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Abstract: -  Business decision-makers increasingly demand actionable insights from analytics, moving beyond 

predictive analysis to decision-making support. This paper presents XTREE, an artificial intelligence (AI)-based 

decision support framework for software projects. XTREE employs supervised machine learning, specifically 

decision tree algorithms, to learn and recommend plans that improve software metrics such as defect counts and 

runtime efficiency. By analyzing datasets with weighted class labels indicating quality, XTREE suggests precise 

changes to input features to transition a software system from a “bad” to a “better” quality state. Evaluated on 11 

datasets across various software projects, XTREE outperformed three state-of- the-art planning methods, 

achieving median improvements of up to 56% and maximum improvements of 77% in defect reduction and 

runtime optimization, respectively. This research highlights XTREE’s effectiveness in delivering interpretable 

and actionable plans, making it a valuable tool for AI applications in software engineering and business analytics. 
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I. INTRODUCTION 

Business users are demanding tools that support business- level interpretations of their data. At a panel on software 

analytics at ICSE‘12, industrial practitioners lamented the state of the art in software analytics [1]. Panelists 

commented “prediction is all well and good, but what about decision making?”. Note that these panelists were 

more interested in the interpretations and follow-up that occurs after the mining, rather than just the mining itself. 

So: 

• Instead of just accepting predictions on how many soft- ware defects to expect, business users might now 

demand a plan to reduce the likelihood of those defects. 

• Instead of just accepting predictions on the runtime time of their software, business users might now 

demand a plan to reduce that runtime. 

In response to this business-level demands for planners, we propose a novel planning method called XTREE for 

learning changes to a software system such that its performance “im- proves”, according to some measure. This 

paper uses XTREE to reduce the expected value of the defects in Jureczko et al.’s JAVA systems [2]; and the 

runtimes in software configured by Siegmund et al. [3].The contributions of this paper are (1) the new XTREE 

algorithm and (2) an evaluation strategy that shows XTREE performing significantly “better” than planners 

proposed in our prior work [4], [5], where “better” means effective (plans change the expected values of the class); 

succinct (it is inconvenient if plans always require changing everything); and surprising (a planner should 

sometimes tell us things we do not expect since, otherwise, there is no value added from using the planner).The 

rest of this paper describes our data, our planners, and the experiment that ranks XTREE against alternate 

approaches. This is followed by notes on related work and validity. 
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II. PRELIMINARIES 

A. What is a “Plan”? 

B. Our planners use tables of data with independent features and a dependent class feature. Classes have weights that 

indicate what rows are “bad” or “better”. Plans change a row such that it is more likely to be “better”. Specifically, 

for every test example Z, planners proposes a plan ∆ to adjust feature Zj: 

 

For example, to simplify a large bug-prone method, our planners might suggest to a developer to reduce its size 

(i.e. refactor that code by, say, splitting it across two simpler functions). 

Note that we make no assumption that a plan mentions every feature (so plan1 can be more succinct than plan2 

when plan1 mentions fewer features than plan2). 

C. From Prediction to Planning 

This paper is about the next step after prediction. Suppose a business user is presented with a prediction and they 

do not like what they see; e.g. the runtimes are too long or the number of defects is too high. This user may then 

ask a planning question; i.e. “what can we change to do better than that?”. 

Before exploring automatic methods to answer the planning question, we first comment on two manual methods. 

One way to propose changes to a project would be to ask some smart experienced person for their opinion on how 

to (e.g.) reduce defects and/or decrease runtimes. Sometimes such advice is an effective strategy and sometimes 

it is not. According to Passos et al. [6], developers may assume that the lessons they learn from a few past projects 

are general to all their future projects. They comment “past experiences were taken into account without much 

consideration for their con- text” [6]. Jørgensen & Gruschke [7] offer a similar warning. They report that the 

supposed software engineering “Gurus” rarely use lessons from past projects to improve their future reasoning 

and that such poor past advice can be detrimental to new projects. [7]. Accordingly, we propose a “trust, but 

verify” approach. After a software guru offers some sage wisdom, it is wise to ask some other oracle if there are 

any better options (just as a sanity check). The rest of this paper discusses some methods to build automatic oracles 

to implement that sanity check. 

Another way to find changes to a project might be to rely on the peer review processes used by the SE research 

community. This approach would propose changes to software projects that concur with internationally accept 

best practices. There are two problems with that approach. Firstly, given the rapid pace of change in software 

engineering, we may be asking questions for which there is no current widely accepted concept of “best practice”. 

Secondly, given the diversity of SE products and practices and personnel, it may well be that the current project 

being discussed is substantively different to prior work. Numerous recent local learning results compare (1) single 

models learned from all available data to (2) multiple models learned from clusters within the data [8-14]. A 

repeated result in those studies is that the local models generated better effort and defect predictions (better median 

results, lower variance in the predictions). §IV-B3 of this paper offers yet another locality result: 

• One standard rule in the literature is that it is useful to implement modules such that they are internally 

cohesive (use much of their own local methods) while being loosely coupled with other classes [15]. 

• While that may be true in general, for particular classes other changes may be more important (later in 

this paper, we show one set of results where that is indeed the case). 

In summary, it is useful to have automatic methods to recom- mend changes. Such methods can fill in for human 

expertise (if such experts are absent) or to offer a second opinion. Also, prior to making automatic 

recommendations, it is wise to first stratify the data (clump it into related examples) then generate advice specific 

to each clump. Accordingly, the rest of this paper defines and evaluates automatic methods to find plans from N 

examples divided into many clumps. 
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D. Trusting the Changes 

XTREE is evaluated by comparing predicted performance scores before and after a planner makes changes to the 

feature values of an example: After making those changes, we may have a new example that has never been seen 

before. Therefore, it must be asked “can we trust the predictions made on such new examples?” 

To answer this question, we note that data miners explore two “clouds” of data: (1) the cloud of training examples 

and 

(2) the cloud of test examples (for a visualization of these clouds, see Figure 2). We should mistrust the predictions 

made by a model if it is being applied to examples that are too far away from the training cloud. To test for “too 

far”, we can run a data mining experiment that tests how well a model learned from the training data applies to 

the test data. Such experiments return some performance value. 

Note that predictions about changes that fall within the space of the training+test data, will be at least as accurate 

as the predictions of the original test data. With this, we assert that the predictions for changes that move examples 

towards/away from the training data can be trusted more/less (respectively). 

Accordingly, we need trust-increasing planners to generate new examples closer to the training examples. To see 

how this works, Figure 2 is from the ivy data set (one of the Jureczko data sets used in this paper). It shows: (1) 

the training examples in gray, (2) the test examples in red, and (3) the changed examples displaced after applying 

a plan (in green). Note that the the changed examples cases (shown in green) fall closer to the training cases 

(shown in gray) than the test cases (shown in red). 

In that green region of changed examples, our belief in the value of predictions will be just as much as, if not more 

than, our belief in the value of the predictions in the red region (that contains the original test data). This pattern 

of Figure 2 (where the new examples are found closer to the training cases than the test cases) has been observed 

in all the other data sets studied in this paper. Hence, we can assert that predictors learned from these training 

examples have some authority in the regions containing the changes examples. 

That said, the above comes with some important caveats: 

• The quality of the prediction depends on the nature of the training data. Thus, we strongly recommend 

that both the data set and the predictor be assessed prior to planning. This ensures that the predictor’s performance 

is adequate for a data set. We tackle this issue in detail in §??. 

• Planners should be designed to be trust increasing. We list four such planning methods in §III. 

• Where possible, planners should be assessed via some external oracle that can accurately assess new 

examples. For an example of that kind of analysis, see §V-C. 

The Jureczko data records the number of known defects for each class using a post-release bug tracking system. 

The classes are described in terms of nearly two dozen metrics such as number of children (noc), lines of code 

(loc), etc. For details on the Jureczko data, see Figure 1 and Figure 3. All the planning methods of this paper 

reflect on the numeric value of the raw defect counts. The predictor considers defects to be a Boolean class data 

set, where defects are TRUE if the numeric defect count is greater than zero and FALSE otherwise. 

The Siegmund data, described in Figure 4, records the 

runtimes of compiled systems. To obtain the data, Siegmund et al. perturbed the configuration parameters in the 

Makefiles of six systems: Apache, SQLite, LLVM, x264 and two versions of the Berkeley database (one written 

in “C” and one in Java). Then, the performance was measured using standard bench- marking tools (delivered by 

ORACLE for Berkley data sets and other popular tools such as AUTOBENCH and HTTPREF for the rest) [3]. 

It’s worth noting that in each of the above data sets, several features are interdependent, this is expressed using a 

feature model. Figure 5 shows an example of such a feature model defining valid combinations of settings in the 

Berkley 
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amc

  

average method 

complexity 

e.g. number of JAVA byte codes 

avg cc average McCabe average McCabe’s cyclomatic complexity seen in class 

ca afferent couplings how many other classes use the specific class. 

class.  

cam cohesion amongst 

classes 

summation of number of different types of method parameters in every method 

divided by a multiplication of number 

of different method parameter types in whole class and number of methods. 

cbm coupling between 

methods 

total number of new/redefined methods to which all the inherited methods are 

coupled 

cbo coupling between 

objects 

increased when the methods of one class access services of another. 

ce efferent couplings how many other classes is used by the specific class. 

dam data access ratio of the number of private (protected) attributes to the total number of 

attributes 

dit depth of inheritance tree  

ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of 

methods and variables inherited) 

lcom lack of cohesion in 

methods 

number of pairs of methods that do not share a reference to an case variable. 

locm3 another lack of cohesion 

measure 

if m, a are the number of methods and attributes in a class number and 

µ(a) is the number of methods accessing an attribute, then  

𝑙𝑐𝑜𝑚3 =  ((1, 𝑗𝑎µ(𝑎, 𝑗))  −  𝑚) / (1 −  𝑚) 

 

loc lines of code  

max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class 

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by 

member methods of the class 

moa aggregation count of the number of data declarations (class fields) whose types are user 

defined classes 

noc number of children  

npm number of public 

methods 

 

rfc response for a class number of methods invoked in response to a message to the object. 

wmc weighted methods per 

class 

 

nDefects 

defect 

raw defect counts 

defects present? 

Numeric: number of defects found in post-release bug-tracking systems. 

Boolean: if nDefects > 0 then true else false 
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Fig. 1. OO measures used in our defect data sets. Last lines, shown in denote the dependent variable 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Gray, red, green show (1) training examples, (2) test examples and 

(3) tests that have been altered by planners. This figure uses axes generated from the first two components of a 

PCA analysis of all points. 

data set cases % defective 

ant 947 22 

camel 1819 19 

jedit 1257 2 

ivy 352 11 

log4j 244 92 

lucebe 442 59 

poi 936 64 

synapse 379 34 

velocity 410 34 

xalan 2411 99 

xerces 1055 74 

 

Fig. 3.  Jureczko data: columns in the format of Figure 1. 

These feature models were used by Siegmund et al. to ensure all their perturbations are valid (we will use the 

same models to cull invalid plans). Our evaluation strategy (discussed below) divides this data into a training and 

a testing set. From the training set we apply a data miner (to learn a quality predictor) and various planning methods 

(to learn different plans). Next, we try applying each of those plans to the test set and ask the quality predictor to 

assess the changed examples. Finally, we say that the “best” planner is the one that most reduces the predicted 

values in the changed examples. 
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Project Domain Lang. LOC Features Config 

BDBC: Berkeley DB Database C 219,811 18 2560 

BDBJ: Berkeley DB Database Java 42,596 32 400 

Apache Web Server C 230,277 9 192 

SQLite Database C 312,625 39 3,932,160 

LLVM Compiler C++ 47,549 11 1024 

x264 Video Enc. C 45,743 16 1152 

Fig. 4. Siegmund data 

 

 

Fig. 5. Berkeley database feature model (“C” version). 

 

 

 

data set 

Data set properties  Results from learning  

training testing untuned tuned change 

versions cases versions cases % 

defec 

tpivde pf

 good

? 

pd pf good? pd pf 

jedit 

ivy 

camel 

ant 

synapse 

velocity 

lucene 

3.2, 4.0, 4.1, 4.2 

1.1, 1.4 

1.0, 1.2, 1.4 

1.3, 1.4, 1.5, 1.6 

1.0, 1.1 

1.4, 1.5 

1257 

352 

1819 

947 

379 

410 

4.3 

2.0 

1.6 

1.7 

1.2 

1.6 

492 

352 

965 

745 

256 

229 

 55 29 

65 35 y 

64 29 y 

65 28 y 

9 0 

0 -7 

⋆ 

⋆ 

4199 31 56 37 5 6  

49 13 y 63 16 y 14 3 ⋆ 

4354 

7384 

19 

60 

47 15 

76 60 

2 -4 

-2 0 
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22 

64 
74 
92 
99 

poi 

xerces 

log4j 

xalan 

2.0, 2.2 

1.5, 2, 2.5 

1.0, 1.2, 1.3 

1.0, 1.1 

2.4, 2.5, 2.6 

442 

936 

1055 

244 

2411 

2.4 

3.0 

1.4 

1.2 

2.7 

340 

442 

588 

205 

909 

5569 25 60 25 y 4 0 

56 31 60 10 y 4 -21 ⋆ 

30 31 

32 6 

38 9 

40 29 

30 6 

47 9 

10 -2 

-2 0 

9 0 

× 

× 

× 

Fig. 6. Training and test data set properties for Jureczko data , sorted by % defective examples. On the right-

hand-side, we show the results from learning. Data is usable if it has a recall of 60% or more and false alarm 

of 30% or less (and note that, after tuning, there are more usable data sets than before). Results  marked with 

“⋆”  show large improvements in performance, after tuning (lower pf or higher pd). Data in the  three bottom 

rows , marked with “×”, are performing poorly– that data so few non-defective examples that it is hard for our 

learners to distinguish between classes. 

As mentioned in the last section, this approach depends on having effective predictors for assessing the results. 

For the Siegmund data, this criteria was relatively easy to achieve. The data in those data sets have a continuous 

class (runtime of the compiled system) so the performance of a quality predictor can be measured in terms of 

difference between the predicted run- time p of test case items and their actual runtimes a using s = (1 abs(a−p) ) 

100% (higher values are better). This paper explores six Siegmund configuration data sets: Berkeley DB (Java 

and C versions), Apache, SQLite, LLVM, and x264. As a preliminary study, we split that data into equal sized 

train:test groups and trained a Random Forest Regressor (from the SciKit learn kit [16]) on one half, then 

applied to the other. Af- ter repeating this process 40 times, we achieved nearly perfect accuracy of {98.45%, 

99.62%, 94.86%, %, 98.60%, 99.87%% respectively; i.e. we are confident that the predictors from 

the Siegmund data can assess our plans. (Aside: if the reader doubts that such high scores are achievable, we note 

that these scores are consistent with those achieved by predictors built by Siegmund et al. [3].) 

It proved to be more complicated to commission the Ju- reczko data sets for this study. For that data, we found 

that the quality predictors built from this data are far from perfect; However, for some data sets, the predictors 

could be salvaged using the techniques discussed in this section. 

Figure 6 shows our preliminary studies with the Jureczko data. Given access to V released versions, we test 

on version V and train on the available data from V  1 earlier releases (as shown in Figure 6, this means that 

we are training on hundreds to thousands of classes and testing on smaller test suites). Note the  three bottom   

rows  marked with : these contain predominately defective classes (two-thirds, or more). In such data sets, it is 

hard to distinguish good from bad (since there are so many bad examples). 

In order to identify the presence (or absence) of defects, we can consider using Boolean classes in the 

Jureczko data ( True if defects > 0; False if defects = 0). For such data, quality of the predictor can be 

measured using  

(1) the probability of detection (a.k.a. “pd” or recall): the percent of faulty classes in the test data detected by 

the predictor; and 

(2) the probability of false alarm (a.k.a. “pf”): the percent of non-fault classes that are predicted to be defective. 

As a preliminary study, we split the Jureczko data into train and test groups. Random Forest (again, from the 

SciKit learn kit [16]) was built from the training data, then applied to the test data. The “untuned” columns of 

Figure 6 shows those results. We called a data set “usable” if Random Forest was able to classify majority of the 

instances correctly. For this purpose, we set a threshold of pd 60 pf 30% to select suitable data sets. With this 

threshold, however, none of our data sets were be suitable for this study. 

Fortunately, the “tuned” columns of Figure 6 show that we can salvage some of the data sets. Pelayo and 

Dick [17] report that defect prediction is improved by SMOTE [18]; i.e. an over-sampling of minority-class 

examples and an under- sampling of majority-class examples. Also, Fu et al. [19] report that parameter tuning 

with differential evolution [20] can quickly explore the tuning options of Random Forest to find better settings 
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for the (e.g.) size of the forest, the termination criteria for tree generation, etc. The rows  marked with a ⋆ in 

Figure 6 show data sets whose performance was improved remarkably by these techniques. For example, in poi, 

the recall increased by 4% while the false alarm rate dropped by 21%. However, as might have been expected, we 

could not salvage the data sets in the three bottom rows. 

In summary, while we cannot trust predictors from some of our Jureczko data sets, we can plan ways to reduce 

defects in jedit, ivy, ant, lucene and poi. Accordingly, when this study explores the Jureczko data, we will use 

these five data sets. 

(Aside: One important detail to be stressed here is that, when we applied SMOTE-ing and parameter tunings, 

those techniques were applied to the training data and not the test data; i.e. we took care that no clues from the 

test set were ever used in this tuning process.) 

III. FOUR PLANNING METHODS 

This section describes XTREE (which we call Method4) and three alternate methods for learning plans. XTREE, 

a novel planner introduced in this work, uses the decision tree learner of Figure 7.D. The other methods use the 

top-down bi- clustering method described in Figure 7.C which recursively divides the data in two using a 

dimension that captures the greatest variability in the data. We proposed Method 1 and 2 in 2012 [4] while 

Methods 3 comes from research conducted earlier this year [5]. All methods have the properties proposed in §II: 

(1) they are local learners that find plans particular to each test case; and (2) they are trust-increasing; i.e. they 

change examples such that they move closer to the training data. 

A. Methods 

Our description of the methods adopts the following con- vention. All variables set via our engineering 

judgement with Greek letters; e.g. α, β, γ, ω. In this paper, we show our current settings to these variables produces 

useful results. Elsewhere [19], [21], we are exploring tuning methods to find better settings but we have nothing 

definitive yet to report on auto- tuning planners. 

1) Method1= CD= Centroid Deltas: Summary1: Method1 

computes a plan from the difference between where you are (which we will call Ci) and where you want to be 

(which we will call Cj). 

Assumption1: Large data sets can be adequately represented by a few dozen (or so) centroids. 

Details1: Method1 clusters project data by reflecting on the independent variables, then reports the delta 

between the cluster centroids. After clustering training data using the WHERE algorithm of Figure 7.C, 

Method1 replaces all clusters with a centroid Ci computed from the median value of each continuous/discrete 

feature. After that, it finds the closest centroid Cj that has a better performance score. For Jureczko data, 

“better” means fewer defective examples while for the Seigmund data, “better” means lower median runtimes for 

the examples in that cluster. Method1 then caches the delta between the independent features between Ci 

and Cj. For continuous features, this delta is Cj Ci. For discrete values, this delta is the value of that feature 

in Cj. Finally, for every test case, Method1 use the distance measure d shown in Figure 7.B to find the nearest 

centroid Ci. It then proposes a plan for improving that test case that is the conjunction of all the deltas between 

Ci and Cj. 

2) Method2=CD+FS=Method1+Feature Selection : Sum- mary2: Method2 works like Method1 but now 

the plans only mention the β = 33% most informative features. Hence, Method2’s plans are simpler. 

Assumption2: When reasoning about centroids, we can just use features that best distinguish centroids; i.e. 

whose values appear in just a few centroids. Details2: A common result is that the signal in a table of data is 

mostly contained in a handful of features [22], [23]. Papakroni [24] has tested for this effect in the Jureczko data 

sets. Papakroni found no loss of efficacy in defect prediction after sorting all features by their information content, 

then making predictions using (a) all features or (b) just using 33% most informative features. 

Based on the above, it might be possible to simplify the plans found by Method1 by pruning back the features 

in those plans. Following on from Papakroni, our Method2 returns plans containing just the top β = 33% most 
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informative features. Here, “informative” means that the values of a feature are good for selecting a small set of 

clusters (ideally, just one). This can be estimated using the Fayyad-Iranni INFOGAIN algorithm [25] of Figure 

7.E. 

3) Method3= Best In Cluster (BIC)= Method1 + Gradient: Summary3: Method3 is like Method1, but it 

uses more knowledge about the training data. 

Assumption3: There exists “gradients” between clusters which, if used, will better guide us to finding 

beneficial plans. Details3: Method3 generates clusters from the training data just like Method1. Following this, 

it summarizes the clusters CX using “Best-In-Cluster” BX , which is (1) the centroid of the cluster for the 

Jureczko data; (2) the cluster’s member with the fastest runtime for the Seigmund data. Following this, Method3 

connects each cluster Ci to a nearest neighbor Cj by a gradient. Each gradient has a (bottom,top) end labelled 

(Ci, Cj) containing the (worst,best) performance scores, respectively. 

For each test instance, Method3 finds the nearest gradient, the runs up to the top (best) end Cj, then extracts 

Bj (which is the best-in-cluster associated with Cj). The returned plan is then computed as a fraction (ω = 0.5) 

of the distance between the test case and it’s corresponding Bj. 

4) Method4=XTREE= Deltas in Decision Branches: Sum- mary4: Method4 builds a decision tree, then 

generates plans from the difference between two branches: (1) the branch to where you are and (2) the branch 

to where you want to be. 

Assumption4: One potential problem with Methods 1,2 and 3 is the unsupervised nature of the clustering 

algorithm (WHERE) that executes without knowledge of the target class. Supervised methods assume that it is 

useful to also reflect on the target class. 

Details4: XTREE uses a supervised decision tree algorithm of Figure 7.D to divide the data. Next, XTREE 

builds plans from the branches of the decision trees using the code of Figure 8. That code asks three questions, 

the last of which returns the plan: 

1) What current branch does a test case fall in? 

2) What desired branch would the test case want to move to? 

3) What are the deltas between current and desired? 

IV. EXPERIMENTAL ANALYSIS 

This section describes an experimental design (and results) for evaluating the above four methods. 

Figure 7.A: Measuring Variability 

For both continuous and discrete values, the variability can be measured using standard deviation (σ) or entropy 

(e). For continuous values, the standard deviation is given by the formula: 

 

where �̅� is the mean of the numeric features 𝑥1 𝑥2, 𝑥3,… . . 𝑥𝑛 and n is the number of data points. For discrete 

values, the entropy is calculated using the following formula: 

 

where  represents the probability discrete value. 

Figure 7.B: Measuring distance 

We use Aha et al.’s standard Euclidean distance measure [26]. For F independent features, the measure returns  

feature (usually set to 1).  
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Within ∆, if Xi, Yi are both missing values, then return 1. Otherwise, replace any missing items with values that 

maximizes the following. For numerics, ∆ normalizes Xi, Yi (to the range 0,1 for min,max) then returns Xi 

Yi. For discrete variables, ∆ returns 0,1 if Xi, Yi are the same,different (respectively). 

Figure 7.C: Top-down Clustering with WHERE 

WHERE divides data into groups of size α =N. Using this measure, WHERE runs as follows: 

1) Find two distance cases, X, Y by picking any case W at random, then setting X to its most distant case, then setting Y 

to the case most distant from X (which requires only O(2N) comparisons). 

2) Project each case Z to position x on a lines running from X to Y : if a, b are distances Z to X, Y then x = (a2 +c2 − 

b2)/(2ac). 

3) Split the data at the m e d ia√n  x value of all cases 

4) For splits larger than α = N, recurse from step1 

In terms of related work, the above is similar in approach to Boley’s PDDP algorithm [27], but PDDP requires 

an O(N 2) calculation at each recursive level to find the PCA principle component. Our method, on the other hand, 

performs the same task with only O(2N) distance calculations using the FASTMAP heuristic [28] shown in 

step1. Platt [29] notes that FASTMAP is a Nystro¨m approximation to the first component of PCA. 

Figure 7.D: Top-down division with Decision Trees 

Find a split in the values of independent features that most reduces the variability of the dependent feature 

(measured using Figure 7.A). Construct a standard decision tree using these splits 

Figure 7.E: Finding the most informative rows 

Discretize all numeric features using the Fayyad-Iranni dis- cretizer [25] (divide numeric columns into bins 

Bi, each of which select for the fewest cluster ids). Let feature F have bins Bi, each of which contains ni 

rows and let each bin Bi have entropy ei computed from the frequency of clusters seen in that bin (computed 

from Figure 7.A). Cull the the features as per [24]; i.e. just use the β = 33% most informative features where 

the value of feature F is  (N is the number of rows) 

Using the training data, divide the data using the decision tree algorithm of Figure 7D into groups of size 𝜶 =

√𝑵. 

For each test item, find the current leaf: take each test instance, run it down to a leaf in the decision tree. After 

that, find the desired leaf: 

• Starting at current, ascend the tree lvl ∈ {0, 1, 2...} levels; 

• Identify sibling leaves; i.e. leaf clusters that can be reached from level lvl that are not same as current. 

• Using the score defined above, find the better siblings; i.e. those with a score less than γ = 0.5 times the mean score 

of current. If none found, then repeat for lvl+ = 1. Also, return no plan if the new lvl is above the root.  

• Return the closest better sibling where distance is measured between the mean centroids of that sibling and current 

• Also, find the delta; i.e. the set difference between conditions in the decision tree branch to desired and current. 

To find that delta: (1) for discrete attributes, delta is the value from desired; (2) for numerics, delta is the 

numeric difference; (3) for numerics discretized into ranges, delta is a random number selected from the low 

and high boundaries of the that range. 

Finally, return the delta as the plan for improving the test instance. 
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1) A Strategy for Evaluating Planners: Our experimental design is shown in Figure 9. We divide the project 

data into two disjoint sets train and test (so train∩test =∅ ). Next, from the train set, we build both a planner 

and a predictor. 

Our general framework does not commit to any particular choice of planner or predictor but, for the purposes 

of this paper: 

• Our planner will be one of Methods 1,2,3,4; 

• Our predictor will be the Random Forest Classifier [30] (for discrete classes) and Random Forest Regressor (for 

continuous classes) taken from SciKit Learn [16]. We use these data miners since extensive studies have shown 

these to be amongst the better alternatives for mining software data [31]. 

As for the test data, this is passed to the predictor to measure performance statistics related to effectiveness. 

If our predictors fail to perform effectively on the test data, then we cannot trust them to comment on our plans. 

Accordingly, if that performance is unsatisfactory, we abort. Recall from §?? that this step indicated we should 

not use some of the Jureczko data. 

Else, we (1) apply the planner to alter the test data; then 

(2) apply the predictor to the altered data test′; then (3) return data on the before, after predictions expressed 

as percent improvement, denoted by  

 

 

the following following properties: 

• If R = 0%, this means “no change from baseline”; 

• If R > 0%, this indicates “ improvement over the baseline”; 

• If R < 0%, this indicates “optimization failure”. 

2) Statistical Methods: Our methods use some stochastic algorithms; e.g. WHERE’s selection of “what 

example to explore first” (see Figure 7.C) and XTREE’ occasional use of a random guess when deciding what 

part of a discretized range to include in the plan (see Figure 8). Hence, we report the R values seen in 40 repeated 

runs, with different random number seeds (we use 40 since that is more than the 30 samples needed to satisfy the 

central limit theorem). 

To rank our methods using the results from these 40 repeats, we use the Scott-Knott test recommended by Mittas 

and Angelis [32]. 

In accordance to that test, using the median values of each method, we sort a list of l = 40 values of R 
values found in ls = 4 different methods. Then, we split l into sub-lists m, n in order to maximize the expected 
value of differences in the observed performances before and after divisions. E.g. for lists l, m, n of size ls, 

ms, ns where l = m ∪ n: 
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We then apply a apply a statistical hypothesis test H to check if m, n are significantly different (in our case, the 

conjunction of A12 and bootstrapping). If so, Scott-Knott recurses on the splits. In other words, we divide the data 

if both bootstrap sampling and effect size test agree that a division is statistically significant (with a confidence of 

99%) and not a small effect (A12≥ 0.6). 

For a justification of the use of non-parametric bootstrap- ping, see Efron & Tibshirani [33, p220-223]. For a 

justification of the use of effect size tests see Shepperd&MacDonell [34]; Kampenes [35]; and Kocaguenli et al. 

[36]. These researchers warn that even if a hypothesis test declares two populations to be “significantly” different, 

then that result is misleading if the “effect size” is very small. Hence, to assess the performance differences we 

first must rule out small effects using A12, a test recently endorsed by Arcuri and Briand at ICSE’11 [37]. 

3) Report Format: Our results are presented in the form of line diagrams like those shown on the right-hand-

side of the following example table. The black dot shows the median R value and the horizontal likes stretch from 

the 25th percentile to the 75th percentile (a region called the inter-quartile range, or IQR). 

 

In this example table, the rows are sorted on the median values of each method. Note that all the methods have 

R > 0%; i.e. all these methods reduced the expected value of the performance score in that experiment while 

XTREE achieved the greatest reduction (of 62% from the original value). 

The above example table has a left-hand-side Rank column, computed using the Scott-Knott test described 

above. In this example table, XTREE is ranked the best, while CD and CD+FS together are ranked the worst. 

Other Details: and Figure 10 show the effectiveness of our methods seen in 40 repeats with each data set. In these 

experiments, the dependent variables of Jureczko and Siegmund data sets are discrete and continuous in nature, 

respectively. Hence, while choosing the predictor, we used Random Forest (1) as a classifier for Jureczko data 

and (2) as a regressor for Siegmund data. For Siegmund data, we performed a k-fold cross validation. Given the 

relatively small sample sizes in Apache and BDBJ, we chose k = 2. This, we reasoned, would maintain a 

sufficiently large test data size in order for R to be measured reliably. However, in 2-fold cross validation, the 

division of data tends to affect the outcome significantly. To counter this, we randomized the order of the data, 

training on one half while identifying treatment plans on the other, repeating the process 40 times as mentioned 

above. 

The Jureczko data, being temporal in nature, allows us to implement a validation procedure that ensures 
only past data is ever used to predict future values. Hence, in that data, we used the train/test sets shown in 
Figure 6. (Aside: note that all the SMOTE-ing and Random Forest tunings (discussed in §??) occurred in the 
train phase of Figure 9). 

B. Experimental Results 

Recall from our introduction that we are assessing planners on three criteria: effectiveness, which is how much 

they reduce the expected value of the changed examples; succinctness, which is how many things we need to 

change to achieve a plan; and surprise, which is how different are the plans from standard truisms. 

1) Effectiveness Results: Measured in terms of effective- 

ness, some data sets were harder to optimize than others. SQL (in Figure 10) defied all our methods for reducing 

runtimes. XTREE was the only method that could optimize BDBJ (in Figure 10). In general, in most data sets, 

large reductions were observed: 

• An improvement of 60%, as compared to the original baseline in Ant and Lucene of 

• An improvement of 77% as compared to the original baseline in BDBC of Figure 10; 

Overall, XTREE was most the effective. It was always the top-ranked method with the exception of SQL. 

Where it ranked better, it had significant improvements in the median performance values (1) In the Jureczko 

data sets, there was a median improvement of around 10% larger than the next ranked method; (2) In the 
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Seigmund data sets, improvements as large as 36% greater than the next ranked method were observed. 

 

 

2) Succinctness Results: Figure 11 reports the percent of times in the 40 repeats that a method proposed 

changing a feature. The left-hand-side plot of that figure reports results from one of the Jureczko data sets (lucene) 

and the right- hand-side shows a Siegmund data set (BDBJ). 

In these plots, more succinct a planning method, fewer the frequency (in percent) where it recommends 

changing a particular feature (i.e. the vertical bars in that plot are lower). For example, XTREE’s plans were 

usually succinct – in all data sets, XTREE changes around a fifth of the features (see Figure 12). On other hand, 

Method1 (CD) was the least succinct since it wanted to change all features (observe the change frequencies as 

high as 100% for all features). Method1’s policy of “change everything” might be acceptable if this approach lead 

to the most effective changes. However, in and Figure 10, there is no evidence for this. 

An interesting feature of Figure 11 was that fewer things were changed in the Seigmund data sets like BDBJ 

than in the Jureczko data set like lucene. In turns out that this holds true across nearly all our data sets. Figure 12 

summarizes all the change frequencies for all data sets. As with Figure 11, there are fewer changed features in 

the Seigmund data than in the defect prediction data. One explanation for that is the nature of the features: the 

Jureczko data sets have continuous features while the Seigmund data has binary independent features (where 

settings can be turned “ON” or “OFF”). While the features of the Jureczko data sets are not constrained, those of 

Seigmund data sets are subject to several constrains (dictated by their feature models, see Figure 5). It is possible 

that planners in Method1, Method2, and Method3 find very few valid settings that can improve the performance 

scores, thereby making insignificant changes. As a result all methods, except XTREE, fail to optimize the runtime, 

as evidenced by the results in Figure 10. 
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3) Surprising Results: If a planner only ever reported conclusions that were already known, then that planner 

offers little value over “just use established wisdom”. Accordingly, we studied our results for plans that were 

somewhat counter- intuitive. 

Such a surprising plan can be seen in lucene. Recall the standard advice for OO systems: build classes 

that are internally cohesive with low coupling to other parts of the system [15]. We can assess the relevance of 

this advice to specific projects by checking how often a planner changes the coupling-related features: 

• ca: afferent couplings = # classes using this class; 

• ce: efferent couplings = # classes used by this class. 

• cbm: coupling between methods = # new/redefined meth- ods to which all the inherited methods are coupled 

• cbo: coupling between objects = a value that increases when the methods of one class access services of another. 

• ic: inheritance coupling = # parent classes which a given class is coupled (includeing methods and variables 

inherited) 

In many of our results with the Jureczko data, it was indeed true that the changes proposed by XTREE lead to 

lower coupling. However, the lucene results were quite different and rather surprising. 

In the lucene XTREE results of Figure 11, the most frequent change was to alter the lines of code in a class (see 

the tallest red histogram in that figure on the loc, or lines of code). Looking at the logs of our planner, we can see 

that XTREE’s proposed change is to reduce the size of a class. The only way to do that, while keeping the same 

functionality, is to create a network of smaller classes that interact to produce that functionality. That is, we would 

need to increase the coupling of those classes to achieve XTREE’s plan. 

In theory, increasing coupling between classes complicates and confuses a class design. But the lucene XTREE 

results of Figure 11 rarely proposes changing the coupling features ca, ce, cbm, ic (in fact, XTREE never proposes 

any change to ic). The only coupling issue that XTREE usually adds to its plans is cbo (which appears 55% 

of the time in Figure 11). But note that this is object coupling measure, not class coupling. So here XTREE is 

warning against, say, some factory class generating a large community of agents, all of the same class, who co-

ordinate on some task. This is a different issue to the class redesign issue that would be triggered by altering loc. 

In summary, XTREE satisfies that criteria that, sometimes, it produces surprising plans. At least for the lucene 

data set, we can see advice that recommends increasing coupling to reduce defects. 

V. THREATS TO VALIDITY 

As with any empirical study, biases can affect the final results. Therefore, any conclusions made from this work 

must be considered with the following issues in mind. 

A. Learning Bias 

For building the defect predictors in this study, we elected to use Random Forest and Random Forest Regressors. 

We chose this approach, based on its reputation for having the better performance of 21 other learners for 

defect prediction [31]. Data mining is a large and active field and any single study can only use a small subset of 

the known classification algorithms. That said, we have taken care to document in this paper the decisions 

made by engineering judgement that could effect our conclusions. The above code used a set of variables which 

future work should vary in order to test the internal validity of our conclusions: 
 
 

• All our planners divide data into groups of size 𝑎 = √𝑁 

• Method2 used the top β = 33% most informative features (ranked using INFOGAIN); 

• Method3 uses ω = 0.5 to find its deltas; 

• XTREE considered a sibling useful if it’s score was less than γ = 0.5 times the mean score of the current 

leaf. 

B. Sampling bias 

Sampling bias threatens any data mining experiment; i.e., what matters there may not be true here. For example, 

the data sets used here comes from two sources (Seigmund et al. and Jureczko et al.) and any biases in their 

selection procedures threaten the validity of these results. That said, the best we can do is define our methods 

and publicize our data and code so that other researchers can try to repeat our results and, perhaps, point out a 

previously unknown bias in our analysis. Hopefully, other researchers will emulate our methods in order to repeat, 
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refute, or improve our results. 

C. Evaluation Bias 

Another threat to validity of this work is our use of predictors learned on the training data to assess the impact 

of our planners. This issue was discussed in detail in §II-C. To those notes, we add a few more details. If possible, 

planners should be assessed via some external oracle that can accurately assess new examples. For example, in 

search-based software engineering, examples can be assigned objective scores via some model. In this approach, 

a changed example can be assessed by generating actual objective scores from the model 

 

The POM3 model [38], [39] is a tool for exploring management challenges. POM3 implements the Boehm and 

Turner model of agile programming [40] where teams select tasks as they appear in the scrum backlog. 

POM3 can study the implications of different ways to adjust task lists in the face of shifting priorities. The 

model outputs estimated task completion rates; programmer idle rates; and total overall cost. POM3 models 

requirements as a dependency tree. A single requirement in the tree of a prioritization value has a cost, along with 

a list of child-requirements and dependencies. Before any requirement can be satisfied, its children and 

dependencies must first be satisfied. POM3 simulates changing priorities by making teams aware of random items 

in the requirements tree at random intervals, thus forcing teams to constantly readjust their “to do” lists. For further 

details on this model see [38], [39], and [40].  

Figure 13 shows results from using POM3 as an oracle to assess our planning methods and their ability to reduce 

the project cost. In this experiment, we generated a training and testing set with 1000 randomly generated 

instances, which we passed to our four methods. 40 times, we let those methods propose changes to those projects. 

For assessment purposes, the changed projects were then fed back to the POM3 oracle. 

Using this approach, it is possible to assess the value of a plan by measuring its effectiveness with respect to some 

ground truth (in this case, the POM3 model). As shown in Figure 13, XTREE reduces the cost by 59% thereby 

passing this assessment. These results from the POM3 model further endorse our previous conclusions; i.e. 

compared to three other methods, XTREE’s supervised methods are best for generating plans on how to change 

example projects. 

VI. RELATED WORK 

A. Planning in AI 

The XTREE planner is somewhat different to the logic- based planners explored by classical AI. Those kinds of 

plan- ners employ a logical procedure [41] that seeks an ordering on operators to take some domain state from a 

start state to a goal state. This classical logical approach is known to suffer from computational bottlenecks [42]. 

On the other hand, tools like XTREE will scale to any domain that can generate decision trees. 

B. Evaluating Changes 

Some organizations have the resources to run repeated trials to assess project changes. For example, in one 

study, Bente et al. reported results where the same specification was developed by four different organizations [43]. 

Given those kind of resources, it would be possible to (say) take a code base, assign it to different teams, make 

these teams adopt different polices, then check in 12 months time which teams have fewer defects than the others. 

Seldom do industrial or research groups have access to the kinds of resources needed for this kind study 

(evidence: in the six years since the publication of that work, we know of only one similar study to Bente et al.). 

Also, given the diversity of modern software projects, it might be unreasonable to demand that all proposed 

changes for all projects are always evaluated by something like the Bente et al. study. Hence, this paper has used 

data miners to build an oracle that can assess changed examples. The advantage of our approach is that it 

required far less resources to assess the effectiveness of proposed changes to a project.  
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C. Search based SE 

Another way way to propose changes to software artifacts is via some search-based method [44], [45]. Such 

SBSE methods are evolutionary programs that make extensive changes to some initial sample of project data 

(perhaps 100s to 100,000s of mutations). Each of these mutations is reassessed using some domain model. 

Examples of these algorithms include GALE, NSGA-II, NSGA-III, SPEA2, IBEA, particle swarm optimization, 

MOEA/D, etc. [21], [46]–[51]. 

One problem with these SBSE methods is that they can make extensive mutations to the data they are 

exploring. In the language of §II-C, these methods may not be trust- increasing since those algorithms make no 

attempt to prevent new examples from mutating away from the kinds of data used to commission the model (in 

which case, we would start doubting the model’s output). 

Another issue with standard search-based SE methods is that they require ready access to trustworthy domain 

model that can offer an assessment of newly generated examples. While some domains have such models (e.g. see 

the COCOMO effort estimation model used in the last section), our experience is that many others do not. For 

example, consider software defect prediction and all the intricate issues that may lead to defects in a product. A 

model that includes all those potential issues would be very large and complex. Further, the empirical data required 

to validate any/all parts of that model can be hard to find. 

What we would recommend is a two-pronged policy. In domains with ready access to trusted models, we 

recommend the kinds of tools that are widely used in the search-based software engineering community such as 

GALE, NSGA- II, NSGA-III, SPEA2, IBEA, particle swarm optimization, MOEA/D, etc. [21], [46]–[51]. 

Otherwise, we recommend tools like XTREE. 

VII. CONCLUSION 

The planner proposed in this paper proposes changes to software project details in order to improve the expected 

value of the performance scores of that part of the project. To evaluate these planners, data miners can be used to 

build oracles to assess planners. Such planners should be trust- increasing; i.e. they should propose changes that 

generate changed examples that are closer to the training data of the data miner. One caveat here is that 

the evaluations we can make on the planner are only as good as the predictive performance of the data miner. 

Hence, if domain data does not support satisfactory predictors, then planning in that domain cannot be evaluated. 

Four planners were assessed here for the tasks of reducing defects and runtimes. Three of the methods come from 

our prior publications [4], [5], and the conclusion of this paper is that a novel fourth method clearly out-

performs the other three (measured in terms of effectiveness, succinctness, and surprise). We conjecture that XTREE 

worked better than the rest since: 

• It uses a supervised method to divide the data and; 

• When planning how to move examples to better classes, it is best to reflect over differences between those 

classes. 

VIII. FUTURE WORK 

Future work in this area could explore numerous questions. For example, XTREE, as used here, sought 

improvements in a one goal (the class variable). Does XTREE work for multi- goal reasoning? 

Also, the XTREE algorithm seems quite general to any data of table with rows containing weighted classes 

(so we can distinguish “bad” rows from “better” ones). Does XTREE works on domains (other than the 

defect/runtime data explored here)? 

As an example of a domain that might benefit from XTREE, recent results raise doubts about the value of 

changing code to remove “bad smells” [52]. Can XTREE be used as a “bad smell” detector to select the subset 

of possible refactorings that have the most potential benefit? 

As to scalability, XTREE is a post-processor to a decision tree algorithm. Hence, in theory, XTREE works on 

domain where data miners can generate decision trees. Given the current state of the art in Big Data, can XTREE 

be applied to very large data sets? 

We discussed above in §II-B the general conclusions of Passos, Jørgensen et.al [6], [7]; i.e. software developers 

are reluctant to surrender their old biases in the face of new data. Accordingly, it must be asked if the mental 

resistance of developers will prevent them applying XTREE’s automatically generated recommendations of tools? 

Note this this issue is not just a concern for XTREE, but also for any automatic tool proposing refactorings. 
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There are many more methods for generating plans and no one paper can survey them all. For example, 

this paper has not explored variations to the α, β, and γ parameters that controlled XTREE. Would we get better 

results if we varied those parameters? 

That said, the goal of this paper was not to claim that (e.g.) XTREE is some absolute optimal algorithm. Rather, 

it is was to offer a baseline result (with XTREE) and an evaluation strategy that can assess if alternate methods 

are better than XTREE. The authors of this paper would actively support other teams exploring this method (with 

or without using our current code base).  
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