation are challenges in dynamic networks. Ultimately, the error-resilient coding scheme for
transmitting underwater video using convolutional neural networks and multiple description coding achieves a
balance between coding efficiency and error resilience but can fail catastrophically in the worst-case packet loss
scenarios or fail to generalize well to other settings [15]. Based on the above-mentioned disadvantages, a new
hybrid scheme that integrates MDC with Image Pyramid techniques is designed towards increasing error resilience
and adaptability that overcome the challenges currently faced by both these techniques. The key contributions are:

. To design an MDC model to enhance resilience by generating multiple independently decodable video
streams. In case of partial data loss, the video quality is preserved through available descriptions, ensuring
smoother playback despite packet loss.

. To construct an Image pyramid to generate multi-resolution layers of the video. Lower-resolution layers
enable partial reconstruction when higher-resolution frames are unavailable, maintaining video continuity under
degraded conditions through adaptive scaling.

. Develop an efficient HMDC-IP encoding and decoding system capable of dividing the input source data
into multiple descriptors and reconstructing the original data from these descriptors.

This article is structured as a recent literature on video streaming techniques in Section 1. Section Il explains the
proposed architecture. Experimentation and results are given in Section V. Section V concludes the research.

II.LITERATURE STUDY
A. Recent Research

In 2022, Li et al [16] presented a new entropy model for neural video codecs that measured spatial and temporal
correlations to improve the prediction of probability distribution of quantized latent representations. For temporal
redundancy reduction, it has a latent prior and for spatial redundancy reduction, it has a dual spatial prior. Also,
the proposed model included a content-adaptive quantization mechanism which enabled smooth rate control and
dynamic bit distribution, enhancing rate-distortion efficiency. The experimental outcomes revealed that the
proposed neural video codec achieves 18.2% lower bitrate than H.266 (VTM) at the highest compression level on
the UVG dataset.

In 2022, Alhilal et al [17] proposed an end-to-end cloud gaming framework for improving user experience in
mobile cloud gaming by controlling the impact of volatile network conditions. The framework adjusted video
source rates and frame-level redundancy depending on real-time network metrics to reduce motion-to-photon
(MTP) delay and shield frames from loss. When applied and evaluated against current approaches, the framework
maintained an MTP latency of less than 140 ms and a visual quality of more than 31 dB in all circumstances.

In 2022, Tung and Guinduz [18] suggested DeepWiVe, a new end-to-end JSCC video transmission technique that
utilizes DNNs to combine video coding, channel coding, and modulation. Some of the features include a DNN
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decoder that estimated residual without feedback of distortion, which helped to improve video quality in cases of
occlusion, and camera movement. The scheme also employed the RL technique to adapt bandwidth allocation
between video frames hence enhancing picture quality. As shown in the previous simulation, DeepWiVe has better
performance than the H.264 and H.265+ with LDPC codes which avoided the cliff effect in classical
communication systems.

In 2021, Zhang and Gu [19] developed an error-resilient coding method for underwater video transmission that
combined CNN with MDC to deal with transmission errors and packet losses. Due to the use of information
derived from inter-frame motion, the approach improved the safety of significant areas of the video. It involved
digitizing video sequences into two forms of descriptions within a given bit rate constraint. Using underwater
video datasets with various packet loss rates for simulation, the authors proved the efficiency of the method and
its higher efficiency compared to other video coding methods.

In 2021, Minallah et al. [20] proposed the transmission scheme of H.264/AVC compressed video streams using
IRCC with multidimensional Sphere Packing (SP) modulation and Differential Space-Time Spreading Codes
(IRCC-SP-DSTS). It evaluated three error protection strategies: They included Regular Error Protection (REP),
Irregular Error Protection scheme-1 (IREP-1), and Irregular Error Protection scheme-2 (IREP-2) in which video
data was protected differently. The performance of these methods was evaluated using the EXtrinsic Information
Transfer (EXIT) Chart and other parameters such as Bit Error Rate (BER) and PSNR. The results demonstrate
that the IREP-2 scheme has an additional 1 dB E_b/N_0 gain over IREP-1 and 0.6 dB over REP at the expense of
a1l dB PSNR loss.

In 2021, Hu et al. [21] presented a dynamic adaptive Light Field (LF) video transmission scheme to obtain high
compression and near-distortion-free LF video in a stable network environment. Moreover, it presented a
description scheduling algorithm to improve the quality of the video in case of partial data loss and delay. This
was done using the MDC strategy, in which a novel Graph Neural Network (GNN) model was employed for LF
video compression. The experiment results showed that the scheduling algorithm increased the decoding quality
by 3% to 15% increased the robustness of the video streaming system against packet loss or errors and supported
different types of receivers.

In 2022, Wang et al. [22] suggested a novel framework of Spatial-Frequency Multiple Description Video Coding
(SF-PMDVC) was proposed for HEVC. It improved coding efficiency by using an adaptive perceptual redundancy
allocation scheme in accordance with visual saliency. The experimental outcome showed that the proposed SF-
PMDVC scheme outperformed other MDC techniques in terms of error tolerance and reconstructed video quality.

In 2022, Li et al. [23] presented an UnderWater-WZ which was an enhanced Wyner-Ziv coding scheme for video
transmission over underwater acoustic channels. The approach adopted the use of MJPEG coding to manage the
error range while using motion compensation time interpolation together with calibration information to create
good side information. Experimental outcomes showed that this scheme enhanced the video reconstruction quality
by 2.6 to 3.5 dB when the maximum packet loss ratio was 20% which was very close to the error-free condition.

In 2022, Alaya and Sellami [24] proposed VSMENET as a new inter-layer approach for transmission of
multimedia streams in VANETS. Its main goal was to constantly adjust transmission rates with reference to the
physical rate within the network to minimize instances of video playback for the users. This included enhancing
video quality, smart encoding on RSUs, and coordinating computation tasks and video data accessibility. When
compared with the current techniques in the NetSim simulator, VSMENET has achieved more than 9%
enhancement in the average video packet lifetime and delivery rate.

In 2022, Zhao et al. [25]described a low bit-rate image compression using MDC that addressed the rate-distortion
minimization problem at its deepest level. It comprised an MD multi-scale encoder, MD cascaded-Resblock
decoders, and arithmetic coding employing learnable scalar quantizers and conditional probability models. The
framework synthesised and quantised MD tensors and reconstructed images with cascaded-Resblock networks
with the help of which the framework has a parameter-sharing symmetric structure to reduce the network
complexity.
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B. Problem Statement

Table | presents the advantages and disadvantages of various methods for video streaming. The rapid growth of
video streaming services, along with the widespread adoption of high-bandwidth networks like 5G, has made
ensuring reliable and high-quality video delivery over fluctuating networks a critical challenge. Traditional video
streaming methods struggle to maintain quality under dynamic conditions, such as packet loss, bandwidth
variations, and network congestion. Recent advances in Al have further enhanced these methods by enabling
dynamic bitrate adaptation and error correction strategies, optimizing video quality based on real-time network
conditions. However, despite these advances, deploying these techniques for real-time video streaming continues
to face significant challenges. Video streaming algorithms typically struggle with high computational complexity
and real-time adaptation. Optimizing the trade-off between video quality, bandwidth efficiency, and
computational load remains particularly challenging in heterogeneous 5G networks, where bandwidth fluctuations
can be rapid and unpredictable. Additionally, ensuring low-latency processing while maintaining high QoE across
various network environments remains an unresolved issue, necessitating the development of novel strategies for
better video streaming.

Table I: Achievements and Limitations of Various Methods for Video Streaming

Authors, . .
uYear Technique Database Advantage Disadvantage
. E | R I L
Lietal, ntr.opy mogle educ.:ed temporal and Complexity in
leveraging spatial and UVG dataset spatial redundancy, . .
2022 . . N implementation
temporal dependencies adaptive quantization
. . Real & Balanced MTP latenc .
. End-to-end distortion . . y High network
Alhilal et . emulated and visual quality, o
model for mobile . . variability impacted
al, 2022 cloud gamin wireless adapted to varying erformance
g g networks network conditions P
Overcame cliff effect, . -
Tung and Tested on ;/aceful de Ira dation Required specific
Giindiiz, JSCC with DNN H.264, H.265, 2 e gan i training for each
2022 LDPC P . channel condition
allocation
- . Efficient handling of Balancing between
Error-resilient coding . s
Zhang and . Underwater packet loss, extra coding efficiency and
with CNN and . . . -
Gu, 2021 . - video datasets | protection for regions of error resiliency was
multiple descriptions .
interest complex
Minallah et IrRegular Eiggr%\grji;SNr?o?ir)[d Complexity in
al. 2021 Convolutional Codes H.264/AVC based rot7eF():tion y choosing protection
’ (IRCC) with SP P schemes
schemes
High compression p .
. . L Difficulty in
Dynamic adaptive LF . efficiency, adapted to . i u_yl
Hu et al, . L LF video .. implementation due to
2021 video transmission datasets network conditions, complex data
using GNN and MDC reduced packet loss P
structures
effects
Reduced redundancy, o .
Wang et al improves codin Limited application to
getal SF-PMDVC HEVC pro g specific coding
2022 efficiency and .
. . structures in HEVC
perceptual video quality
| W -Zi I long-di .
. mprc_;ved yner-ziv Underwater _So ved long dlst_anc_e Limited to underwater
Li et al, coding scheme for . wireless communication . .
acoustic . video transmission
2022 deep-sea issues, controlled error .
.. channels scenarios
communication range
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Eliminated downtime,
NetSim dynamic video quality High dependency on
simulator adaptation, efficient network conditions
data management
Optimized rate-
Zhaoetal, | Deep MDC for image distortion minimization, | Complexity in training
. Custom datasets . - . .
2022 compression adaptive quantization and implementation

for spatial variation

Alayaand | Inter-layer multimedia
Sellami, stream transmission in
2022 VANET (VSMENET)

[1I.LAN OPTIMAL VIDEO STREAMING MODEL
A Proposed Architecture

Fig. 1 shows the overview of the proposed video streaming model. This research introduces a novel error-resilient
video streaming model HMDC-IP that employs MDC and an Image Pyramid framework to improve video
transmission performance in fluctuating network conditions. The HMDC technique divides the video into multiple
independently decodable descriptions, enabling partial recovery when packet loss occurs. Concurrently, the Image
Pyramid method generates multiple resolution layers, allowing flexible reconstruction at reduced quality if higher-
resolution data is lost. In case, if all channels are received, then there will be no loss. Furthermore, polyphase
permuting & splitting are applied to rearrange and split the image data into different polyphase components. Then,
coefficient splitting takes place to separate the image coefficients which allows finer control over encoding. These
coefficients are further processed with an arithmetic encoding that forms an entropy coding by compressing the
data efficiently. The output of this process consists of several independent descriptions such as Descriptor
(0,1, ..., N) which are transmitted independently over the network. On the decoding side, the descriptions are
received and processed in reverse order. The system starts with arithmetic decoding to reconstruct the encoded
coefficients. Besides, a coefficient merger is added to merge the coefficients and the polyphase inverse permuting
& residual merger is used to recombine the polyphase components and residual information. Eventually, Image
Pyramid up-sampling is performed to restore the original resolution. Simulations are conducted under various
network conditions, evaluating key performance indicators such as PSNR, SSIM, and ERR.
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Fig 1: Overview of the Proposed HMDC-IP Model
B. Data Collection

For comprehensive testing of HMDC-IP, a variety of pre-recorded video files are collected to simulate real-world
scenarios. This is achieved through a custom video collection from Short Videos accessible through
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https://www.kaggle.com/datasets/mistag/short-videos [Access Date: 03/10/2024], ensuring diversity in content
and technical specifications.

Camera/Device Capture: Videos are captured using high-definition cameras, and mobile phones. This method
enables the collection of original, uncompressed video files, which are critical for testing the full potential of
HMDC-IP. The captured videos reflect a range of environments and lighting conditions to test the robustness of
the HMDC-IP model in different scenarios.

Standard Formats: To ensure compatibility with commonly used video processing tools, the captured videos are
saved in standard formats such as MP4.

Resolution Variations: It is important to capture videos in multiple resolutions, such as 360p, 720p, 1080p, and
4K, to assess how HMDC-IP performs across different quality settings. Lower resolutions are used to simulate
bandwidth-limited environments, while higher resolutions test the system's ability to maintain video quality under
optimal conditions.

Content Types: To fully evaluate HMDC-IP’s adaptability, the video dataset includes a variety of content types
like nature documentaries.

C. Proposed HMDC-IP Encoding Procedure

In this approach, MDC with an Image Pyramid framework is combined to enhance error resilience and video
transmission in dynamic network environments. The process is divided into five key phases including block
partitioning, Image Pyramid downsampling, polyphase permuting and splitting, coefficient splitter, and arithmetic
encoding and the corresponding inverse procedures and final output reconstruction. Each phase contributes to the
overall system's robustness, flexibility, and efficiency.

Frame Extraction: Each video is broken down into individual frames for easier processing as shown in Eq. (1),
where f; states individual frames in the video sequence, and f,, denotes the total number of frames.

fi =1 far s fd @

HMDC Design: It is a robust video coding technique used to enhance error resilience during network transmission
[26]. HMDC divides the video stream into multiple independent descriptions, enabling partial recovery of the
video even when some descriptions are lost. This technique ensures that instead of complete failure, video quality
degrades gracefully in the presence of packet loss or network fluctuations.

HMDC Encoder: The encoder divides the video stream into multiple descriptions, each of which is decoded
independently. This allows for graceful degradation, meaning that even if some descriptions are lost during
transmission, the remaining descriptions can still be used to reconstruct the video at reduced quality. Let the
original video stream be denoted as V. It is divided into N independent descriptions D,, D,, ..., Dy as shown in Eq.
(2), in which D; signifies i*" description.

V=3LD )

Each description D; represents different aspects of the video, such as different frequency components, spatial
regions, and frames at varying resolutions. Different descriptions are assigned to spatial and frequency
components. For example, one description encodes low-frequency details, while another encodes high-frequency
details. Also, each description is encoded separately and transmitted over independent network paths. The
encoder's function is to transform the input video into multiple independent descriptions that are efficiently
transmitted and decoded.

Block Partitioning: For HMDC, the video frames need to be divided into small blocks [27] to simulate network
transmission as stated in Eq. (3), in which F represents the video frame (comprising multiple descriptions in the
HMDC setup), P; refers to it" packet, representing a segment of the video frame, where i = 1,2,...,n, and n
indicates the total number of packets into which the frame is divided.

F={P,P,,..,P} ©))
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For a given video frame F with size S (in bits), and assuming each block can hold S,, bits, the total number of
packets n is calculated as per Eq. (4), where

n=2= 4)

Sp
Eq. (5) defines each block P; containing a portion of the video frame data.
P, =F[ixS,: (i +1) x S,] (5)

Eq. (5) represents the portion of the frame that corresponds to the i*" packet, from the starting index i x S, to the
end index (i + 1) x S,,. At this point, the output block is non-overlapping 16 X 16 macroblocks.

Image Pyramid Downsampling: To further improve error resilience and adaptive quality control, an Image
Pyramid Framework [28] is applied to each description. The image pyramid is a multi-resolution representation
of the video where different layers represent the video at different resolutions. For each description D;, an image
pyramid is generated by downsampling the video into multiple layers of varying resolutions. Let L, represent the
original resolution of the description, and L, represent the kt"* downsampled layer, where k indicates the level of
downsampling as given in Eq. (6). Specifically, higher k means more downsampling and a lower resolution.

L, (D;) = Downsample(D;,2%) (6)

Here, L,(D;) signifies k™ layer of the pyramid for description D;, and Downsample(D;,2*) denotes
downsampling D; by a factor of 2. The downsampling process allows flexibility in reconstructing the video at
different quality levels, depending on how much data is received. After downsampling, 8 x 8 blocks are obtained
within each macroblock. Now, the HMDC-IP involves a two-level splitting process such as Polyphase
permuting and splitting, and coefficient splitter.

Polyphase Permuting and Splitting: It is used to divide the 8 x 8 image block into multiple sub-blocks which are
then encoded independently [29]. For an image block I (u, v), the polyphase components are extracted by sampling
the image at regular intervals. Now, the image I(u, v) is decomposed into multiple sub-images I; (u, v), where
each sub-image corresponds to one of the polyphase components as shown in Eq. (7), in which N refers to number
of components i.e, (0 to 3), and I;(u, v) represents each polyphase component.

I(w,v) = L% Li(w,v) (7

At this point, labelling the pixels in each sub-image I;(u, v) to create a new sequence (2 x 2) group that helps
improve error resilience. In HMDC, this step helps distribute the spatial and frequency components of the image
across different descriptions. Here, polyphase sampling permutes the image blocks into a 4-description split, the
pixel at the location (u, v) of the image I(u, v) is distributed across four different polyphase components such as
label O which is assigned to the pixel in the top-left corner of each 2 x 2 group, label 1 which is assigned to the
pixel in the top-right corner, label 2 which is assigned to the pixel in the bottom-left corner and label 3 which is
assigned to the pixel in the bottom-right corner as stated in Eq. (8), where I,, I, I, and 1, indicates the polyphase
components.

Ii (u, U) = [IO (u, U), 11 (u' U), 12 (u' U), 13 (u' 'U)] (8)

Polyphase permuting [29] rearranges the pixels with the same labels into specific sub-blocks of the 8 x 8 block
as follows:

. Pixels with label 0 are moved to form the top-left 4 x 4 block of the 8 x 8 block.
. Pixels with label 1 are moved to form the top-right 4 x 4 block.

) Pixels with label 2 are moved to form the bottom-left 4 x 4 block.

. Pixels with label 3 are moved to form the bottom-right 4 x 4 block.

The permuting process is performed before splitting, and it uses a lost description estimation approach. This means
that the rearrangement is done in a way that helps to recover lost data if some descriptions are missing during
transmission. By redistributing the pixel information across different descriptions, the system better estimates and
recovers lost data. Polyphase splitting takes the permuted image and divides it into separate descriptions. Each
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8 x 8 block is split into two sub-blocks, referred to as coefficient splitter A0 and coefficient splitter A1. The
permuted block is then divided into sub-descriptions in such a way that each description contains unique
information, and all descriptions together fully reconstruct the original image as formulated in Eq. (9), P; (I (u, v))
means a function that permutes and selects the i** polyphase component from the image.

D; = P(I(w,v)), Vie{01,..,N—1} (9)
Thus, each description D; is an independent representation of the image I(u, v).

Coefficient Splitter: After polyphase permuting, a coefficient splitter takes place [30]. The 8 x 8 block is split into
two diagonal blocks, A0 and A1, as part of the first-level splitting. Here, A0 contains the top-left and bottom-right
4 x 4 blocks from the permuted 8 x 8 block. A1 contains the top-right and bottom-left 4 x 4 blocks from the
permuted 8 x 8 block. In the case of any remaining 4 x 4 blocks that are not part of the primary two sub-blocks
(A0 and A1), those pixels are set to zero (all-zero residual pixels). This means that the remaining blocks, which
are marked with an “x” in the process, are filled with zero values. The encoder does not need to encode these
blocks because they do not contain any meaningful data i.e., all their pixels are zero. The splitting process of the
8 x 8 block is shown in Eqg. (10).
BOO BOl

8=[5e 5 (10)
Similarly, A0, and A1 blocks carry the essential visual data diagonally as represented in Eq. (11), in which B;;
denotes each 4 x 4 sub-block.

_ BOO O _ 0 Bo]_
a0 =" Bn]"“‘[Bw 0 (1)

For each block, A0 and A1 are further split diagonally in the second-level splitting. The process creates BO and
B1 blocks, referred to as the even (Ep;ocxs) @nd odd (Opiocks)- FOr block A0, this results in AOBO which contains
values from Block 0 (top-left) and Block 3 (bottom-right) of A0, and AOB1 which contains the remaining values
from the diagonally opposite elements of A0. Similarly, for A1, this results in A1B0 which contains values from
Block 1 and Block 2 of A1, and A1B1 which contains the diagonally opposite elements of A1. Now, the encoded
data consists of the compressed representation of each block (A0B0, A0B1, A1B0 and A1B1), the offset values O
and the residual coefficients R. After the splitting, the blocks undergo upsampling to reduce residue so as to
minimize error in image reconstruction. The next step is to calculate the residual values by subtracting the
reconstructed block (A0B0, AOB1, A1B0 and A1B1) from the original 16 x 16 block i.e., O15x16 = Qgxg — R, In
which 0,446 includes original 16 x 16 block, Qg.g defines original 8 x 8 block, and R refers to reconstructed
block. The residue provides information about the remaining error after reconstruction. The offset value is
calculated as the absolute minimum of the residue. This offset is needed to efficiently represent the error in a
compressed form i.e., O = min(|R|). As a result of two-level splitting, every residual macroblock is split into
four macroblocks, one for each descriptor.

Arithmetic Encoding: It is a sophisticated method of lossless compression that encodes a sequence of symbols
into a single floating-point number [31]. The four descriptors including AOB0, AOB1, A1B0, and A1B1 represent
different blocks of data that are processed through splitting and residual calculations. These descriptors are then
compressed using arithmetic encoding. Each descriptor (A0B0, AOB1, A1B0, and A1B1) is treated as a symbol in
the input stream. The blocks are distributed equally across the descriptors, ensuring balanced quality among the
macroblocks. This helps prevent any one descriptor from becoming too heavily weighted and degrades the
compression efficiency or the visual quality of the decoded frames. Besides, arithmetic encoding dynamically
adjusts the range for each descriptor based on its probability in the data stream. Now, the first block is assigned to
the first descriptor, the second one is assigned to the second descriptor, etc. The blocks are equally distributed in
each macroblock in order to make the resulting descriptors that have balanced quality. Algorithm 1 shows the
pseudocode of the HMDC-IP encoding procedure. Fig. 2 displays the HMDC-IP encoding procedure.

Algorithm 1: Pseudocode of HMDC-IP Encoding Procedure
Input A frame from the input buffer
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Output | Compressed Descriptors (A0B0,A0B1,A1B0, A1B1), arithmetic-encoded
Step 1 Block Partitioning

Divide the input frame into non-overlapping 8 x 8 blocks for processing.
Step 2 Image Pyramid Down Sampling

Downsample the image using a pyramid-based approach.

Reduce the 8 x 8 blocks into 4 x 4 blocks while retaining important features.
Step 3 | Polyphase Permuting & Splitting

Label the pixels in the 8 x 8 block with numbers 0, 1, 2, 3 (for each 2 x 2 pixel group).
Rearrange pixels into 4 x 4 blocks.

Pixels labeled 0 go to the top-left 4 x 4 block.

Pixels labeled 1 go to the top-right 4 x 4 block.

Pixels labeled 2 go to the bottom-left 4 x 4 block.

Pixels labeled 3 go to the bottom-right 4 x 4 block.

Step 4 | Coefficient Splitting

1. First-Level Splitting

Split the permuted 8 x 8 block into two coefficient blocks A0 and A1.

Each of these blocks contains two 4 x 4 blocks (diagonally chosen)

2. Second-Level Splitting

Split each 4 x 4 block into two groups, creating Op;ocks aNd Epocks-
Distribute these diagonally to form macroblocks A0B0, AOB1,A1B0, and A1B1.
Step 5 Residue Calculation for Error Minimization

Find the Up-sampled values in each block

Calculate residue R

Estimate offset O

Step 6 | Arithmetic Encoding

Descriptor Generation

Create descriptors A0B0, A0B1, A1B0, and A1B1 from the macroblocks.
Arithmetic Encoding

For each descriptor, apply arithmetic encoding.

Assign shorter codes to more frequent descriptors and longer codes to less frequent descriptors based
on symbol probabilities.

Compress the encoded data.

oveaal | | Priyghase

- Pematag ant
Spirag

AIDS AODL
1 AIRO miéANED

Fig 2: Encoding Procedure of Proposed HMDC-IP Model
D. Proposed HMDC-IP Decoding Procedure

The proposed HMDC-IP decoder is responsible for reconstructing the video from the descriptions
received over the network. In the HMDC-IP framework, each description is decoded independently, and the
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decoder partially reconstructs the video even when some descriptions are lost due to packet loss or transmission
errors. The decoder's functionality includes gracefully degrading the video quality as fewer descriptions are
received. The decoding process follows the reverse operations of encoding to recover the original data. It involves
arithmetic decoding, coefficient merging, and polyphase inverse permuting to reconstruct the image.

Arithmetic Decoding: The first step is to decode the encoded data. Arithmetic decoding reconstructs the original
sequence of symbols using the same probabilities and coding ranges applied during encoding [32]. Each descriptor
(A0B0,A0B1,A1B0, and A1B1) is independently decoded. Let S = {sy,s,, ..., s,} be the original coefficients
used in the image. During decoding, the arithmetic decoder uses the encoded number Ej;,.xs, along with the
symbol probabilities, to reverse the encoding process and recover the original sequence S. For each symbol s;, a
range is determined based on cumulative probabilities P(s;), and this range is used to identify the decoded value.
If R = [[, k] is the range determined by the encoder for the symbol, the next symbol is decoded by determining
its corresponding probability as given in Eq. (12), and (13), in which Py, (s;) and P4, (s;) states cumulative
probabilities of symbol s;.

=1+ (h - l) ' Plow(si) (12)
hi =1+ (h—1) " Ppgn(si) (13)

For each of the four descriptors (A0B0,A0B1,A1B0, and A1B1), this process is repeated to recover their
respective pixel coefficients.

Coefficient Merger: Once the descriptors are decoded, the coefficient merger step is applied. This step reverses
the coefficient splitting done during encoding. Let C; and C, represent the two blocks that were split during
encoding. These coefficients are merged in pairs to reconstruct larger blocks. For each descriptor, a pair of blocks
is merged, which involves adding residual data to reconstruct the original coefficients. For the merging of
coefficients C; and C, from descriptor AOBO and A0B1, Eq. (14) is used and this process is repeated for all the
descriptors.

Cmerged = Cl + CZ (14)

Polyphase Inverse Permuting and Residual Merger: Polyphase permutation is a reordering of coefficients during
encoding to ensure better compression. The inverse polyphase permuting step during decoding restores the
coefficients to their original positions in the block. Next, the residual data merge process takes place. During
encoding, residuals were calculated and encoded. The decoded residual values from descriptors (after arithmetic
decoding) are added back to the merged coefficient blocks. Let P~1 denote the inverse polyphase permuting
function and the original block B;; is restored by applying inverse permutation as expressed in Eq. (15), where B;;

defines 8 x 8 block obtained by inversely permuting the A0 and A1 blocks.

In the case where the decoder does not receive all the descriptors (for example, when one of the blocks such as
A1B1 is missing), frequency estimation is used to predict the lost values. This prediction is based on neighboring
blocks and the residual domain. If A1B1 is lost, the neighboring block A0B1 is used to predict the missing values.
The idea here is that 0;,;, s Of A1B1 are predicted from Oy, 0f AOB1 and Ey,;,.s Of A1B1 are predicted from
Epiocks OF AOB1 is explained in Eq. (16), where g, and g signifies small prediction errors based on local
characteristics.

Oa181 = Oa1p1 + €0, Ea1p1r = Earp1 + €& (16)

In addition to prediction based on neighboring blocks, residual domain prediction further refines the accuracy of
estimation. The residual block R represents the difference between the original block and the predicted block as
shown in Eq. (17), where R, indicates residual for block A1B1, B,,p, addresses original block, and By,;cgictea
specifies predicted blocks based on neighboring blocks.

Ru1p1 = Bap1 — Bpredicted (7)
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The residual domain is critical for estimating missing values in the block, as residual data contains finer details of
the image. The residual values are then encoded with an offset value. The offset value is the minimum absolute
value from the residual block as stated in Eq. (18).

Of fset = min(|R|) (18)

This offset is applied to compress the residual values. All four cases of missing descriptors (A0B0, AOB1, A1B0,
and A1B1) are predicted in the horizontal direction. For missing Opjocks, Prediction comes from the left-
neighboring Oy;ocks- FOr missing Ey;ocks, Prediction comes from the right-neighboring Ep o0k This ensures that
the blocks are reconstructed even when some descriptors are missing by using the structure of neighboring blocks.

Image Pyramid Upsampling: During decoding, the received descriptions are reconstructed through an
upsampling process from the Image Pyramid. If full descriptions are received, the highest-resolution layers are
reconstructed. If only partial descriptions are received, lower-resolution layers are used for reconstruction. If only
the k" layer is received, the decoder upsamples it back to the original resolution using an interpolation technique
as stated in Eq. (19), where L, (D;) refers to an upsampled version of the k" layer L, (D;), reconstructed to the
original resolution, and Upsample (L, (D;), 2¥) addresses upsampling the k" layer by a factor of 2.

o(D;) = Upsample(Ly (D), 2) (19)

The upsampling process attempts to reconstruct the original resolution from the lower-resolution layers. Fig. 3
shows the downsampling and upsampling process in Image Pyramid.

Level N
Low Resolution
Image

Fig 3: Image Pyramid Procedure in Proposed HMDC-IP

Output Video Frame Buffer: Let N represent the total number of descriptions, and let M be the number of
received descriptions where M < N. Each received description, denoted by D; (for i = 1,2, ..., M), contains a
unigue portion of the video content, and the goal is to reconstruct the video using these M descriptions. The total
video stream V is perfectly reconstructed if all descriptions {D;, D,, ..., Dy} are received. The reconstructed video
Vieceivea 1S €Xpressed in Eq. (20).

Vreceivea = ?121 D; (20)

However, when fewer than N descriptions are received, that is M descriptions, the video can still be reconstructed
at a lower quality. The video decoder uses the available M descriptions to partially recover the video as shown in
Eq. (21), in which V,....iveq Means video reconstructed from the received descriptions, M represents a number of
received descriptions (which is less than or equal to N), and D; signifies i*" description received.
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Vreceivea = Zi\il D; (21)

If fewer descriptions are received, the reconstructed video will be of lower quality, as less information is available
to the decoder. The quality of the video is proportional to the number of descriptions received. For instance, if all
descriptions N are received, the video quality is maximum. On the other hand, if only M descriptions are received,
where M < N, the video quality will degrade but still be viewable. The level of degradation is a function of the
number of missing descriptions as formulated in Eq. (22), in which Q,,;4., States quality of the reconstructed video,
which depends on the number of received descriptions M out of the total N.

Quvideo = f(M: N) (22)
Depending on the number of lost packets, the video stream is fully or partially reconstructed. The video
quality Q,;4e, Of the reconstructed video is modelled as a function of the number of received descriptions M and
the total number of descriptions N as shown in Eq. (23), in which Q,,,. specifies maximum possible video quality
(achieved when all N descriptions are received), M denotes number of descriptions actually received, and N
indicates total number of descriptions in the HMDC scheme.

M
Qvideo = Qmax (_) (23)

N

In the case of lost descriptions due to network issues, the decoder adapts by reconstructing the video using the
remaining descriptions. The final video stream quality is determined by the amount of lost data that is recovered.
Finally, the video frame buffer stores the reconstructed frames as they are generated during the decoding process.
These frames are ready for error resilience transmission or storage. Algorithm 2 explains the pseudocode of
proposed HMDC decoding procedure. Fig. 4 portrays the architecture of proposed HMDC-IP.

Algorithm 2: Pseudocode of Proposed HMDC-IP Decoding Procedure

Input Encoded data containing descriptors (A0B0, A0B1, A1B0, and A1B1)

Residual data

Offset values (for adjusting residuals)

Output | Reconstructed image blocks V

Step1 | Retrieve Encoded Data

Compressed representation of blocks AOB0, AOB1,A1B0, and A1B1

Offset values

Residual coefficients

Step 2 | Arithmetic Decoding

For each descriptor AOB0, A0B1, A1B0, and A1B1, perform arithmetic decoding to recover the
compressed coefficients based on Eq. (12), and (13).

Decoded_Coeff « Arithmetic_Decode(Aij)

v{A0B0,A0B1,A1B0,A1B1}

Step 3 | Coefficient Merging

Apply coefficient merger to recombine split blocks into original 8 x 8 blocks.

Use the inverse of the splitting process to recombine the 4 x 4 blocks as per Eq. (14)

Step 4 | Polyphase Inverse Permuting

Apply polyphase inverse permuting on the merged coefficients to restore the original ordering of the
pixels using Eq. (15).

If any descriptor is missing, perform frequency estimation to reconstruct the lost descriptor via Eq.
(16).

Reconstruct the blocks using residual data as per Eq. (17).

Add residual coefficients to the predicted coefficients to reconstruct the original block.
Reconstructedgoc, < Bijj + R — Of fset

Step5 | Upsampling

Upsample the 8 x 8 blocks by merging smaller blocks into larger blocks and upsample them using
Eq. (19)

Step 6 | Final Video Frame Buffer
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Fig 4: Decoding Procedure of Proposed HMDC-IP Model
IV.SIMULATION RESULTS
A Simulation Setup

The proposed HMDC-IP model was developed via MATLAB 2021a on Intel core® i5 processor @2.6GHz, 16
GB RAM, 64-bit OS. Here, the Short Videos Dataset was employed for transmission. Additionally, a comparative
study is performed to validate the competence of proposed HMDC-IP in handling video streaming over other
methods such as Web Real-Time Communications (WebRTC) [34], Light-weight Featurized Image Pyramid-
Single Shot Multibox Detector (LFID-SSD) [35], Deep Deterministic Policy Gradient (DDPG) [36], and
Transmission Control in Live Video (TCLiVi) [37]. The performance of proposed HMDC-IP is estimated through
several metrics such as PSNR, SSIM, bitrate, bandwidth utilization, ERR, computational efficiency, and latency.

B. Performance Metrics

Compression Ratio (CR): It is the proportion of original frame size to compressed frame size [38] as defined in
Eq. (24).
Original frame Size

CR =

- Compressed frame Size

(24)

PSNR: The generally used objective metric for measuring video quality is the PSNR [39]. Eq. (25) is used to
obtain the PSNR.

PSNR Value of frame = 10 * log, (ZSSZ/MSE) (25)

SSIM: A Method for calculating how similar two images are called the SSIM [40]. The SSIM value is a decimal
number between -1 and 1, with 1 indicating that two frames are structurally identical as expressed in Eq. (26).

(2pxpy+21)oxy+z;)
Frame SSIM (x,y) = 26
( Y) (H2x+#2y+21)(02x+02y+22) ( )

In the original and denoised image, x and y stand for windows, ¢ and u stand for the standard deviation and mean
of x and y, and z, and z, stand for constants.
PSNR Percentage: Eq. (27) is used to determine the percentage of PSNR loss between two images.

Percentage Decrease = PONRI-PSNRZ 4100 (27)
PSNR1

Where PSNR1 is the PSNR of the original frame or PSNR of first image and PSNR2 is the PSNR of the
reconstructed frame or PSNR of second image.

C. Algorithmic Analysis

Results and achievements of proposed HMDC-IP are addressed here. Fig. 5 shows the sample frames extracted
from the natural documentary video with various qualities such as 360p, 480p, 720p, and 4K. Here, each frame
represents a distinct resolution, where Fig. 5 (a) shows the original quality available in the dataset, 360p in Fig.
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5(b) offers a low-resolution video with reduced clarity, suitable for low bandwidth conditions, 480p in Fig. 5(c)
provides a moderate resolution, balancing quality and bandwidth usage, 720p in Fig. 5(d) is a high-definition
resolution, delivering clearer visuals with more detail, and 4K in Fig. 5(e) is ultra-high definition, offering the
highest level of detail and sharpness. These frames highlight how varying resolutions affect the visual quality and
detail of the same content. Higher resolutions like 720p and 4K display finer details in the natural environment,
such as the texture of leaves and the sharpness of wildlife, while lower resolutions like 360p and 480p show a
noticeable degradation in detail and clarity. This comparison is useful to demonstrate the impact of resolution on
video quality in different bandwidth scenarios.

(@)

(b)

(©)

(d)
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(€)

Fig 5: Sample Video Frames showing (a) Original Quality, (b) 360p, (c) 480p, (d) 720p, and (e) 4K

The HMDC-IP algorithm uses benchmark videos to assess the performance of the algorithms. The suggested
technique performs in terms of compressed file size, compression ratio, PSNR, SSIM, and processing time. It is
assumed that while some descriptors are completely lost, others are received with no information lost. Side
reconstruction is the term used to describe such a scenario. The performance of side reconstruction is evaluated
independently for the first, second, and third missing descriptors. The outcomes are measured by the
reconstruction qualities of no loss, 1, 2, and 3 descriptor losses, the frame-by-frame quality comparison, and the
qualities in the packet-loss situation. If all the descriptor data is received, then the mean square error value is zero.
The frames of these videos have dimensions of 720 x 1280. The total pixels of the image are 2764800. Processing
times vary depending on the network speed, frame size and software. A smaller frame size takes less time, but a
larger frame size requires more processing time.

Table 11: PSNR of Various Estimation Techniques in Various Descriptor-Loss Situations

Two Descriptor
One Descriptor Three Descriptor Average Descriptor
Method Name loss

loss loss loss

Same Diff
Proposed HMDC-IP 42.13 36.95 35.85 34.46 37.35
Hybrid-SF 33.95 33.51 32.39 31.34 32.70
Hybrid-S 33.51 33.51 32.05 31.34 32.47
Hybrid-F 33.95 32.99 32.39 31.14 32.56

According to (& Tsai, 2009), a comparison is made between the experimental outcomes of the proposed
algorithm and other methods. Different frames were used to evaluate the proposed scheme, and its effectiveness
and performance were compared to those of earlier studies. Table Il displays the results of using the Foreman
sequence of 248 frames. The table presents a comparison of loss values across different methods when
using one, two, or three descriptors. The methods evaluated include proposed HMDC-IP, hybrid-SF,
hybrid-S, and hybrid-F (Hsiao & Tsai 2009). Each method's performance is assessed using different
numbers of descriptors loss, and the results are presented. The average PSNR of four one-descriptor loss
cases and four three-descriptor loss cases, respectively, is displayed in the one-loss and three-loss columns.
There are six scenarios for two-descriptor loss: two of these scenarios involve the loss of two descriptors within
the same residual domain (e.g., AOBO and AOB1), and four scenarios involve the loss of two descriptors from
distinct residual domains (e.g., AOB0O and A1B0). All 14 examples' average PSNR are displayed in the average
column. The weakest performers are Hybrid-S and Hybrid-F, according to the results. Fig. 6 shows the
PSNR of proposed HMDC-IP over various estimation techniques.
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Fig 6: PSNR of Proposed HMDC-IP over Various Estimation Techniques

The proposed scheme not only improves the PSNR value and SSIM value, but also increases the visual quality of
the reconstructed images and compression ratio.

Table I11: Various Video Frame Values of 360p Resolution

Image Name Compressed File Size Compression Ratio Processing Time (s)
Frame 1 405956 6.8 57
Frame 2 405939 6.8 58
Frame 3 405981 6.82 57.5
Frame 4 405941 6.81 55
Frame 5 405930 6.81 56.2

Table Ill shows the various video frame values of 360p resolution and provides data on the compression
performance of five different video frames, focusing on three key metrics such as compressed file size,
compression ratio, and processing time.

One, Two, and Three Descriptor Loss

£
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w
[=1]

PSNR value(db)
b3

]
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]

ww
[= I S ]

1 2 3 4 5
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==f==(0ne Descriptor loss

==t Twyo Descriptor loss

==g==Thres descriptor loss
Fig 7: PSNR value for Various Video Frames of 360p Resolution

Fig. 7 shows the PSNR values of the one descriptor loss, two descriptor loss and three descriptor loss of various
video frames of 480p Resolution. The PSNR decreases in the video frames between one descriptor loss and two
descriptor loss are 5.2, 5.1, 5.5, 5.3 and 5 and two descriptor loss and three descriptor loss are 1.9, 2.1,2, 2.1, and
2.1. The video frame’s PSNR percentage decreases between one descriptor loss and two descriptor losses, which
are 12.29, 12.11, 12.97, 12.47, and 11.79, and between two descriptor loss and three descriptor losses, which are
5.12,5.67, 5.42, 5.64, and 5.61.
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Fig 8: SSIM value for Various Video Frames of 480p Resolution

Fig. 8 shows the SSIM values of various video frames of 480p Resolution. In the given video, all the channel data
is received, so the SSIM value is 1. One descriptor loss image shows high SSIM values, indicating minimal
information loss. Two and three descriptor loss images achieve slightly lower SSIM values and occur with medium
information loss. Table IV presents data on the compression performance of five different mobile frames.
It includes three key metrics including compressed file size, compression ratio, and processing time for
each frame.

Table 1V: Various Video Frame Values of 480p Resolution

Image Name Compressed File Size Compression Ratio Processing Time (s)
Frame 1 426965 6.48 58
Frame 2 426978 6.5 58.4
Frame 3 426954 6.48 57
Frame 4 426934 6.47 56
Frame 5 426938 6.47 59

Fig. 9 displays the PSNR values of the one descriptor loss, two descriptor loss and three descriptor loss of 702p
video frames. The PSNR decreases in the video frames between one descriptor loss and two descriptor loss
are 3.9, 4.3,4, 4.1, and 4 and two descriptor loss and three descriptor loss are 2.3, 2.3, 2.2, 2.4, and 2.The
720p video frame ’s PSNR percentage decreases between one descriptor loss and two descriptor losses, which are
12.29,12.11,12.97,12.47, and 11.79, and between two descriptor loss and three descriptor losses, which are 9.72,
10.64, 9.97, 10.12, and 9.95.
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Fig 9: PSNR value for Various Video Frames of 720p Resolution
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Fig. 10 shows the SSIM value of the 4K video frames. One descriptor loss frame quality is higher. If two descriptor
loss the frame quality is medium. Three descriptor loss the image quality is acceptable. Since all of the descriptor
data is received in the mobile video, the SSIM value is 1. High SSIM values in one descriptor loss image indicating
less information loss. Images with two and three descriptor losses exhibit slightly lower SSIM values and medium
information loss.
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Fig 10: SSIM value for Various Video Frames of 720p Resolution

Table V displays the 4K video frame values and provides information on the compression performance for five
4K video frames, detailing the compressed file size, compression ratio, and processing time for each frame.

Table V: 4K Video Frame Values

Image Name Compressed File Size Compression Ratio Processing Time (s)
Frame 1 434582 6.37 54
Frame 2 434563 6.37 57.8
Frame 3 434507 6.36 59
Frame 4 434505 6.36 56
Frame 5 434501 6.36 57

The PSNR values for the 4K video frame’s one, two, and three descriptor losses are displayed in Fig. 11.The
PSNR decreases in the 4K video between one descriptor loss and two descriptor loss are 5.2, 5.4,5.8, 5.3,
and 4.9 and two descriptor loss and three descriptor loss are 2.4, 2.9, 2.3, 1.8, and 1.9.The 4K video frame’s
PSNR percentage decreases between one descriptor loss and two descriptor losses, which are 12.90, 13.23,12.97,
14.18, and 12.12, and between two descriptor loss and three descriptor losses, which are 6.83, 6.19, 6.55, 6.11,
and 5.35.
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Fig 11: PSNR value for Various Video Frames of 4K Resolution
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Fig. 12 displays the SSIM value for 4K video frames. Frame quality will be higher for one descriptor loss. Medium
frame quality will result from the loss of two descriptors. The picture quality will be sufficient even if three
descriptors are lost. With the Medical Video providing all of the description data, the SSIM value is 1. There is
less information loss in one descriptor loss image when the SSIM values are high. There is a medium information
loss and a slight decrease in SSIM values in images with two and three descriptor losses.
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Fig 12: SSIM value for Various Video Frames of 4K Resolution
D. Comparative Analysis

In this section, the efficacy of proposed HMDC-IP is validated with several performance metrics over other video
streaming methods. Fig. 13 displays the performance of proposed HMDC-IP over Other Models for various
metrics such as PSNR, SSIM, ERR, bitrate, bandwidth utilization, computational efficiency, and latency. For all
metrics, the proposed HMDC-IP exposed superior performance and proved its competence in video streaming.
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Fig 13: Performance of Proposed HMDC-IP over Other Models for (a) PSNR, (b) SSIM, (c) ERR, (d) Bitrate,
(e) Bandwidth Utilization, (f) Computational Efficiency, and (g) Latency

Table VI: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 360p Video

Quality
Metric WebRTC | LFIP-SSD | DDPG | TCLiVi | Proposed HMDC-IP
PSNR (dB) 32 33 31 34 35
SSIM 0.91 0.92 0.9 0.93 0.94
Bitrate (Mbps) 2 2 2 2 2
Bandwidth Utilization (%) 82 83 80 85 86
ERR 75 78 70 79 80
Computational Efficiency (GFLOPS) 3 3.2 2.8 35 3.8
Latency (ms) 60 65 55 68 70

Table VII: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 480p Video

Quality
Metric WebRTC | LFIP-SSD | DDPG | TCLiVi | Proposed HMDC-IP
PSNR (dB) 34 36 33 37 38
SSIM 0.93 0.95 0.92 0.96 0.96
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Bitrate (Mbps) 3 3 3 3 3
Bandwidth Utilization (%) 85 87 84 88 89
ERR 78 81 75 83 85

Computational Efficiency (GFLOPS) 35 3.8 34 4 4.2
Latency (ms) 70 75 65 78 80

Table VIII: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 720p

Video Quality
Metric WebRTC | LFIP-SSD | DDPG | TCLiVi | Proposed HMDC-IP

PSNR (dB) 38 40 36 41 42
SSIM 0.96 0.97 0.95 0.98 0.98

Bitrate (Mbps) 6 6 5 6 6
Bandwidth Utilization (%) 88 89 86 90 91
ERR 85 87 83 88 90

Computational Efficiency (GFLOPS) 5 5.3 4.8 55 6
Latency (ms) 90 95 85 98 100

Table I1X: Performance of Proposed HMDC-IP over Other Models for Various Metrics concerning 4K Video

Quality
Metric WebRTC | LFIP-SSD | DDPG | TCLiVi | Proposed HMDC-IP
PSNR (dB) 40 43 39 44 45
SSIM 0.98 0.99 0.97 0.99 0.99
Bitrate (Mbps) 10 12 9 14 15
Bandwidth Utilization (%) 90 92 89 93 94
ERR 90 91 88 92 95
Computational Efficiency (GFLOPS) 8 8.5 7.5 9 9.2
Latency (ms) 120 125 115 130 130

Table VI summarizes the performance metrics to validate the effectiveness of each approach in handling video
quality, including transmission efficiency of various models, such as WebRTC, LFIP-SSD, DDPG, TCL.iVi, and
the proposed HMDC-IP for 360p video streaming. The proposed HMDC-IP achieves the highest PSNR at 35 dB
with an SSIM of 0.94, representing better quality and clarity compared to other models, whose PSNR ranges
between 31 and 34 dB, with SSIM ranging between 0.90 and 0.93. All the models maintain a bitrate of 2 Mbps to
ensure consistent data transmission. The bandwidth utilization for the proposed model is also the best, at 86%,
effectively optimizing available resources. HMDC-IP has an ERR value of 80, outperforming others in the range
of 70-79. Additionally, its computational efficiency is higher at 3.8 GFLOPS compared to others, which range
from 2.8 to 3.5 GFLOPS. However, the latency for HMDC-IP is higher at 70 ms, remaining comparable to other
models. Overall, the HMDC-IP model shows significant gains in video quality and efficiency for 360p streaming.

The evaluation of the HMDC-IP for 480p video quality is presented in Table VII, showing major improvements
across metrics compared to other models. HMDC-IP achieves a PSNR of 38 dB, the best among the models for
superior video quality. SSIM follows this trend at 0.96, matched only by TCLiVi. All models maintain a bitrate
of 3 Mbps, but HMDC-IP leads in bandwidth utilization at 89%. ERR is also best for HMDC-IP at 85,
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demonstrating effectiveness in recovering from packet loss, with computational efficiency at 4.2 GFLOPS, higher
than others. The latency for HMDC-IP is recorded at 80 ms, slightly higher but competitive.

Table VIII presents the evaluation of 720p video quality, with HMDC-IP continuing to stand out. It achieves the
highest PSNR at 42 dB and SSIM at 0.98, underscoring its ability to deliver excellent video quality. While all
models maintain a bitrate of 6 Mbps, HMDC-IP leads in bandwidth utilization at 91%. The ERR reaches 90,
indicating good video integrity even during network fluctuations. Computational efficiency is strong at 6
GFLOPS, demonstrating optimal performance without excessive resource demand. The latency increases to 100
ms, consistent with higher resolutions.

Finally, Table IX presents the performance of HMDC-IP for 4K video quality, showing further improvements
across all metrics. The peak PSNR is 45 dB with an SSIM of 0.99, marking it as the top performer in video quality.
Bandwidth utilization reaches 94%, with a bitrate increase to 15 Mbps, showing efficiency in resource
management. ERR improves to 95, highlighting strong error resilience. Computational efficiency reaches 9.2
GFLOPS, outperforming other models. Latency stabilizes at 130 ms, suggesting that while the model excels in
quality and efficiency, careful management is required to ensure responsiveness in high-resolution applications.
Thus, HMDC-IP demonstrates consistent superior performance metrics across various video qualities, making it
highly effective for modern video streaming applications.

E. Discussion

The proposed HMDC-IP model showcases significant advancements in video streaming quality across various
resolutions, outperforming existing models in metrics such as PSNR, SSIM, bandwidth utilization, and ERR. By
using a hybrid approach that MDC with an Image Pyramid framework, the proposed HMDC-IP effectively
mitigates the adverse effects of packet loss while maintaining video quality and bandwidth usage. The use of
arithmetic encoding and decoding, further enhances the system's adaptability under varying network conditions,
making it a robust solution for real-time video applications, including live streaming, video conferencing, and
multimedia content delivery. In transmission, one or more loss of descriptors is evaluated for various video
qualities. For one descriptor loss, the proposed HMDC-IP model exposed better PSNR, SSIM, and ERR scores
than 2 or more descriptor loss. On the other hand, when all descriptors are received, the model exhibits high PSNR,
SSIM equals to one and better ERR.

However, despite its notable advantages, the proposed HMDC-IP model is not without limitations. The latency
associated with higher resolutions, particularly in 4K video streaming, remains a concern, potentially impacting
user experience (QoE) in latency-sensitive applications. Additionally, while the computational efficiency is
commendable, the model requires substantial resources, which could limit its applicability in environments with
constrained computational power. Future work could focus on addressing these limitations by optimizing
processing efficiency and reducing latency, thereby enhancing the practicality of proposed HMDC-IP in diverse
real-world scenarios.

V.CONCLUSION

This research introduced HMDC-IP, a hybrid error-resilient video streaming model that employed hybrid MDC
and an Image Pyramid framework to improve video transmission performance in fluctuating network conditions.
The MDC technique divided the video into multiple independently decodable descriptions, enabling partial
recovery when packet loss occurred. Concurrently, the Image Pyramid method generated multiple resolution
layers, allowing flexible reconstruction at reduced quality if higher-resolution data was lost. To optimize system
performance, arithmetic coding was employed to ensure efficient use of bandwidth and computational resources.
Simulations were conducted under various network conditions, evaluating key performance indicators such as
PSNR, SSIM, and ERR. Future work could explore the integration of ML techniques to optimize the HMDC-IP
model for real-time decision-making in dynamic network conditions. Additionally, developing adaptive
algorithms that minimize latency while maintaining video quality across all resolutions would enhance user
experience (QoE). Investigating the application of the model in different video content types such as fast motion
like sports, slow motion like natural documentaries, talking heads like interviews, and specifically, medical videos
and network scenarios could provide insights into its scalability and robustness. Furthermore, incorporating edge
computing solutions could reduce the computational load on devices, making the system more efficient.

7625



J. Electrical Systems 20-3 (2024): 7604-7627

REFERENCES

[1] Wang, M. H., Hsieh, T. S., Tseng, Y. Y., & Chi, P. W. (2023). An SDN-Driven Reliable Transmission
Architecture for Enhancing Real-Time Video Streaming Quality. IEEE MultiMedia.

[2] Taha, M., Canovas, A., Lloret, J., & Ali, A. (2021). A QoE adaptive management system for high definition
video streaming over wireless networks. Telecommunication Systems, 77(1), 63-81.

[3] Maheswari, K., & Nimmagadda, P. (2023). Error resilient wireless video transmission via parallel processing
using puncturing rule enabled coding and decoding. e-Prime-Advances in Electrical Engineering, Electronics
and Energy, 6, 100324,

[4] Ghasemkhani, B., Yilmaz, R., & Kut, R. A. A Novel Construction Proposal of Error Protection Code for
Video Transmission Over Wireless Broadband Networks.

[5] Hari, S. K. S, Sullivan, M. B., Tsai, T., & Keckler, S. W. (2021). Making convolutions resilient via
algorithm-based error detection techniques. IEEE Transactions on Dependable and Secure Computing,
19(4), 2546-2558.

[6] Kesavan, S., Saravana Kumar, E., Kumar, A., & Vengatesan, K. (2021). An investigation on adaptive HTTP
media streaming Quality-of-Experience (QoE) and agility using cloud media services. International Journal
of Computers and Applications, 43(5), 431-444.

[71 Mandal, S., Chakrabarti, A., & Bodapati, S. (2021). Clustered error resilient SRAM-based reconfigurable
computing platform. IEEE Transactions on Aerospace and Electronic Systems, 57(3), 1768-1779.

[8] Farahani, S.S., Reshadinezhad, M. R., & Fatemieh, S. E. (2024). New design for error-resilient approximate
multipliers used in image processing in CNTFET technology. The Journal of Supercomputing, 80(3), 3694-
3712.

[9] Bari, A. M., Siraj, M. T., Paul, S. K., & Khan, S. A. (2022). A Hybrid Multi-Criteria Decision-Making
approach for analysing operational hazards in heavy fuel oil-based power plants. Decision Analytics Journal,
3, 100069.

[10] Lee, R., Venieris, S. 1., & Lane, N. D. (2021). Deep neural network—based enhancement for image and video
streaming systems: A survey and future directions. ACM Computing Surveys (CSUR), 54(8), 1-30.

[11] Hu, S., Fan, G., Zhou, J., Fan, J., Gan, M., & Chen, C. P. (2024). Hybrid network via key feature fusion for
image restoration. Engineering Applications of Artificial Intelligence, 137, 109236.

[12] Pefia-Ancavil, E., Estevez, C., Sanhueza, A., & Orchard, M. (2023). Adaptive Scalable Video Streaming
(ASViS): An Advanced ABR Transmission Protocol for Optimal Video Quality. Electronics, 12(21), 4542.

[13] Liang, Z., Liu, J., Dasari, M., & Wang, F. (2024). Fumos: Neural Compression and Progressive Refinement
for Continuous Point Cloud Video Streaming. IEEE Transactions on Visualization and Computer Graphics.

[14] Shahid, M. A, Islam, N., Alam, M. M., Mazliham, M. S., & Musa, S. (2021). Towards Resilient Method:
An exhaustive survey of fault tolerance methods in the cloud computing environment. Computer Science
Review, 40, 100398.

[15] Sreekala, K., Raj, N. N., Gupta, S., Anitha, G., Nanda, A. K., & Chaturvedi, A. (2023). Deep convolutional
neural network with Kalman filter based objected tracking and detection in underwater communications.
Wireless Networks, 1-18.

[16] Li, J., Li, B., & Lu, Y. (2022, October). Hybrid spatial-temporal entropy modelling for neural video
compression. In Proceedings of the 30th ACM International Conference on Multimedia (pp. 1503-1511).

[17] Alhilal, A., Braud, T., Han, B., & Hui, P. (2022, April). Nebula: Reliable low-latency video transmission for
mobile cloud gaming. In Proceedings of the ACM Web Conference 2022 (pp. 3407-3417).

[18] Tung, T. Y., & Gindiz, D. (2022). DeepWiVe: Deep-learning-aided wireless video transmission. IEEE
Journal on Selected Areas in Communications, 40(9), 2570-2583.

[19] Zhang, Y., & Gu, B. (2021). Error-resilient coding by convolutional neural networks for underwater video
transmission. Journal of the Franklin Institute, 358(17), 9307-9324.

[20] Minallah, N., Ullah, K., Frnda, J., Cengiz, K., & Awais Javed, M. (2021). Transmitter diversity gain
technique aided irregular channel coding for mobile video transmission. Entropy, 23(2), 235.

[21] Hu, X., Pan, Y., Wang, Y., Zhang, L., & Shirmohammadi, S. (2021). Multiple description coding for best-
effort delivery of light field video using GNN-based compression. IEEE Transactions on Multimedia, 25,
690-705.

7626



J. Electrical Systems 20-3 (2024): 7604-7627

[22] Wang, F., Chen, J., Zeng, H., & Cai, C. (2022). Spatial-frequency HEVC multiple description video coding
with adaptive perceptual redundancy allocation. Journal of Visual Communication and Image
Representation, 88, 103614.

[23] Li, B., Zhang, Y., & Feng, Q. (2022). Video Error-Resilience Encoding and Decoding Based on Wyner-Ziv
Framework for Underwater Transmission. Wireless Communications and Mobile Computing, 2022(1),
2697877.

[24] Alaya, B., & Sellami, L. (2022). Multilayer video encoding for QoS managing of video streaming in VANET
environment. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM),
18(3), 1-19.

[25] Zhao, L., Zhang, J., Bai, H., Wang, A., & Zhao, Y. (2022). LMDC: Learning a multiple description codec
for deep learning-based image compression. Multimedia Tools and Applications, 81(10), 13889-13910.

[26] Wang, Y., Reibman, A. R., & Lin, S. (2004). Multiple description coding for video delivery. Proceedings of
the IEEE, 93(1), 57-70.

[27] Huang, Y. W., An, J., Huang, H., Li, X., Hsiang, S. T., Zhang, K., Gao, H., Ma, J., & Chubach, O. (2021).
Block partitioning structure in the VVC standard. IEEE Transactions on Circuits and Systems for Video
Technology, 31(10), 3818-3833.

[28] Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). Pyramid methods in
image processing. RCA engineer, 29(6), 33-41.

[29] Saha, S., & Gokhale, T. (2024). Improving Shift Invariance in Convolutional Neural Networks with
Translation Invariant Polyphase Sampling. arXiv preprint arXiv:2404.07410.

[30] Rojas-Gomez, R. A, Lim, T. Y., Schwing, A., Do, M., & Yeh, R. A. (2022). Learnable polyphase sampling
for shift invariant and equivariant convolutional networks. Advances in Neural Information Processing
Systems, 35, 35755-35768.

[31] Tu, C., & Tran, T. D. (2002). Context-based entropy coding of block transform coefficients for image
compression. IEEE Transactions on Image Processing, 11(11), 1271-1283.

[32] Afandi, T. M. K., Fandiantoro, D. H., & Purnama, I. K. E. (2021, July). Medical images compression and
encryption using DCT, arithmetic encoding and chaos-based encryption. In 2021 international seminar on
intelligent technology and its applications (ISITIA) (pp. 1-5). IEEE.

[33] zaibi, S., Zribi, A., Pyndiah, R., & Aloui, N. (2012). Joint source/channel iterative arithmetic decoding with
JPEG 2000 image transmission application. EURASIP Journal on Advances in Signal Processing, 2012, 1-
13.

[34] De Fré, M., van der Hooft, J., Wauters, T., & De Turck, F. (2024, April). Scalable MDC-Based VVolumetric
Video Delivery for Real-Time One-to-Many WebRTC Conferencing. In Proceedings of the 15th ACM
Multimedia Systems Conference (pp. 121-131).

[35] Pang, Y., Wang, T., Anwer, R. M., Khan, F. S., & Shao, L. (2019). Efficient featurized image pyramid
network for single shot detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 7336-7344).

[36] Miao, J., Bai, S., Mumtaz, S., Zhang, Q., & Mu, J. (2024). Utility-Oriented Optimization for Video
Streaming in UAV-Aided MEC Network: A DRL Approach. IEEE Transactions on Green Communications
and Networking.

[37] Cui, L., Su, D., Yang, S., Wang, Z., & Ming, Z. (2020). TCLiVi: Transmission control in live video
streaming based on deep reinforcement learning. IEEE Transactions on Multimedia, 23, 651-663.

[38] Lo6pez-Paniagua, I., Rodriguez-Martin, J., Sdnchez-Orgaz, S., & Roncal-Casano, J. J. (2020). Step by step
derivation of the optimum multistage compression ratio and an application case. Entropy, 22(6), 678.

[39] Al-Najjar, Y., & Chen, D. (2012). Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI.
International Journal of Scientific and Engineering Research, 3(8), 1-5.

[40] Hsiao, C. W., & Tsai, W. J. (2009). Hybrid multiple description coding based on H. 264. IEEE Transactions
on Circuits and Systems for Video Technology, 20(1), 76-87.

7627



