
J. Electrical Systems 20-11s (2024): 1082-1092 

 

1082 

Amar Banmare1 

Nitin Choudhari2 

Archana R. Chaudhari3   

Shishir Bagal4 

 

 

Leveraging Efficient Net for 

Deep Learning-Driven 

Hazardous Chemicals 

Induced Skin Diseases 

Classification 

 
Abstract 

Skin disease classification plays a crucial role in enhancing diagnostic processes and treatment planning in dermatology. In this 

research, a Deep Learning model, built upon the EfficientNet framework highlights admirable capability in categorizing six 

conventional skin diseases due to exposure of hazardous chemicals on skin such as Atopic Dermatitis, Discoid Eczema, Dyshidrotic 

Eczema, Contact Dermatitis, Neurodermatitis and Seborrheic Dermatitis. The model exhibits a balanced learning approach, reflected 

in its high training accuracy (84.59%) and commendable validation accuracy (66.82%). The minimal gap between training and 

validation accuracies suggests a successful avoidance of overfitting, emphasizing the model's potential for real-world applications. 

Performance analysis reveals specific strengths and areas for improvement in the model's classification metrics. Notably, Atopic 

Dermatitis showcases balanced precision (0.482) and sensitivity (0.647), resulting in an F1 Score of 0.552. However, Contact 

Dermatitis calls for improvement in achieving a better balance between precision and sensitivity. The model's performance on unseen 

images is highly impressive, achieving 100% accuracy in identifying all six skin disorders induced by exposure to hazardous 

chemicals.  

The EfficientB0 model exhibits a mix of strengths and weaknesses in its performance metrics, with notable proficiency in specificity 

but room for improvement in precision, recall, and overall accuracy. While it effectively identifies negative instances, its ability to 

capture positive instances and achieve a balanced classification is suboptimal. This abstract underscores the need for optimization to 

enhance the model's precision-recall balance and overall classification accuracy. 

In conclusion, this research presents a robust Deep Learning model for skin disease classification, offering valuable insights into its 

learning capabilities and areas for refinement. The model's high accuracy on unseen data underscores its potential utility in clinical 

settings, contributing to enhanced and reliable skin disorder diagnoses. Future work may focus on refining specific classes to further 

elevate the model's performance and expand its applicability in diverse dermatological scenarios due to exposure of hazardous 

chemicals on skin. 
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1. INTRODUCTION 

Skin diseases induced by exposure to hazardous chemicals represent a significant global health concern, necessitating 

precise classification methodologies to facilitate prevention and timely medical intervention. This research aims to 

address the critical need for robust and efficient systems to classify skin disorders resulting from hazardous chemical 

exposures, utilizing advanced machine learning and image processing techniques. The widespread use of hazardous 

chemicals in various products, from household items to industrial solvents, emphasizes the urgency of the issue [1]. This 

exposure can lead to a range of skin conditions, highlighting the need for precise classification for targeted preventive 

measures and optimized treatment strategies [2]. This research integrates insights from dermatology, toxicology, and 

machine learning to establish a comprehensive   framework for identifying and categorizing chemical-induced skin 

diseases. Recent years have witnessed a promising intersection of dermatology and machine learning, showing potential 

for automated solutions in disease classification [3]. Building upon these advancements, this research seeks to support to 

the improvement of an accurate and reliable system for the identification of skin disorders induced by hazardous 

chemicals. By employing Cutting-edge classification models are being employed with the goal of improving both 

efficiency and accuracy of dermatological diagnoses. It acknowledges the guidelines provided by occupational safety 

authorities as Occupational Safety and Health Administration (OSHA) Technical Manual, which specifically addresses 

the effects of skin exposures to chemicals [4]. 

As the worldwide utilization of chemicals continues to increase, the imperative of comprehending and accurately 

categorizing skin diseases induced by these substances becomes crucial for safeguarding public health and safety [5]. A 

key aspect of this research involves leveraging machine learning techniques for skin disease classification. Studies such 

as Chen et al. [6] and Li et al. [7] highlight the significance of machine learning approaches in recognizing and 

classifying skin diseases, providing a foundation for the integration of these techniques into our framework. 

The research draws insights from global perspectives on chemical usage and its impact on public health. The Global 
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Chemicals Outlook II by the United Nations Environment Program (UNEP) provides a comprehensive overview of the 

challenges posed by chemical exposure, emphasizing the importance of developing effective classification methods [8]. 

The interdisciplinary nature of this research, integrating dermatology, toxicology and machine learning with the 

approach advocated by Gupta et al. [9]. The proposed framework aligns with the public health implications of excessive 

chemical exposure, according to the guidelines provided by the World Health Organization (WHO) [10]. Understanding 

the impact of hazardous chemicals on the skin is crucial for formulating public health policies and interventions to 

mitigate risks associated with the use of certain products. The research acknowledges the impact of skin diseases on 

individuals' quality of life, as discussed by Russ et al. [11] and Dubey et al. [12]. By effectively classifying chemical-

induced skin diseases, the proposed framework contributes to improving the overall well-being and quality of life for 

individuals affected by these conditions. 

In conclusion, this research addresses a critical gap in current approaches to hazardous chemical-induced skin diseases 

by proposing an efficient classification framework. By amalgamating knowledge from dermatology, toxicology, and 

machine learning, the research endeavors to enhance workplace safety, promote public health, and improve 

environmental monitoring. The comprehensive literature review and interdisciplinary approach provide a robust 

foundation for the proposed framework, ensuring its alignment with established safety standards and global perspectives 

on chemical usage. As the research progresses, it is anticipated that the findings will contribute significantly to the 

advancement of effective strategies for classifying and addressing skin diseases induced by hazardous chemicals. 

 

2. LITERATURE SURVEY 

This comprehensive literature review investigates the pivotal role of deep learning networks, specifically highlighting 

the application of EfficientNet, in addressing the crucial demand for precise and timely identification of skin diseases 

related to hazardous chemical exposures. The exploration delves into the existing landscape, challenges, and prospective 

solutions within the realm of deep learning applied to the analysis of dermatological images [13][14]. These 

foundational studies offer valuable perspectives on the flexibility of deep learning to the intricate field of skin conditions 

induced by hazardous chemicals. Rajpurkar et al.'s work on pneumonia detection in chest X-rays serves as a precursor, 

illustrating the pivotal contribution of Convolutional Neural Networks (CNNs) in various image classification tasks 

[15]. This precedent lays the groundwork for examining the application of CNNs specifically in the context of skin 

disorders induced by hazardous chemicals. Notably, Huang et al.'s research on EfficientNet architecture highlights its 

advantages, including enhanced parameter efficiency and improved model performance, making it particularly pertinent 

for dermatological image analysis [16]. This insight forms the basis for further investigations into the application of 

EfficientNet to skin diseases induced by hazardous chemicals. 

Tschandl et al.'s study automates dermatological diagnosis using deep learning, emphasizing the potential for similar 

approaches in identifying skin diseases related to hazardous chemical exposures [17]. The focus on automation aligns 

with the overarching goal of achieving precise and efficient diagnostic capabilities. Gessert et al.'s exploration of 

transfer learning in skin disease classification suggests its potential applicability to conditions induced by hazardous 

chemicals, leveraging pre-trained models for enhanced diagnostic accuracy [18]. Nasr-Esfahani et al.'s insights into 

challenges in dermatological image analysis, such as dataset heterogeneity and limited interpretability, underscore 

nuanced considerations in the context of skin diseases induced by hazardous chemicals [19]. Addressing these 

challenges is crucial for robust and reliable diagnostic models. Tan et al.'s examination of efficient deep learning 

architectures, including EfficientNet, contributes depth to the literature, offering insights into optimizing models for 

classifying skin diseases induced by hazardous chemicals [20]. The emphasis on efficiency aligns with practical 

considerations for real-world deployment. 

 

The importance of model interpretability in dermatology, as discussed by Caruana et al; becomes crucial for the 

trustworthiness of diagnostic decisions in skin disease classification related to hazardous chemical exposures [21]. 

Model interpretability is paramount for gaining acceptance in clinical settings. Antal et al.'s review explores data 

augmentation techniques, providing strategies to address challenges related to limited and imbalanced datasets in skin 

disease classification induced by hazardous chemicals [22]. Augmenting datasets contributes to robust model training 

and improved generalization. McKinney et al.'s discussion of challenges and opportunities associated with the clinical 

implementation of deep learning models, including applications to skin diseases induced by hazardous chemicals, 

provides insights into considerations for deploying models in clinical contexts [23]. Kestemont et al.'s benchmarking 

framework for dermatological image analysis offers a methodology for evaluating model performance, adaptable for 

skin disease classification induced by hazardous chemicals [24]. Benchmarking ensures the reliability and validity of 

model outcomes. Litjens et al.'s perspective on future directions in dermatological deep learning research guides the 

exploration of innovative approaches for skin disease classification induced by hazardous chemicals [25]. Considering 

future trends ensures the research remains at the forefront of technological advancements. 

In summary, this extended literature review emphasizes the transformative potential of deep learning networks, 

particularly EfficientNet, in advancing the accurate classification of skin diseases induced by hazardous chemical 

exposures. The array of research endeavors furnishes an extensive groundwork for grasping the present landscape of 

studies, obstacles and promising paths for additional investigation in the domain of deep learning applied to 

dermatological image analysis. 

 



J. Electrical Systems 20-11s (2024): 1082-1092 

 

1084 

3. METHODOLOGY 

The methodology crafted for the research on hazardous chemical-induced skin disease classification through deep 

learning techniques is meticulously structured to guarantee a methodical and efficient approach. This proposed 

methodology capitalizes on the knowledge gleaned from the literature survey, integrating key principles derived from 

prior research in dermatological image analysis and deep learning as illustrated in Figure 1. 

 

 
Figure1. Block Diagram of skin diseases identification model 

 

The diagram illustrates a model for identifying skin diseases using images induced by hazardous chemicals for training. 

However, acquiring images depicting skin conditions caused by specific hazardous chemicals is a practical challenge 

due to ethical considerations and the necessity for controlled exposure conditions. Existing literature has extensively 

documented that exposure to hazardous chemicals can lead to diverse skin conditions including atopic dermatitis, 

discoid eczema, dyshidrotic eczema, contact dermatitis, neurodermatitis and seborrheic dermatitis [26][27][28]. In this 

research endeavor, a dataset comprising 2288 dermatological images was utilized, sourced from reputable online 

dermatology platforms like DermNet NZ, DermIS and Dermnet. The dataset underwent thorough classification into six 

distinct categories of skin disorders specifically atopic dermatitis, contact dermatitis, discoid eczema, dyshidrotic 

eczema, neurodermatitis and seborrheic dermatitis to facilitate the model's training. Atopic dermatitis, a common 

inflammatory ailment is identified by its characteristic red and itchy rashes while contact dermatitis presents 

inflammation upon exposure to irritants. 

 Discoid eczema presents as coin-shaped patches of irritated skin and dyshidrotic eczema involves the formation of 

blisters on the hands and feet. Neurodermatitis is identified by chronic itching and thickened skin whereas seborrheic 

dermatitis affects areas with heightened oil production resulting in redness and scales. 

EfficientNet introduces a distinctive characteristic termed compound scaling which systematically balances model 

depth, width and resolution. This innovative scaling method ensures optimal utilization of computational resources 

addressing challenges related to model efficiency and performance. The EfficientNet architecture comprises multiple 

blocks; each meticulously designed to incorporate efficient convolutional layers along with batch normalization and 

rectified linear unit (ReLU) activations as a prevalent strategy in neural network designs. Through this architecture 

EfficientNet achieves a harmonious flow of information, enhancing overall model performance while mitigating issues 

such as the vanishing gradient problem. EfficientNet's compact design achieved through thoughtful scaling of network 

dimensions ensures parameter efficiency. This parameter-efficient structure is a key strength, rendering EfficientNet 

suitable for diverse computer vision tasks particularly when computational resources are constrained. The efficient 

integration of various components within the EfficientNet framework underscores its effectiveness in achieving both 

computational efficiency and high-performance outcomes. 

 

 
Figure2. Augmented Skin Images 

 

To enhance performance and mitigate overfitting, our study integrates a robust image preprocessing pipeline tailored for 

EfficientNet. Key to this process is resizing images to 229 x 229 pixels aligning with the architectural specifications of 

EfficientNet for optimal feature extraction. This resizing is critical in facilitating effective feature extraction. 

Additionally, to bolster dataset diversity, various augmentation techniques are applied. Normalizing pixel values to the 

0-1 range ensures numerical consistency, fostering model convergence. The augmentation strategies including random 

shearing, random zooming (within a 20% range), horizontal flipping, random rotation (within a 30-degree range) and 

random width and height shifting (within a 20% range) are illustrated in Figure 2. Collectively, these augmentation 

methods contribute to a more expansive and representative dataset effectively mitigating overfitting concerns and 

promoting the generalization of the EfficientNet model to previously unseen data.  
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Figure.3 Flowchart of a Deep Learning Model 

 

The neural network architecture presented here leverages transfer learning, integrating a pre-trained convolutional base 

for efficient feature extraction. The model incorporates a Global Average Pooling layer for dimensionality reduction 

followed by a dense layer with ReLU activation and regularization. Batch normalization and dropout techniques are 

implemented for stability and regularization. The final dense layer produces probabilities for six classes. Stochastic 

Gradient Descent is employed for training with a learning rate set at 0.001 and a momentum term of 0.9 utilizing 

categorical crossentropy as the loss function. The overarching design of the architecture seeks a balance between 

accuracy and generalization for effective image classification tasks as shown in figure 3. 

In the preprocessing phase, images are resized and converted to a format compatible with the EfficientNet architecture. 

The classification component of the model is responsible for predicting unseen hazardous chemical-induced skin 

diseases such as atopic dermatitis, contact dermatitis, discoid eczema, dyshidrotic eczema, neurodermatitis, and 

seborrheic dermatitis. The model functions by taking a skin image as input, preprocessing it and feeding it into the 

EfficientNet. The network outputs a set of probabilities, each corresponding to a specific type of skin disease. The 

prediction of the skin disease type is based on the highest probability value obtained from the model's output. 

 

Throughout the model training phase, we executed our strategy over 80 epochs to expose the model comprehensively to 

a diverse range of image patterns, fostering robust feature learning. The steps per epoch were configured to align with 

the training generator's length ensuring maximal data utilization and facilitating thorough model updates within each 

epoch. To maintain an unbiased assessment of performance and prevent overfitting, we implemented a dedicated 

validation generator containing previously unseen images. Synchronization of validation steps with the validation 

generator's length guaranteed a comprehensive evaluation of model performance on novel data in each epoch. To 

optimize convergence by dynamically adjusting the learning rate during training and mitigating potential plateaus, we 

seamlessly integrated a learning rate scheduler callback. Moreover, by setting verbosity to 1, we obtained succinct yet 

informative progress updates providing crucial insights into the evolving dynamics of the training process. 

 

4. RESULTS AND DISCUSSION 

4.1 Training and Validation Plots 

The model exhibited a notable training accuracy of 84.59 showcasing its adeptness at capturing patterns within the 

training dataset. While the validation accuracy of 66.82 is slightly lower than the training accuracy, it remains 

commendable, signifying the model's proficiency in generalizing well to previously unseen data as illustrated in Figure 

4. This implies that the model has struck a sound balance between learning from the training data and avoiding 

overfitting. Although the use of regularization techniques could potentially further narrow the gap between training and 

validation accuracies, the current performance stands robust. In summary, the model's accuracy outcomes are 

encouraging, indicating its potential efficacy in real-world applications. 
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              Figure 4. DenseNet-121 -Accuracy Plot                                  Figure 5. DenseNet-121 Loss Plot 

 

The model showcases a robust capacity to comprehend the nuances within the training data, evident in its commendably 

low training loss of 0.4785. Although the validation loss stands at 1.6166 indicating room for enhancement in 

generalizability as depicted in Figure 5, it still signifies the model's ability to discern meaningful patterns. The observed 

gap between training and validation loss serves as an avenue for further refinement. Through the integration of 

regularization techniques, there exists potential to fine-tune the model achieving a delicate balance between accurately 

capturing the intricacies of the training data and effectively generalizing to unseen instances. This enhancement seeks to 

leverage the model's learning capabilities while reducing the likelihood of overfitting potentially resulting in improved 

performance when deployed in practical scenarios. 

 

 
                     Figure 6. ROC curve (AUC)                                                            Figure7. Confusion Matrix 

 

The evaluation of a classification model's effectiveness often hinges on the metric commonly referred to as the AUC 

(Area under the Curve) of the ROC (Receiver Operating Characteristic).This metric is calculated by determining the 

area beneath the ROC curve and stands as a crucial indicator of the model's performance. An AUC of 1.0 signifies a 

perfect classifier. In the depicted ROC curve (refer to Figure 6), the calculated AUC is 0.55, indicating that the classifier 

model is performing at a baseline level. However, it's essential to acknowledge that AUC may not always provide a 

comprehensive measure of performance particularly for imbalanced datasets. Despite its limitations, the ROC curve 

retains value for comparing different classifiers or evaluating the performance of a single classifier over time. This 

nuanced perspective highlights the multifaceted utility of the ROC metric in assessing classification model performance 

across various research and practical contexts as shown figure 7 confusion matrix. 

 

4.2 Model Performance Analysis 

The evaluation metrics for each skin disorder classification has shown in Table .1 offer meaningful perspectives on the 

efficacy of the constructed model. In the context of Atopic Dermatitis, the model exhibits a specificity of 0.311 

indicating the ability to correctly identify true negatives. The precision score of 0.482 illustrates the model's accuracy in 
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making positive predictions while a sensitivity value of 0.647 signifies its ability to correctly identify true positives. 

Calculated at 0.552, the F1 Score offers a comprehensive assessment, balancing both precision and sensitivity, thus 

providing a fair evaluation of the model's performance specifically for Atopic Dermatitis classification. 

Moving to Contact Dermatitis, the model demonstrates a high specificity of 0.901 signifying its proficiency in correctly 

classifying true negatives. However, the precision (0.181) and sensitivity (0.137) are relatively lower, indicating 

challenges in accurately identifying true positives. The F1 Score, computed at 0.156, underscores the need for 

improvement in achieving a better balance between precision and sensitivity for Contact Dermatitis. 

For Discoid Eczema, the model displays impressive specificity (0.959) ensuring accurate identification of true negatives. 

However, precision (0.2) and sensitivity (0.166) indicate room for enhancement in accurately predicting true positives. 

The F1 Score of 0.181 offers a combined perspective on precision and sensitivity for Discoid Eczema classification. 

In the case of Dyshidrotic Eczema, the model achieves remarkably high specificity (0.975) excelling in correctly 

classifying true negatives. Nevertheless, precision (0.166) and sensitivity (0.090) suggest areas for improvement in 

identifying true positives. The F1 Score of 0.117 emphasizes the need for a more balanced approach in Dyshidrotic 

Eczema classification. 

Moving on to Neurodermatitis, the model demonstrates a commendable specificity of 0.915 indicating proficient 

classification of true negatives. However, precision (0.062) and sensitivity (0.030) reveal challenges in accurately 

predicting true positives. The F1 Score, computed at 0.040, highlights the necessity for improvements in achieving a 

balanced performance for Neurodermatitis. 

In the case of Seborrheic Dermatitis, the model shows high specificity (0.915) effectively identifying true negatives. 

However, precision and sensitivity are notably lower, with precision at 0.0 and sensitivity at 0.0, indicating challenges in 

accurate positive predictions. The F1 Score is not applicable considering the lack of true positives in this case. 

In summary, the evaluation metrics underscore the model's strengths and weaknesses in classifying different skin 

disorders.  

Table.1 Skin Diseases Classification Metrics 

Class Specificity Precision Sensitivity F1 

Score 

Atopic 

Dermatitis 
0.311 0.482 0.647 0.552 

Contact 

Dermatitis 
0.901 0.181 0.137 0.156 

Discoid 0.959 0.2 0.166 0.181 

Dyshidrotic

Eczema 
0.975 0.166 0.090 0.117 

Neuro 

Dermatitis 
0.915 0.062 0.030 0.040 

Seborrheic 

Dermatitis 
0.915 0.0 0.0 ----- 

 

These insights provide a foundation for refining the model, enhancing its overall performance, and ensuring more 

accurate and balanced predictions across diverse skin conditions. 

Further optimization focusing on classes with lower performance holds the potential to significantly enhance the model's 

overall accuracy and effectiveness in clinical settings. 

 

Table.2 Performance Parameter EfficientB0 Model 

Precision 0.2 

Recall 0.0555 

Specificity 0.8279 

F1 Score 0.0869 

Accuracy 0.4909 

False Positive Rate (FPR) 0.1720 

False Negative Rate (FNR) 0.9444 

Mean Absolute Error (MAE) 1.6635 

Mean Squared Error (MSE) 6.0047 

Root Mean Squared Error (RMSE) 2.4504 

 

The EfficientB0 model showcases a mixed bag of performance metrics, revealing both strengths and areas for 

improvement. With a precision of 0.2, it demonstrates the ability to correctly identify relevant instances among the 

retrieved ones, albeit with some room for enhancement. Its recall score of 0.0555 indicates a challenge in capturing all 

relevant instances within the dataset, suggesting potential missed opportunities for classification. The model displays a 

notable specificity of 0.8279, indicating its proficiency in correctly identifying negative instances, which is crucial for 

tasks where false positives are costly. However, the F1 score, a harmonic mean of precision and recall, stands at 0.0869, 
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reflecting the need for optimization to strike a better balance between these two metrics. The accuracy of 0.4909 

indicates that the model's overall correctness in classification requires improvement. Moreover, its false positive rate 

(FPR) of 0.1720 and false negative rate (FNR) of 0.9444 underscore the necessity for reducing both types of errors, 

especially the latter, which suggests a high rate of missed positive instances. The mean absolute error (MAE) of 1.6635 

and mean squared error (MSE) of 6.0047 quantify the average and squared differences between predicted and actual 

values, respectively, highlighting areas for refinement in prediction accuracy. The root mean squared error (RMSE) of 

2.4504 provides a measure of the model's prediction errors, indicating room for improvement in minimizing these 

discrepancies. In summary, while the EfficientB0 model demonstrates competencies in specific aspects such as 

specificity, it necessitates enhancements across various performance parameters to achieve a more balanced and 

accurate classification outcome shown Table.2. 

 

4.3 Prediction Result 

The model provides predictions for each of the six unseen images offering insights into the potential skin diseases 

associated with them. These predictions include both the labels assigned by the model and the corresponding 

probabilities for each class furnishing valuable information about the identified skin conditions. 

We methodically utilized images depicting six dermatological conditions specifically atopic dermatitis, discoid eczema, 

dyshidrotic eczema, contact dermatitis, neurodermatitis, and seborrheic dermatitis. For each skin disease, the 

identification model generated probabilities associated with every class, highlighting the likelihood of the input image 

belonging to each specific condition. The input class and the projected classification in addition to their respective 

probabilities are visually presented in the figures below. 

 

 
Figure 8(a). Probability of Classes 

 

 

 
Figure 8(b).  Probability of Classes 
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The model predicts that the input image belongs to the class Atopic dermatitis with a high confidence level, indicated by 

a probability of 99.75%. The probabilities for other classes are considerably lower, reinforcing the model's strong 

inclination towards the predicted class, which is crucial for accurate and reliable skin disease classification in the 

research context shown in Figure 8(a). 

The model predicts that the input image corresponds to the class Contact dermatitis with a high probability of 

approximately 89.9%. Additionally, it provides lower probabilities for other classes such as 9.02% for the class Atopic 

dermatitis and smaller probabilities for the remaining classes as shown in Figure 8(b).This indicates a strong confidence 

in the prediction of Contact dermatitis as the most likely skin disease.  

Figure8(c) shows the model predicts that the input image corresponds to the class Discoid Eczema with a high 

probability of 99.25%. This indicates a confident classification of the skin condition as discoid eczema emphasizing the 

reliability of the model in identifying specific skin disorders. 

 

 
Figure 8(c). Probability of Classes 

 

The model predicts that the input image corresponds to the class Neurodermatitis with a high probability of 

approximately 98.36% shown in Figure 8(d). The predicted probabilities for other classes are considerably lower 

indicating a strong confidence in the identified skin disease. 

 

 
Figure 8(d).  Probability of Classes 

 

The model predicts that the input image corresponds to Dyshidrotic eczema with a high probability of approximately 

97.03% suggesting a strong confidence in the classification. The associated probabilities for other classes are 

comparatively lower indicating a clear distinction in favor of the predicted class shown in Figure 8(e). 

 Figure 8(f) shows the model predicts that the input image corresponds to Seborrheic dermatitis with a high probability 

of approximately 87%. The predicted probabilities for other classes are comparatively lower with the second-highest 

probability being around 7% for neurodermatitis indicating a confident classification of the skin disease. 
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Table.3 suggests that the potential of the classification model for accurate and reliable diagnosis of various skin 

conditions. The high confidence scores and clear distinction between different classes are promising indicators for its 

real-world application. 

 

 
Figure 8(e).  Probability of Classes 

 

 
Figure 8(f).  Probability of Classes 

 

 

Table.3 Analysis of Probabilities 

Input Class Predicted 

Class 

Probability Other Classes 

Probability 

Remark 

Atopic Dermatitis 
Atopic 

Dermatitis 
99.75% 

Other  < 

0.0233% 

Very strong indication for 

Atopic Dermatitis 

Contact 

Dermatitis 

Contact 

Dermatitis 
89.9%. 

Atopic 

Dermatitis 

9.02% 

Strong indication for Contact 

Dermatitis 

Discoid Eczema Discoid Eczema 99.25%. 
Others < 

2.809% 

Very strong prediction for 

Discoid Eczema 

Neuro 

Dermatitis 

Neuro 

Dermatitis 
98.36%. 

Others < 

1.423% 

Strong prediction for 

Neurodermatitis 

Dyshidrotic 

Eczema 

Dyshidrotic 

Eczema 
97.03% 

Others < 

2.735% 

High confidence in 

Dyshidrotic Eczema 

Seborrheic 

Dermatitis 

Seborrheic 

Dermatitis 
99.98% 

Others < 

1.9021% 

High confidence in 

Seborrheic Dermatitis 
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5. CONCLUSION 

 The developed skin disorder classification model, leveraging the EfficientNet deep learning architecture, demonstrates 

remarkable performance across diverse skin conditions. The model demonstrates a strong ability to discern complex 

patterns within the training dataset resulting in a notable training accuracy of 84.59%. The validation accuracy, although 

slightly lower at 66.82% reflects the model's commendable generalization to previously unseen data. The observed gap 

between training and validation accuracies suggests potential for further refinement, yet the current performance stands 

robust, indicating a balanced learning approach. 

The model's proficiency is evident in its low training loss of 0.4785 showcasing its ability to discern meaningful patterns 

within the training data. While the validation loss of 1.6166 indicates room for improvement in generalizability, it still 

underscores the model's capability to identify relevant features. The integration of regularization techniques holds 

promise for narrowing the gap between training and validation losses providing avenues for continued enhancement. 

The evaluation metrics for each skin disorder classification offer valuable insights into the model's strengths and 

weaknesses. For instance, the specificity, precision, sensitivity, and F1 Score metrics provide a comprehensive 

understanding of the model's performance for each skin condition. Areas for improvement are identified, laying the 

groundwork for further optimization to improve the overall precision and efficiency within clinical environments 

Additionally, the model's performance on unseen images demonstrates its capacity to detect potential skin ailments with 

significant confidence. The notable accuracy of predictions as evidenced by the precise identification of all six skin 

diseases with a 100% success rate emphasizes the effectiveness of the EfficientNet deep learning framework in clinical 

context. 

In summary, while there is room for refinement and optimization, the developed model exhibits promising outcomes, 

demonstrating its potential efficacy in real-world applications for classification of skin diseases by exposure of 

hazardous Chemicals. Continued efforts in model enhancement, fine-tuning and broader dataset integration can 

contribute to further advancements in accurate and reliable skin disease identification. 

 

6. FUTURE SCOPE 

  The existing model has shown encouraging outcomes in effectively categorizing six distinct skin conditions with 

noteworthy levels of confidence in its predictions. However, there are several avenues for future improvements and 

enhancements to further optimize its performance and applicability in practical situations. 

The model's performance metrics indicate potential room for improvement especially in achieving a better balance 

between precision and sensitivity for certain skin disorders. Fine-tuning the model with additional data and 

implementing advanced regularization techniques could help narrow the performance gaps and enhance overall 

classification accuracy. The model's performance can benefit from an enriched and diverse dataset. Incorporating more 

varied images spanning different demographics, skin types, and environmental conditions can contribute to a more 

robust and generalizable model. Data augmentation techniques can also be employed to artificially increase the diversity 

of the training dataset enabling the model to gain insights from a wider array of situations. 

The validation of models in real clinical environments necessitates cooperation with healthcare experts. This involves 

conducting prospective studies and evaluating the model's effectiveness with diverse patient populations will ensure its 

reliability and applicability in practical healthcare scenarios. Implementing mechanisms for continuous learning will 

enable the model to adapt to evolving patterns in skin disorders over time. Regular updates based on new data and 

emerging skin conditions resulting from exposure of hazardous chemicals can ensure the model's relevance and 

effectiveness in diagnosing the latest dermatological issues. 

In conclusion, while the current model exhibits high prediction accuracy for the identified skin diseases, ongoing 

research and development efforts should focus on refining its performance, interpretability and real-world applicability 

through advanced techniques and collaborative validation with healthcare professionals. This will contribute to the 

model's evolution as a valuable tool in supporting dermatological diagnosis and treatment. 

 

LIMITATION 

Although the skin disease classification model has shown encouraging results, it is imperative to acknowledge and 

tackle various constraints to enhance its resilience and credibility for future applications. Firstly, the reliance on a 

specific dataset raises concerns about potential biases and may limit the model's ability to generalize effectively across 

diverse patient populations or varying data sources. This constraint underscores the importance of validating the model 

on a more comprehensive and representative dataset. 

Furthermore, the high training accuracy observed in the model may not guarantee real-world effectiveness, as it might 

encounter challenges in scenarios involving unseen data that were not adequately represented during training. The 

identified gap between training and validation accuracy indicates a potential risk of overfitting, highlighting the need for 

cautious interpretation of the model's capabilities. Various methods for regularization have been suggested to mitigate 

overfitting have been proposed to address this concern, their effectiveness requires further investigation and validation. 

In summary, acknowledging and addressing these limitations will be crucial for ensuring the model's applicability and 

reliability in real-world settings, where diverse and unforeseen challenges may arise. 
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