J. Electrical Systems 20-3 (2024): 7129-7135

1Kapil Shukla An Automatic Evaluation of the
?Parag Shukla Programming Solution Submitted by
the Learner for Suggesting the Journa of
. . Electrical
Appropriate Next Programming Systems
Task

Abstract: - Online coding platforms have been available for learning programming topics or completing courses. Learner needs to submit
solution of provided task after checking all test cases. Some Institutes and programming teachers are either hosting their own open-source
coding platform or using an online coding platform for teaching programming subjects. It is required to have the information in the form
of automatic feedback obtained from their submission’s evaluation about how the learners are performing in programming topics. Our
work introduces a model that aims to automate the process of suggesting a sequence of coding tasks for the learners to complete
programming courses according to the knowledge and skill possessed by the learner. Additionally, this model provides a means for
evaluating the performance of each learner in different topics covered by the course instructor. By utilizing this model, course instructors
can obtain valuable insights into each learner's performance in specific course topics.

Keywords: online programming course, learners’ performance, automatic code evaluation

I. INTRODUCTION

Online programming courses have gained immense popularity as a prevalent method for introducing learners to the
programming world [1]. With the increasing accessibility of online programming classes, thousands more students
are drawn to them each year. In these courses, learners address programming challenges by providing incomplete
solutions and verifying the results [2]. Predicting the performance of students' problem-solving and learning skills
is indeed feasible [3]. Recent advances in information and communication technologies have changed the methods
by which learners gain knowledge. There are a multitude of advantages associated with e-learning, some of which
include the availability of course materials online and the removal of the need for students to physically attend
classes in a conventional classroom environment. E-learning has gained a lot of popularity and is essential to the
expansion of web-based education systems, in addition to being less expensive than conventional methods of
instruction. [4].

This is easy to do with automatic marking systems because they compare students' work to a set of prepared test
cases. The test cases are assigned weights that reflect their level of difficulty [5]. A detailed system created to gather
information on students' programming activities provides essential insights for educators. By monitoring metrics
like coding frequency, completion rates, and problem-solving strategies, this system provides educators with a
detailed insight into each student's progress as well as overarching class trends. Furthermore, by utilizing detailed
reports, educators acquire practical insights to modify their teaching approaches, recognize students in need of
support, and provide prompt assistance. With this extensive collection of data, educators are equipped to create a
more supportive learning atmosphere, adeptly steering the learner towards achieving proficiency in programming
concepts and skills [6]. Investigating the performance of novice learners in a basic programming language can yield
insights into the dropout rate from the course, providing essential information for educators [7]. Spotting students
at risk early in the course term benefits both instructors and the learner. Instructors gain insight into which students
require extra support, while novices have a chance to receive support promptly, possibly enhancing their course
outcomes [8].

Any code evaluation system must understand the type and implication of errors within the code. Providing
summative feedback throughout programming can benefit in minimizing both syntax and semantic errors [9]. The
core of automated code evaluation pivots on the capability to measure assessment targets in numerical terms. In
this context, the system must be able to assign numerical values to various features of the assessment criteria,

1 Research Scholar, Atmiya University, Rajkot, India. Email: 15616221002@atmiyauni.edu.in

2 Associate Professor, School of Computing, Kaushalya — The Skill University, Ahmedabad, India. Email:
paragshukla007 @gmail.com

Copyright © JES 2024 on-line : journal.esrgroups.org

7129

J. Electrical Systems 20-3 (2024): 7129-7135

enabling objective evaluation of student performance. This numerical quantifiability simplifies the process of
analyzing, comparing, and providing feedback on students' work proficiently and excellently [10].

To facilitate the recommendation of suitable programming tasks for development in automatic systems, it is crucial
to develop models that can assess performance based on predefined criteria. These models can leverage the
extensive datasets generated by the learners when they complete programming tasks [11, 12]. Learner is allowed to
submit solution multiple times before successfully solving a task, which is depended on problem complexity level,
are counted for each exercise performance evaluation.

Through its ability to facilitate the continuous monitoring of student performance, the model makes it possible for
the computation of academic progress to change in a dynamic manner throughout the course of time. Multiple tests,
which often give mixed results, are not needed with this flexible method because it takes into account the different
ways a student learns. Teachers can get a good idea of how their students are growing by looking at data and getting
feedback. This makes the learning environment more open and flexible [13].

We have designed a mathematical model that determines how well the student is performing on each computing
problem and suggests the next one he or she should attempt to solve. Several parameters are considered by this
model to determine the next best job for the student.

Il. METHODOLOGY

A. Dataset

We utilized a system that exploits multiple clusters of programming tasks categorized by some topics, such as loops
and conditions. Each cluster contains programming tasks with varying levels of complexity. We kept records of 30
learners' submissions for the programming tasks; the records included the number and type of errors made,
successful or unsuccessful attempts, and the current complexity level of the task.

Based on that, we created an algorithm which can suggest the next statement of the problem to be given to the
learner. We consider both the number and type of errors committed and failures on previous attempts and the level
of complexity currently at this stage. Thus, recommendations can be provided for programming tasks best suited to
allow learners to progress further in the course.

B. Proposed Model

We utilized a system that exploits multiple clusters of programming tasks categorized by some topics, such as loops
and conditions. Each cluster contains programming tasks with varying levels of complexity. We kept records of 30
learners' submissions for the programming tasks; the records included the number and type of errors made,
successful or unsuccessful attempts, and the current complexity level of the task.

Our research targets the development of a personalized model for programming task recommendations: one that
takes into consideration the learner's current skill and learning goals. This shall be able to suggest relevant
programming tasks at an appropriately challenging level to help the learner improve command over the subject.
By using this approach, we give learners the capability to start their course from a topic-based activity at any level
of complexity, and then the model suggests which ones align with the chosen topic of interest by them so that the
suggested activity fulfills the needed learning in such aspects related to the learner's profile level of proficiency. Of
course, this is for helping learners along their road of improving programming skills toward realization of intended
learning goals.

Our research identifies several relevant factors that influence the selection of the programming problem to be done
next by the students.

1) The count of failed trails

2) The quantity of error detected in the problem solution

The learner is provided with a predefined number of trials for each task, which increases as the complexity level of
the code progresses. The model suggests a new problem to the learner in two different scenarios. First, when the
learner successfully executes the code, indicating a sufficient level of knowledge. Second, when the remaining
number of trials for a particular problem reaches zero, encourages the learner to move on to a new challenge.

By incorporating these factors and implementing a dynamic recommendation system, we aim to provide learners
with a well-rounded and advanced learning experience in programming.

1) The count of failed trails:

7130

J. Electrical Systems 20-3 (2024): 7129-7135

The model considers the number of unsuccessful attempts made by the learner while solving a particular problem.
This helps gauge the learner's progress and determine if they need to continue with the same problem or move on
to a new one.
To determine the correctness of a solution S, we rely on the outcome of its test cases. A solution is considered
correct only if all the test cases pass. To represent this, we define a correctness score, denoted as f¢(S). If all the test
cases pass, the maximum correctness score can be 1, indicating a correct solution. However, if even a single test
case fails, the correctness score is set to 0, indicating an incorrect solution. By looking at the complexity of the task,
some numbers of trials are provided to the learner, tmax.
Every task is set with a maximum number of trials that the learner can take, tmax. Leaner can try to code the perfect
solution for tmax times. As the value of actual trial ta: will increase, it will decrease the correctness score f(S) from
1toO.
Calculation of the correctness score, f¢(S) will be calculated as follows.

fc(s) = tmax/(tmax + tact), if tr>=0, tr = tmax - tact (1)

2) The quantity of error detected in the solution:
The model analyzes the types of errors encountered in the learner's code. By understanding the specific areas where
the learner is struggling, the model can suggest programming problems that target those areas for improvement.
To calculate the error score of a program S, we calculate it using the formula

fe(S) = emax / (es + emax) ...(2)
where es represents the number of compilation errors encountered for program S, and emax is the maximum number
of compilation errors under consideration [14].
The error score is a measure of how well a program performs in terms of compilation errors. It is derived by dividing
the maximum numbers, emax, Of allowed errors by sum of maximum number of error and actual error, es, come
across while reaching to solution of provided task. This normalization ensures that the error score falls within the
range of 0 to 1, with higher scores indicating fewer compilation errors and better performance.
By using this error score metric, we can assess the quality and reliability of a program based on the number of
compilation errors it exhibits, relative to the maximum number of errors observed among all programs [14].

C. Final Performance Calculation

The final performance of learner for specific task from successful submission can be determined using a linear
function that incorporates three types of scores mentioned earlier:

P(S) = we * fe(S) + we * fe(S) ..(3)
In this equation, the weights (w's) are assigned based on the importance of each score type. These weights are
learned through a linear regression model. To ensure that the weights meet a constraint, their sum is set to 1, i.e.,
W +We = 1 [14]. It is important to note that the performance p(S) falls within the range of 0 and 1 [14]. To suggest
next programming task, the performance will be compared with different levels of performance value.

I1l. EVALUATION

Evaluation can be done based on task submission results. Here we are discussing each test case of programming
task submission evaluation.

A Code did not pass all the test cases

This situation can occur when there is an error in the code or when the program's output does not match the expected
result. In such cases, the learner is typically given a set number of attempts to successfully complete the code. If the
remaining trials reach zero, the learner will receive a code complexity level that is less challenging for the same
task.

However, if the learner has already reached the lowest complexity level, c1, for the task, it becomes mandatory to
complete that task and achieve an acceptable level of complexity c;. Here, i is an acceptable level of complexity set
by the instructor, which is = 1 and << n, where n is the highest level of complexity same for each topic.

7131

J. Electrical Systems 20-3 (2024): 7129-7135

B. Code passed all the test case

If code gets passed from a predefined set of test cases successfully, then the final performance calculation will start.
For measuring the performance of the learner, the instructor can set a benchmark value between 0 to 1, based on
which proper decision can be made. These benchmarks are Paccept, Pmin, 8Nd Pmax. Paccept iS the minimum acceptance
level, if the performance score, p(S), is less than it, then the learner will be provided a lower complexity task on the
same topic. Pmin is the next acceptance level, if the performance score, p(S), is more or equal to Pmin, then only the
learner will be able to move to n

Here, if the performance value is more than or equal to Pmin, less than Pnax and the current complexity level is greater
than or equal to ci, where then the next topic task with the same complexity can be given to the learner. If the
performance value is more than Pmax then the next topic task with a higher complexity level will be assigned to the
learner.

Table-1 Code did not pass all test cases

Code Submission Complexity Number of .
Level, remaining trials Model Decision
Status
Ci tr
Same topic, Same task
ci, i1 t>0 with the same Complexity
level ¢
. _ Same topic, New task
_ Gil>1 t=0 with Complexity level ciq
Did not pass all test It mandatory to complete the
cases task
or
cii=1 tr=0 another task for the same
topic
with the same complexity
level ¢ may be assigned.
Table-2 Code passed all test cases
Code Task Complexity Performance
Submission Level, Level, Score, Model Decision
Status Tk Ci p(S)
. Same task with the same
i,1=1 <P .
G P(S)<Paccep Complexity level c;
. Next task with Lower
i, 1<i< <P .
G =isn P(S)<Paccep Complexity level c;
. Same task with Higher
T, 1<k< i 1<iS P < <Pri -
o I<k<n G 1= accept < P(S)<Prin Complexity level cis
Puin < p(S)<Prax Next tasl|< w_|th Ithe Isame
o I<i<n Comp exﬂy evel ¢
Passed all test e Next task with Higher
P(S) >Prmax .
cases Complexity level Cix
Next Topic, New task
Prmin<p(S)<P, . T
min<p(S)<Prac |\ iin Complexity level c;
Ci, /<i<n Next Topic, Next task
_ P(S) =Prmax with Higher Complexity
Tk,k—n
level cin
Next Topic, Next task
Ci,i=n P(S) >Prmax With the same
Complexity level ¢;

The model decision is based on various factors, including task level (Tx), complexity level (ci), performance score
(p(S)), and model decision. When all test cases are passed, indicating successful completion of a task (Tx) with
complexity level ¢; and a performance score below Paccepr, the student proceeds to the same task with the same

7132

J. Electrical Systems 20-3 (2024): 7129-7135

complexity level. If the performance score remains below Paccept for subsequent tasks with the same complexity
level (ci) but different levels (i), the student progresses to the next task with a lower complexity level. Conversely,
if the performance score falls between Paccept and Pmin, the student continues with the same task but at a higher
complexity level (ci+1). If the score exceeds Pmax, the student advances to the next task, either with the same or
higher complexity level, depending on the task level and completion status. Finally, if the performance score
surpasses Pmax at the final task level (k=n), the learner moves on to the next topic, tackling a new task with the
corresponding complexity level (ci).

Correctness Score, fe(S)

All Learners Performance for Specific Topic, Problem and Complexity Level

1.00

0.75 4

0.50 +

025 +

0.00 -

0.83 083 0.e3 0.830.83 0.83 0.830.83

071071

0.63 0.63 0.63 0.63

0.56 0.56 0.560.56 0.56

0.500.50 0.50 0.500.50

7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learner's ID

Fig. 1 — Correctness Score, f(S)

In Fig. 1, we can see the correctness score, f(S), of all learners for the task with the same topic and complexity
level. Instructors can get valuable insights from Fig 1., like the number of unsuccessful attempts to complete the
task. This information becomes more useful for the instructor in teaching learners how to overcome logical errors.

All Learners Performance for Specific Topic, Problem and Complexity Level

1.00

0.75 4

0.50

Errar Score, fe(S)

0.25 4

1.001.00

ro.7o

0.00 -

1.00 1.00

0.BED.EB 0.88 0.B8 0.BB 0.88 0.88

o.7e 0.78 o.7e

070

0.64 0.64

0.580.58
0.540.54

0.54 0.54

78 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learner's ID

Fig. 2 — Error Score, fe(S)

7133

J. Electrical Systems 20-3 (2024): 7129-7135

In Fig. 2, we can see all learners' error scores, fe(S), for the task with the same topic and complexity level. Instructors
can learn about the types and number of errors, specifically syntactical errors, that learners face during solving
tasks. This information helps the instructor in teaching programming more effectively.

All Learners Performance for Specific Topic, Problem and Complexity Level

1.00 —

0.75

Perfarmance Score, p(s)

0.25 4

0.00

0.50 —

p(S) == Fe(5) == Fc(3)

2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learners 1D

Fig. 3— Performance Score, p(S), for all 30 learners

Fig. 3 shows the performance score, p(S), calculated using equation (3), relation with Correctness Score, f¢(S), and
Error Score, f(S).

Perfarmance Score

1.00

0.75

0.50

025 -+

Specific Learner Performance in Different Topics and Complexity Level

p(S) = Fc(S) == Fe(s)

/)} \ 1
0.908 0.508
0.817 .
% s
/

0.800

000 L == === === T=1=T=1=1=T=1=l=1=l=1=I=1=1=1-1-

-1 11 11 1-2 12 1-3 1-3 14 1-5 15 21 22 22 23 24 25 31 32 33 33 34 34 35 35

(Topic-Task) Number

Fig. 4— Specific Student’s Performance in all topics

In Fig. 4, we can see the performance score, p(S), of one specific learner that shows how the learner performed in
the course. It depicts the performance of learners in specific topics at different complexity levels.

7134

J. Electrical Systems 20-3 (2024): 7129-7135

IV. CONCLUSION

This paper focuses on the issue of automatic code assessment, aiming to assess both learner's comprehension of a
topic and their ability to tackle complex programming tasks. By utilizing equation (3) and establishing an acceptable
dynamic average complexity level, denoted as "i," we can assign varying values to wc and we. This allows for
dynamic complexity values of Paccept, Pmin and Pmax, tailored to each group of learners. Consequently, this approach
enables instructors to gain insights into the learning difficulties faced by individual learners.

In the future, we plan to conduct experiments with various groups of learners studying the basic programming
language C. These experiments will involve a specific topic and a list of tasks related to C programming. By
applying our model to these different sets of learners, we aimed to gather valuable insights and evaluate the model's
effectiveness in enhancing their understanding and performance in programming. Our aim is to construct a
recommender system assisted by data gathered during this research. By analyzing the performance of new learners
in their initial tasks, the recommender system will proficiently suggest suitable tasks aligned with comparable
programming skills and performance levels.

REFERENCES

[11 Nguyen, A, Piech, C., Huang, J., & Guibas, L. (2014). Codewebs. https://doi.org/10.1145/2566486.2568023

[21 Rubio, M. A. (2020). Automated Prediction of Novice Programmer Performance Using Programming Trajectories. In
Lecture notes in computer science (pp. 268—272). https://doi.org/10.1007/978-3-030-52240-7_49

[3] Hosseini, R., Brusilovsky, P., Yudelson, M., & Hellas, A. (2017). Stereotype Modeling for Problem-Solving
Performance Predictions in MOOCs and Traditional Courses. https://doi.org/10.1145/3079628.3079672

[4] Bresfelean, V. P., Bresfelean, M., Ghisoiu, N., & Comes, C. A. (2008). Determining students’ academic failure profile
founded on data mining methods. https://doi.org/10.1109/iti.2008.4588429

[5] Ahmed, U. Z,, Sindhgatta, R., Srivastava, N., & Karkare, A. (2019). Targeted Example Generation for Compilation
Errors. https://doi.org/10.1109/ase.2019.00039

[6] Murphy, C., Kaiser, G., Loveland, K., & Hasan, S. (2009). Retina. SIGCSE Bulletin, 41(1), 178-182.
https://doi.org/10.1145/1539024.1508929

[71 Alalawi, K., Athauda, R., & Chiong, R. (2023). Contextualizing the current state of research on the use of machine
learning for student performance prediction: A systematic literature review. Engineering Reports, 5(12).
https://doi.org/10.1002/eng2.12699

[8] Liao, S. N., Zingaro, D., Thai, K., Alvarado, C., Griswold, W. G., & Porter, L. (2019). A Robust Machine Learning
Technique to Predict Low-performing Students. ACM Transactions on Computing Education, 19(3), 1-19.
https://doi.org/10.1145/3277569

[9]1 Restrepo-Calle, F., Ramirez-Echeverry, J. J., & Gonzalez, F. A. (2018). UNCODE: Interactive System For Learning
And Automatic Evaluation =~ Of Computer Programming Skills. = EDULEARN Proceedings.
https://doi.org/10.21125/edulearn.2018.1632

[10] Ala-Mutka, K. M. (2005). A Survey of Automated Assessment Approaches for Programming Assignments. Computer
Science Education, 15(2), 83-102. https://doi.org/10.1080/08993400500150747

[11] Glassman, E. (2016). Clustering and visualizing solution variation in massive programming classes. Massachusetts
Institute of Technology. Retrieved May 29, 2024, from http://up.csail.mit.edu/other-pubs/elg-thesis.pdf

[12] Rivers, K., & Koedinger, K. R. (2015). Data-Driven Hint Generation in Vast Solution Spaces: a Self-Improving Python
Programming Tutor. International Journal of Artificial Intelligence in Education, 27(1), 37-64.
https://doi.org/10.1007/s40593-015-0070-z

[13] Watson, C., Li, F. W., & Godwin, J. L. (2013). Predicting Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior. https://doi.org/10.1109/icalt.2013.99

[14] Parihar, S., Dadachanji, Z., Singh, P. K., Das, R., Karkare, A., & Bhattacharya, A. (2017). Automatic Grading and
Feedback using Program Repair for Introductory Programming Courses. https://doi.org/10.1145/3059009.3059026

[15] Devi, S., Selvam, K., & Rajagopalan, S. (2011). An abstract to calculate big O factors of time and space complexity of
machine code. https://doi.org/10.1049/cp.2011.0483

[16] Robins, A. V. (2019). Novice Programmers and Introductory Programming. In Cambridge University Press eBooks (pp.
327-376). https://doi.org/10.1017/9781108654555.013

7135

