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Abstract

Skin disease classification plays a crucial role in enhancing diagnostic processes and treatment planning in dermatology. In this
research, a Deep Learning model, built upon the EfficientNet framework highlights admirable capability in categorizing six
conventional skin diseases due to exposure of hazardous chemicals on skin such as Atopic Dermatitis, Discoid Eczema, Dyshidrotic
Eczema, Contact Dermatitis, Neurodermatitis and Seborrheic Dermatitis. The model exhibits a balanced learning approach, reflected
in its high training accuracy (84.59%) and commendable validation accuracy (66.82%). The minimal gap between training and
validation accuracies suggests a successful avoidance of overfitting, emphasizing the model's potential for real-world applications.
Performance analysis reveals specific strengths and areas for improvement in the model's classification metrics. Notably, Atopic
Dermatitis showcases balanced precision (0.482) and sensitivity (0.647), resulting in an F1 Score of 0.552. However, Contact
Dermatitis calls for improvement in achieving a better balance between precision and sensitivity. The model's performance on unseen
images is highly impressive, achieving 100% accuracy in identifying all six skin disorders induced by exposure to hazardous
chemicals.

The EfficientBO model exhibits a mix of strengths and weaknesses in its performance metrics, with notable proficiency in specificity
but room for improvement in precision, recall, and overall accuracy. While it effectively identifies negative instances, its ability to
capture positive instances and achieve a balanced classification is suboptimal. This abstract underscores the need for optimization to
enhance the model's precision-recall balance and overall classification accuracy.

In conclusion, this research presents a robust Deep Learning model for skin disease classification, offering valuable insights into its
learning capabilities and areas for refinement. The model's high accuracy on unseen data underscores its potential utility in clinical
settings, contributing to enhanced and reliable skin disorder diagnoses. Future work may focus on refining specific classes to further
elevate the model's performance and expand its applicability in diverse dermatological scenarios due to exposure of hazardous
chemicals on skin.
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1. INTRODUCTION

Skin diseases induced by exposure to hazardous chemicals represent a significant global health concern, necessitating
precise classification methodologies to facilitate prevention and timely medical intervention. This research aims to
address the critical need for robust and efficient systems to classify skin disorders resulting from hazardous chemical
exposures, utilizing advanced machine learning and image processing techniques. The widespread use of hazardous
chemicals in various products, from household items to industrial solvents, emphasizes the urgency of the issue [1]. This
exposure can lead to a range of skin conditions, highlighting the need for precise classification for targeted preventive
measures and optimized treatment strategies [2]. This research integrates insights from dermatology, toxicology, and
machine learning to establish a comprehensive framework for identifying and categorizing chemical-induced skin
diseases. Recent years have witnessed a promising intersection of dermatology and machine learning, showing potential
for automated solutions in disease classification [3]. Building upon these advancements, this research seeks to support to
the improvement of an accurate and reliable system for the identification of skin disorders induced by hazardous
chemicals. By employing Cutting-edge classification models are being employed with the goal of improving both
efficiency and accuracy of dermatological diagnoses. It acknowledges the guidelines provided by occupational safety
authorities as Occupational Safety and Health Administration (OSHA) Technical Manual, which specifically addresses
the effects of skin exposures to chemicals [4].

As the worldwide utilization of chemicals continues to increase, the imperative of comprehending and accurately
categorizing skin diseases induced by these substances becomes crucial for safeguarding public health and safety [5]. A
key aspect of this research involves leveraging machine learning techniques for skin disease classification. Studies such
as Chen et al. [6] and Li et al. [7] highlight the significance of machine learning approaches in recognizing and
classifying skin diseases, providing a foundation for the integration of these techniques into our framework.

The research draws insights from global perspectives on chemical usage and its impact on public health. The Global
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Chemicals Outlook Il by the United Nations Environment Program (UNEP) provides a comprehensive overview of the
challenges posed by chemical exposure, emphasizing the importance of developing effective classification methods [8].
The interdisciplinary nature of this research, integrating dermatology, toxicology and machine learning with the
approach advocated by Gupta et al. [9]. The proposed framework aligns with the public health implications of excessive
chemical exposure, according to the guidelines provided by the World Health Organization (WHO) [10]. Understanding
the impact of hazardous chemicals on the skin is crucial for formulating public health policies and interventions to
mitigate risks associated with the use of certain products. The research acknowledges the impact of skin diseases on
individuals' quality of life, as discussed by Russ et al. [11] and Dubey et al. [12]. By effectively classifying chemical -
induced skin diseases, the proposed framework contributes to improving the overall well-being and quality of life for
individuals affected by these conditions.

In conclusion, this research addresses a critical gap in current approaches to hazardous chemical-induced skin diseases
by proposing an efficient classification framework. By amalgamating knowledge from dermatology, toxicology, and
machine learning, the research endeavors to enhance workplace safety, promote public health, and improve
environmental monitoring. The comprehensive literature review and interdisciplinary approach provide a robust
foundation for the proposed framework, ensuring its alignment with established safety standards and global perspectives
on chemical usage. As the research progresses, it is anticipated that the findings will contribute significantly to the
advancement of effective strategies for classifying and addressing skin diseases induced by hazardous chemicals.

2. LITERATURE SURVEY

This comprehensive literature review investigates the pivotal role of deep learning networks, specifically highlighting
the application of EfficientNet, in addressing the crucial demand for precise and timely identification of skin diseases
related to hazardous chemical exposures. The exploration delves into the existing landscape, challenges, and prospective
solutions within the realm of deep learning applied to the analysis of dermatological images [13][14]. These
foundational studies offer valuable perspectives on the flexibility of deep learning to the intricate field of skin conditions
induced by hazardous chemicals. Rajpurkar et al.'s work on pneumonia detection in chest X-rays serves as a precursor,
illustrating the pivotal contribution of Convolutional Neural Networks (CNNSs) in various image classification tasks
[15]. This precedent lays the groundwork for examining the application of CNNs specifically in the context of skin
disorders induced by hazardous chemicals. Notably, Huang et al.'s research on EfficientNet architecture highlights its
advantages, including enhanced parameter efficiency and improved model performance, making it particularly pertinent
for dermatological image analysis [16]. This insight forms the basis for further investigations into the application of
EfficientNet to skin diseases induced by hazardous chemicals.

Tschandl et al.'s study automates dermatological diagnosis using deep learning, emphasizing the potential for similar
approaches in identifying skin diseases related to hazardous chemical exposures [17]. The focus on automation aligns
with the overarching goal of achieving precise and efficient diagnostic capabilities. Gessert et al.'s exploration of
transfer learning in skin disease classification suggests its potential applicability to conditions induced by hazardous
chemicals, leveraging pre-trained models for enhanced diagnostic accuracy [18]. Nasr-Esfahani et al.'s insights into
challenges in dermatological image analysis, such as dataset heterogeneity and limited interpretability, underscore
nuanced considerations in the context of skin diseases induced by hazardous chemicals [19]. Addressing these
challenges is crucial for robust and reliable diagnostic models. Tan et al.'s examination of efficient deep learning
architectures, including EfficientNet, contributes depth to the literature, offering insights into optimizing models for
classifying skin diseases induced by hazardous chemicals [20]. The emphasis on efficiency aligns with practical
considerations for real-world deployment.

The importance of model interpretability in dermatology, as discussed by Caruana et al; becomes crucial for the
trustworthiness of diagnostic decisions in skin disease classification related to hazardous chemical exposures [21].
Model interpretability is paramount for gaining acceptance in clinical settings. Antal et al.'s review explores data
augmentation techniques, providing strategies to address challenges related to limited and imbalanced datasets in skin
disease classification induced by hazardous chemicals [22]. Augmenting datasets contributes to robust model training
and improved generalization. McKinney et al.'s discussion of challenges and opportunities associated with the clinical
implementation of deep learning models, including applications to skin diseases induced by hazardous chemicals,
provides insights into considerations for deploying models in clinical contexts [23]. Kestemont et al.'s benchmarking
framework for dermatological image analysis offers a methodology for evaluating model performance, adaptable for
skin disease classification induced by hazardous chemicals [24]. Benchmarking ensures the reliability and validity of
model outcomes. Litjens et al.'s perspective on future directions in dermatological deep learning research guides the
exploration of innovative approaches for skin disease classification induced by hazardous chemicals [25]. Considering
future trends ensures the research remains at the forefront of technological advancements.

In summary, this extended literature review emphasizes the transformative potential of deep learning networks,
particularly EfficientNet, in advancing the accurate classification of skin diseases induced by hazardous chemical
exposures. The array of research endeavors furnishes an extensive groundwork for grasping the present landscape of
studies, obstacles and promising paths for additional investigation in the domain of deep learning applied to
dermatological image analysis.
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3. METHODOLOGY
The methodology crafted for the research on hazardous chemical-induced skin disease classification through deep
learning techniques is meticulously structured to guarantee a methodical and efficient approach. This proposed
methodology capitalizes on the knowledge gleaned from the literature survey, integrating key principles derived from
prior research in dermatological image analysis and deep learning as illustrated in Figure 1.
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Figurel. Block Diagram of skin diseases identification model

The diagram illustrates a model for identifying skin diseases using images induced by hazardous chemicals for training.
However, acquiring images depicting skin conditions caused by specific hazardous chemicals is a practical challenge
due to ethical considerations and the necessity for controlled exposure conditions. Existing literature has extensively
documented that exposure to hazardous chemicals can lead to diverse skin conditions including atopic dermatitis,
discoid eczema, dyshidrotic eczema, contact dermatitis, neurodermatitis and seborrheic dermatitis [26][27][28]. In this
research endeavor, a dataset comprising 2288 dermatological images was utilized, sourced from reputable online
dermatology platforms like DermNet NZ, DermlS and Dermnet. The dataset underwent thorough classification into six
distinct categories of skin disorders specifically atopic dermatitis, contact dermatitis, discoid eczema, dyshidrotic
eczema, neurodermatitis and seborrheic dermatitis to facilitate the model's training. Atopic dermatitis, a common
inflammatory ailment is identified by its characteristic red and itchy rashes while contact dermatitis presents
inflammation upon exposure to irritants.

Discoid eczema presents as coin-shaped patches of irritated skin and dyshidrotic eczema involves the formation of
blisters on the hands and feet. Neurodermatitis is identified by chronic itching and thickened skin whereas seborrheic
dermatitis affects areas with heightened oil production resulting in redness and scales.

EfficientNet introduces a distinctive characteristic termed compound scaling which systematically balances model
depth, width and resolution. This innovative scaling method ensures optimal utilization of computational resources
addressing challenges related to model efficiency and performance. The EfficientNet architecture comprises multiple
blocks; each meticulously designed to incorporate efficient convolutional layers along with batch normalization and
rectified linear unit (ReLU) activations as a prevalent strategy in neural network designs. Through this architecture
EfficientNet achieves a harmonious flow of information, enhancing overall model performance while mitigating issues
such as the vanishing gradient problem. EfficientNet's compact design achieved through thoughtful scaling of network
dimensions ensures parameter efficiency. This parameter-efficient structure is a key strength, rendering EfficientNet
suitable for diverse computer vision tasks particularly when computational resources are constrained. The efficient
integration of various components within the EfficientNet framework underscores its effectiveness in achieving both
computational efficiency and high-performance outcomes.

Original Zoom Shear Flip

S

Figure2. Augmented Skin Images

To enhance performance and mitigate overfitting, our study integrates a robust image preprocessing pipeline tailored for
EfficientNet. Key to this process is resizing images to 229 x 229 pixels aligning with the architectural specifications of
EfficientNet for optimal feature extraction. This resizing is critical in facilitating effective feature extraction.
Additionally, to bolster dataset diversity, various augmentation techniques are applied. Normalizing pixel values to the
0-1 range ensures numerical consistency, fostering model convergence. The augmentation strategies including random
shearing, random zooming (within a 20% range), horizontal flipping, random rotation (within a 30-degree range) and
random width and height shifting (within a 20% range) are illustrated in Figure 2. Collectively, these augmentation
methods contribute to a more expansive and representative dataset effectively mitigating overfitting concerns and
promoting the generalization of the EfficientNet model to previously unseen data.
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efficientnet-b0_input | input: | [(None, 229, 229, 3)]
InputLayer output: | [(None, 229, 229, 3)]

efficientnet-b0 | input: | (None, 229, 229, 3)
Functional output: | (None, 8, 8, 1280)

4
global_average pooling2d_1 | input: | (None, 8, 8, 1280)

GlobalAveragePooling2D | output: (None, 1280)

dense_2 | input: | (None, 1280)
Dense | output: [ (None, 256)

batch_normalization_1 | input: | (None, 256)

BatchNormalization | output: | (None, 256)

dropout_1 | input: | (None, 256)
Dropout | output: | (None, 256)

dense_3 | input: | (None, 256)
Dense | output: [ (None, 6)

Figure.3 Flowchart of a Deep Learning Model

The neural network architecture presented here leverages transfer learning, integrating a pre-trained convolutional base
for efficient feature extraction. The model incorporates a Global Average Pooling layer for dimensionality reduction
followed by a dense layer with ReLU activation and regularization. Batch normalization and dropout techniques are
implemented for stability and regularization. The final dense layer produces probabilities for six classes. Stochastic
Gradient Descent is employed for training with a learning rate set at 0.001 and a momentum term of 0.9 utilizing
categorical crossentropy as the loss function. The overarching design of the architecture seeks a balance between
accuracy and generalization for effective image classification tasks as shown in figure 3.

In the preprocessing phase, images are resized and converted to a format compatible with the EfficientNet architecture.
The classification component of the model is responsible for predicting unseen hazardous chemical-induced skin
diseases such as atopic dermatitis, contact dermatitis, discoid eczema, dyshidrotic eczema, neurodermatitis, and
seborrheic dermatitis. The model functions by taking a skin image as input, preprocessing it and feeding it into the
EfficientNet. The network outputs a set of probabilities, each corresponding to a specific type of skin disease. The
prediction of the skin disease type is based on the highest probability value obtained from the model's output.

Throughout the model training phase, we executed our strategy over 80 epochs to expose the model comprehensively to
a diverse range of image patterns, fostering robust feature learning. The steps per epoch were configured to align with
the training generator's length ensuring maximal data utilization and facilitating thorough model updates within each
epoch. To maintain an unbiased assessment of performance and prevent overfitting, we implemented a dedicated
validation generator containing previously unseen images. Synchronization of validation steps with the validation
generator's length guaranteed a comprehensive evaluation of model performance on novel data in each epoch. To
optimize convergence by dynamically adjusting the learning rate during training and mitigating potential plateaus, we
seamlessly integrated a learning rate scheduler callback. Moreover, by setting verbosity to 1, we obtained succinct yet
informative progress updates providing crucial insights into the evolving dynamics of the training process.

4. RESULTS AND DISCUSSION

4.1 Training and Validation Plots

The model exhibited a notable training accuracy of 84.59 showcasing its adeptness at capturing patterns within the
training dataset. While the validation accuracy of 66.82 is slightly lower than the training accuracy, it remains
commendable, signifying the model's proficiency in generalizing well to previously unseen data as illustrated in Figure
4. This implies that the model has struck a sound balance between learning from the training data and avoiding
overfitting. Although the use of regularization techniques could potentially further narrow the gap between training and
validation accuracies, the current performance stands robust. In summary, the model's accuracy outcomes are
encouraging, indicating its potential efficacy in real-world applications.
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The model showcases a robust capacity to comprehend the nuances within the training data, evident in its commendably
low training loss of 0.4785. Although the validation loss stands at 1.6166 indicating room for enhancement in
generalizability as depicted in Figure 5, it still signifies the model's ability to discern meaningful patterns. The observed
gap between training and validation loss serves as an avenue for further refinement. Through the integration of
regularization techniques, there exists potential to fine-tune the model achieving a delicate balance between accurately
capturing the intricacies of the training data and effectively generalizing to unseen instances. This enhancement seeks to
leverage the model's learning capabilities while reducing the likelihood of overfitting potentially resulting in improved
performance when deployed in practical scenarios.
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The evaluation of a classification model's effectiveness often hinges on the metric commonly referred to as the AUC
(Area under the Curve) of the ROC (Receiver Operating Characteristic).This metric is calculated by determining the
area beneath the ROC curve and stands as a crucial indicator of the model's performance. An AUC of 1.0 signifies a
perfect classifier. In the depicted ROC curve (refer to Figure 6), the calculated AUC is 0.55, indicating that the classifier
model is performing at a baseline level. However, it's essential to acknowledge that AUC may not always provide a
comprehensive measure of performance particularly for imbalanced datasets. Despite its limitations, the ROC curve
retains value for comparing different classifiers or evaluating the performance of a single classifier over time. This
nuanced perspective highlights the multifaceted utility of the ROC metric in assessing classification model performance
across various research and practical contexts as shown figure 7 confusion matrix.

4.2 Model Performance Analysis

The evaluation metrics for each skin disorder classification has shown in Table .1 offer meaningful perspectives on the
efficacy of the constructed model. In the context of Atopic Dermatitis, the model exhibits a specificity of 0.311
indicating the ability to correctly identify true negatives. The precision score of 0.482 illustrates the model's accuracy in
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making positive predictions while a sensitivity value of 0.647 signifies its ability to correctly identify true positives.
Calculated at 0.552, the F1 Score offers a comprehensive assessment, balancing both precision and sensitivity, thus
providing a fair evaluation of the model's performance specifically for Atopic Dermatitis classification.
Moving to Contact Dermatitis, the model demonstrates a high specificity of 0.901 signifying its proficiency in correctly
classifying true negatives. However, the precision (0.181) and sensitivity (0.137) are relatively lower, indicating
challenges in accurately identifying true positives. The F1 Score, computed at 0.156, underscores the need for
improvement in achieving a better balance between precision and sensitivity for Contact Dermatitis.
For Discoid Eczema, the model displays impressive specificity (0.959) ensuring accurate identification of true negatives.
However, precision (0.2) and sensitivity (0.166) indicate room for enhancement in accurately predicting true positives.
The F1 Score of 0.181 offers a combined perspective on precision and sensitivity for Discoid Eczema classification.
In the case of Dyshidrotic Eczema, the model achieves remarkably high specificity (0.975) excelling in correctly
classifying true negatives. Nevertheless, precision (0.166) and sensitivity (0.090) suggest areas for improvement in
identifying true positives. The F1 Score of 0.117 emphasizes the need for a more balanced approach in Dyshidrotic
Eczema classification.
Moving on to Neurodermatitis, the model demonstrates a commendable specificity of 0.915 indicating proficient
classification of true negatives. However, precision (0.062) and sensitivity (0.030) reveal challenges in accurately
predicting true positives. The F1 Score, computed at 0.040, highlights the necessity for improvements in achieving a
balanced performance for Neurodermatitis.
In the case of Seborrheic Dermatitis, the model shows high specificity (0.915) effectively identifying true negatives.
However, precision and sensitivity are notably lower, with precision at 0.0 and sensitivity at 0.0, indicating challenges in
accurate positive predictions. The F1 Score is not applicable considering the lack of true positives in this case.
In summary, the evaluation metrics underscore the model's strengths and weaknesses in classifying different skin
disorders.

Table.1 Skin Diseases Classification Metrics

Class Specificity Precision Sensitivity | F1
Score

Atopic | 319 0.482 0.647 0.552

Dermatitis

Contact | 4 959 0.181 0.137 0.156

Dermatitis

Discoid 0.959 0.2 0.166 0.181

Dyshidrotic |  g75 0.166 0.090 0.117

Eczema

Neuro | 4915 0.062 0.030 0.040

Dermatitis

Seborrh_e_lc 0.915 0.0 00 | o

Dermatitis

These insights provide a foundation for refining the model, enhancing its overall performance, and ensuring more
accurate and balanced predictions across diverse skin conditions.

Further optimization focusing on classes with lower performance holds the potential to significantly enhance the model's
overall accuracy and effectiveness in clinical settings.

Table.2 Performance Parameter EfficientBO Model

Precision 0.2

Recall 0.0555
Specificity 0.8279
F1 Score 0.0869
Accuracy 0.4909
False Positive Rate (FPR) 0.1720
False Negative Rate (FNR) 0.9444
Mean Absolute Error (MAE) 1.6635
Mean Squared Error (MSE) 6.0047
Root Mean Squared Error (RMSE) 2.4504

The EfficientBO model showcases a mixed bag of performance metrics, revealing both strengths and areas for
improvement. With a precision of 0.2, it demonstrates the ability to correctly identify relevant instances among the
retrieved ones, albeit with some room for enhancement. Its recall score of 0.0555 indicates a challenge in capturing all
relevant instances within the dataset, suggesting potential missed opportunities for classification. The model displays a
notable specificity of 0.8279, indicating its proficiency in correctly identifying negative instances, which is crucial for
tasks where false positives are costly. However, the F1 score, a harmonic mean of precision and recall, stands at 0.0869,
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reflecting the need for optimization to strike a better balance between these two metrics. The accuracy of 0.4909
indicates that the model's overall correctness in classification requires improvement. Moreover, its false positive rate
(FPR) of 0.1720 and false negative rate (FNR) of 0.9444 underscore the necessity for reducing both types of errors,
especially the latter, which suggests a high rate of missed positive instances. The mean absolute error (MAE) of 1.6635
and mean squared error (MSE) of 6.0047 quantify the average and squared differences between predicted and actual
values, respectively, highlighting areas for refinement in prediction accuracy. The root mean squared error (RMSE) of
2.4504 provides a measure of the model's prediction errors, indicating room for improvement in minimizing these
discrepancies. In summary, while the EfficientBO model demonstrates competencies in specific aspects such as
specificity, it necessitates enhancements across various performance parameters to achieve a more balanced and
accurate classification outcome shown Table.2.

4.3 Prediction Result

The model provides predictions for each of the six unseen images offering insights into the potential skin diseases
associated with them. These predictions include both the labels assigned by the model and the corresponding
probabilities for each class furnishing valuable information about the identified skin conditions.

We methodically utilized images depicting six dermatological conditions specifically atopic dermatitis, discoid eczema,
dyshidrotic eczema, contact dermatitis, neurodermatitis, and seborrheic dermatitis. For each skin disease, the
identification model generated probabilities associated with every class, highlighting the likelihood of the input image
belonging to each specific condition. The input class and the projected classification in addition to their respective
probabilities are visually presented in the figures below.

Input class: Atopic Dermatitis Predicted Class: Atopic Dermatitis

1.0
o8 Class Probability
’ Atopic Dermatitis 0.9974676
> 06 Contact Dermatitis 8.966319e-05
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& 041 Neurodermatitis 2.449988e-05
Seborrheic Dermatitis 0.002338736
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Figure 8(a). Probability of Classes
Input class: Contact Dermatitis Predicted Class: Contact Dermatitis
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Figure 8(b). Probability of Classes
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The model predicts that the input image belongs to the class Atopic dermatitis with a high confidence level, indicated by
a probability of 99.75%. The probabilities for other classes are considerably lower, reinforcing the model's strong
inclination towards the predicted class, which is crucial for accurate and reliable skin disease classification in the
research context shown in Figure 8(a).

The model predicts that the input image corresponds to the class Contact dermatitis with a high probability of
approximately 89.9%. Additionally, it provides lower probabilities for other classes such as 9.02% for the class Atopic
dermatitis and smaller probabilities for the remaining classes as shown in Figure 8(b).This indicates a strong confidence
in the prediction of Contact dermatitis as the most likely skin disease.

Figure8(c) shows the model predicts that the input image corresponds to the class Discoid Eczema with a high
probability of 99.25%. This indicates a confident classification of the skin condition as discoid eczema emphasizing the
reliability of the model in identifying specific skin disorders.

Input class: Discoid Eczema Predicted Class: Discoid Eczema
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Figure 8(c). Probability of Classes
The model predicts that the input image corresponds to the class Neurodermatitis with a high probability of
approximately 98.36% shown in Figure 8(d). The predicted probabilities for other classes are considerably lower
indicating a strong confidence in the identified skin disease.

Input class: Neurodermatitis Predicted Class: Neurodermatitis
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Figure 8(d). Probability of Classes

The model predicts that the input image corresponds to Dyshidrotic eczema with a high probability of approximately
97.03% suggesting a strong confidence in the classification. The associated probabilities for other classes are
comparatively lower indicating a clear distinction in favor of the predicted class shown in Figure 8(e).

Figure 8(f) shows the model predicts that the input image corresponds to Seborrheic dermatitis with a high probability
of approximately 87%. The predicted probabilities for other classes are comparatively lower with the second-highest
probability being around 7% for neurodermatitis indicating a confident classification of the skin disease.
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Table.3 suggests that the potential of the classification model for accurate and reliable diagnosis of various skin
conditions. The high confidence scores and clear distinction between different classes are promising indicators for its

real-world application.

Input class: Dyshidrotic Eczema Predicted Class: Dyshidrotic Eczema
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Figure 8(e). Probability of Classes
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Figure 8(f). Probability of Classes
Table.3 Analysis of Probabilities
Input Class Predicted Probability | Other Classes | Remark
Class Probability
. ... | Atopic 0 Other < Very strong indication for
Atopic Dermatitis Dermatitis 99.75% 0.0233% Atopic Dermatitis
Contact Contact Atopic . Strong indication for Contact
. . 89.9%. Dermatitis -
Dermatitis Dermatitis Dermatitis
9.02%
L L Others < Very strong prediction for
0,
Discoid Eczema Discoid Eczema | 99.25%. 2 809% Discoid Eczema
Neuro Neuro 98.36% Others < Strong prediction for
Dermatitis Dermatitis ' ' 1.423% Neurodermatitis
Dyshidrotic Dyshidrotic 97.03% Others < High confidence in
Eczema Eczema ' 2.735% Dyshidrotic Eczema
Seborrheic Seborrheic 99.98% Others < High confidence in
Dermatitis Dermatitis ' 1.9021% Seborrheic Dermatitis
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5. CONCLUSION
The developed skin disorder classification model, leveraging the EfficientNet deep learning architecture, demonstrates
remarkable performance across diverse skin conditions. The model demonstrates a strong ability to discern complex
patterns within the training dataset resulting in a notable training accuracy of 84.59%. The validation accuracy, although
slightly lower at 66.82% reflects the model's commendable generalization to previously unseen data. The observed gap
between training and validation accuracies suggests potential for further refinement, yet the current performance stands
robust, indicating a balanced learning approach.
The model's proficiency is evident in its low training loss of 0.4785 showcasing its ability to discern meaningful patterns
within the training data. While the validation loss of 1.6166 indicates room for improvement in generalizability, it still
underscores the model's capability to identify relevant features. The integration of regularization techniques holds
promise for narrowing the gap between training and validation losses providing avenues for continued enhancement.
The evaluation metrics for each skin disorder classification offer valuable insights into the model's strengths and
weaknesses. For instance, the specificity, precision, sensitivity, and F1 Score metrics provide a comprehensive
understanding of the model's performance for each skin condition. Areas for improvement are identified, laying the
groundwork for further optimization to improve the overall precision and efficiency within clinical environments
Additionally, the model's performance on unseen images demonstrates its capacity to detect potential skin ailments with
significant confidence. The notable accuracy of predictions as evidenced by the precise identification of all six skin
diseases with a 100% success rate emphasizes the effectiveness of the EfficientNet deep learning framework in clinical
context.
In summary, while there is room for refinement and optimization, the developed model exhibits promising outcomes,
demonstrating its potential efficacy in real-world applications for classification of skin diseases by exposure of
hazardous Chemicals. Continued efforts in model enhancement, fine-tuning and broader dataset integration can
contribute to further advancements in accurate and reliable skin disease identification.

6. FUTURE SCOPE

The existing model has shown encouraging outcomes in effectively categorizing six distinct skin conditions with
noteworthy levels of confidence in its predictions. However, there are several avenues for future improvements and
enhancements to further optimize its performance and applicability in practical situations.
The model's performance metrics indicate potential room for improvement especially in achieving a better balance
between precision and sensitivity for certain skin disorders. Fine-tuning the model with additional data and
implementing advanced regularization techniques could help narrow the performance gaps and enhance overall
classification accuracy. The model's performance can benefit from an enriched and diverse dataset. Incorporating more
varied images spanning different demographics, skin types, and environmental conditions can contribute to a more
robust and generalizable model. Data augmentation techniques can also be employed to artificially increase the diversity
of the training dataset enabling the model to gain insights from a wider array of situations.

The validation of models in real clinical environments necessitates cooperation with healthcare experts. This involves
conducting prospective studies and evaluating the model's effectiveness with diverse patient populations will ensure its
reliability and applicability in practical healthcare scenarios. Implementing mechanisms for continuous learning will
enable the model to adapt to evolving patterns in skin disorders over time. Regular updates based on new data and
emerging skin conditions resulting from exposure of hazardous chemicals can ensure the model's relevance and
effectiveness in diagnosing the latest dermatological issues.

In conclusion, while the current model exhibits high prediction accuracy for the identified skin diseases, ongoing
research and development efforts should focus on refining its performance, interpretability and real-world applicability
through advanced techniques and collaborative validation with healthcare professionals. This will contribute to the
model's evolution as a valuable tool in supporting dermatological diagnosis and treatment.

LIMITATION
Although the skin disease classification model has shown encouraging results, it is imperative to acknowledge and
tackle various constraints to enhance its resilience and credibility for future applications. Firstly, the reliance on a
specific dataset raises concerns about potential biases and may limit the model's ability to generalize effectively across
diverse patient populations or varying data sources. This constraint underscores the importance of validating the model
on a more comprehensive and representative dataset.
Furthermore, the high training accuracy observed in the model may not guarantee real-world effectiveness, as it might
encounter challenges in scenarios involving unseen data that were not adequately represented during training. The
identified gap between training and validation accuracy indicates a potential risk of overfitting, highlighting the need for
cautious interpretation of the model's capabilities. Various methods for regularization have been suggested to mitigate
overfitting have been proposed to address this concern, their effectiveness requires further investigation and validation.
In summary, acknowledging and addressing these limitations will be crucial for ensuring the model's applicability and
reliability in real-world settings, where diverse and unforeseen challenges may arise.
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