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Abstract: - In the present study the optical and thermal properties of a Nematic Liquid Crystal Polymer System (NLCPS) dispersed with different
concentrations of metal nanoparticles like ZnO, Zn, CuO were investigated using X-Ray Diffraction (XRD), Differential Scanning Calorimetry
(DSC) and Fourier Transform Infra-Red (FTIR). The comparison of various parameters of pure NLCPS and its mixture with different concentrations
of dopant was carried out to understand the effect of nanoparticles on the optical and thermal properties of NLCPS. Our investigation shows an
increase in phase transition temperature after dispersing the metal nanoparticle. The maximum phase transition temperature was found for ZnO.
XRD shows a sharp reflection and diffuse scattering is characteristic of crystalline and amorphous phases of conventional semi-crystalline polymers.
The presence of functional groups in the nanoparticle dispersed NLCPS has been identified using Fourier Transform Infrared Spectroscopy (FTIR).
The investigation may be useful for various energy-efficient devices in addition to display applications.
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I Introduction
Liquid crystal (LC) is a fascinating state of matter found between crystalline solid and liquid. The molecules in this state are found
to be asymmetric in nature and due to this, LC show regular arrangement in one preferred direction and random in all other
directions. They have properties like molecular mobility and fluidity that of a liquid and optical anisotropy, electrical and optical
properties that of crystalline solid. These materials are successfully used for all display applications like smartphones, calculators,
laptop, tablets and diagnosis of arteries, placenta, tumors, enzymes, nucleic acids, glucose etc. In addition to these applications,
they are also found suitable for smart windows, chromatographic separations, optical shuttering action, polarization-converting
materials [1-5].
The LC materials due to its molecular order and self-assembly can be used for preparing smart and functional materials which
changes its properties due to external stimuli called liquid crystal polymer system (LCPS). They show reversible deformation
governed by order—disorder phase transition of molecules and hence used for various applications like responsive pigments, soft
robotics, adsorbents, smart textiles, and sensors [6-11, 18-22].
Another important material which brought revolution due to its optical, physical, chemical electrical and mechanical properties are
nanomaterials. When these materials are incorporated into LCPS, then due to structural rearrangements, they found to enhance
various properties like optical, thermal, electrical etc. The LCPS embedded with metallic nanoparticles have attracted much
attention in recent years owing to their prospective applications in various fields. They are more widely used than other display
technologies due to their numerous benefits, including low operating voltage, high contrast ratio, quick electro-optical response,
simple manufacturing, low-cost production, and ease of processing [12-17, 22-27].
Recently, various researchers have investigated the physical properties of LCPS dispersed with nanomaterials, like cholesteric liquid
crystal composites dispersed with titanium oxide nanoparticles were studied by Garima Chauhan at al.[28], the metal oxide induced
polymer-dispersed liquid crystal composites were studied by Praveen Malik et al. [29], Lu, Yinfu, et al. studied fluorescent
molecules and nanoparticles dispersed with polymer-dispersed liquid crystals [30] and silicon nanostructure with polymer-
dispersed liquid crystal were studied by Zhang, Cuihong, et al. [31]. In the present study, the ZnO nanoparticles were dispersed in
LCPS, and optical, thermal and structural properties were studied.
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Il. Formulation

Liquid Crystal Polymer System (LCPS) was produced using 4-Pentyl-4'-Cyano-Biphenyl, Ethylhexyl Acrylate, and Acrylated
Oligomer. LCPS was combined with ZnO nanoparticles. ZnO nanoparticles distributed in LCPS were combined uniformly after
sonication. The remaining nanoparticles, Zn and CuO, were disseminated in LCPS in a similar manner.

Initial acetone rinsing of the slide and cover slip, followed by wiping with a tissue in a direction parallel to one fixed direction of
the slide, were done for the homogenous alignment of the sample [5-11]. The sample is then placed on the slide with a few drops,
and the cover slip is slipped over it in the manner described above. A homogeneous mixture of ZnO nanoparticles distributed in
LCPS is obtained after sonication and magnetic stirring.

I11. Methodology
X-Ray Diffraction Studies: The X-Ray Diffraction (XRD) measurements on the samples were carried out on Bruker D8 and
Rigaku Ultima 1V diffractometer equipped with Cu K¢ (0.154 nm) radiation source. The primary excitation electron current was
40 mA at 40 kV for the characterization. The samples were scanned for 20 values between 10° and 80°. XRD spectra of LCPS
embedded with different concentration of nanoparticle has been characterized.
Fourier Transform Infrared spectrometer Studies: Fourier Transform Infra-Red (FTIR) absorption spectra of pure LCPS and
nanoparticles embedded in LCPS were recorded using Fourier Transform Infrared spectrometer (Bruker FTIR system) in the range
varying between 4000 cm™ and 400 cmL. By generating an infrared absorption spectrum, FTIR may determine the chemical bonds
that make up a molecule. To determine chemical bonds, functional groups, and constituents of unidentified sample mixtures, one
can utilise the FTIR infrared spectrometer approach.
Differential Scanning Calorimetry Studies: The transition temperatures of the substance were determined using differential
scanning calorimetry (DSC). On a Perkin-Elmer Pyris 1 (Pyris Software version 7.0) instrument's equipment, DSC measurements
were carried out. Nitrogen was pumped into the apparatus cell at a rate of 20 mL per minute. A 10 mL aluminium pan containing
about 2-3 milligrammes of the substance was sealed hermetically.

V. Results and Discussion
X-Ray Diffraction Studies: Figure 1, XRD spectrum of LCPS embedded with ZnO nanoparticle Sample-1(S1), showed the intense
peaks at 20 values of 31.84°, 34.42°, 36.24° and 40.36°. The lines at d= 2.805 A%(most intense), 2.6032 A° and 2.4758 A° corresponds
to the ZnO and LCPS reflection. Traditional semi-crystalline polymers exhibit reflections and diffuse scattering in their crystalline
and amorphous phases, respectively.
Figure 2, XRD spectrum of LCPS embedded with ZnO nanoparticle Sample-2(S2), showed the intense peaks at 20 values of 31.80°,
34.47° and 36.32°. The lines at d= 2.4710 A% (most intense), 2.5997 A% and 2.8111 A corresponds to the ZnO reflection.
Figure 3, XRD spectrum of LCPS embedded with ZnO nanoparticle Sample-3(S3), showed the intense peaks at 20 values of 31.73°,
36.32%, 56.72° and 62.98°. The lines at d=2.4716 A° (most intense), 2.818 A and 1.6215 A° corresponds to the ZnO reflection. The
appearance of sharp reflections and diffuse scattering is characteristic of crystalline and amorphous phases of conventional semi-
crystalline polymers.
Figure 4, XRD spectrum of LCPS embedded with ZnO nanoparticle Sample-4(S4), showed the intense peaks at 20 values of 31.88°,
34.41°, 36.29° and 56.62°. The lines at d= 2.4733 A° (most intense), 2.6043A° and 1.6242 A° correspond to the ZnO reflection. The
crystal structure of ZnO nanoparticle was characterized by XRD pattern of ZnO NPs. The peaks at 20 = 31.67°, 34.31°, 36.14°,
47.40°,56.52°%, 62.73°, 66.28°, 67.91°, 69.03° and 72.48° were assigned to (100), (002), (101), (102), (110), (200), (112), (201), and
(004) of ZnO nanoparticles, indicating that the samples were polycrystalline (JCPDS 5-0664).
Figure 5, XRD spectrum of LCPS embedded with CuO nanoparticle Sample-1(S1), showed the intense peaks at 20 values of 35.50°,
38.63%, 48.68°, 61.49° and 67.98° . The lines at d= 2.3283 A°(most intense), 2.5267 A° and 1.8687 A° correspond to the CuO and
LCPS reflection.
Figure 6, XRD spectrum of LCPS embedded with CuO nanoparticle Sample-2(S2) showed the intense peaks at 20 values of 35.61°,
38.80° and 48.85°. The lines at d= 2.3190 A° (most intense), 2.5191 A® and 1.8629 A° corresponds to the CuO and LCPS reflection.
Figure 7 XRD spectrum of LCPS embedded with CuO nanoparticle Sample-3(S3), showed the intense peaks at 20 values of 35.62°,
38.82% and 48.86°. The lines at d= 2.5178 A° (most intense), 2.3173 A® and 1.8623 A corresponds to the CuO reflection.
Figure 8, XRD spectrum of LCPS embedded with CuO nanoparticle Sample-4(S4), showed the intense peaks at 20 values of 35.55°,
38.73%, 48.78°, 61.59°, 66.31° and 68.08°. The lines at d= 2.5230 A° (most intense), 2.3225 A% and 1.8653 A° corresponds to the
CuO reflection.
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Figure 2: XRD spectrum of LCPS embedded with ZnO
nanoparticles (S2)

Figure 1: XRD spectrum of LCPS embedded with ZnO
nanoparticles (S1)
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Figure 3: XRD spectrum of LCPS embedded with ZnO

nanoparticles (S3) Figure 4: XRD spectrum of LCPS embedded with ZnO

nanoparticles (S4)
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Figure 6: XRD spectrum of LCPS embedded with CuO

Figure 5: XRD spectrum of LCPS embedded with CuO .
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Figure 7: XRD spectrum of LCPS embedded with CuO Figure 8: XRD spectrum of LCPS embedded with CuO
nanoparticles (S3) nanoparticles (S4)

Figure 9, XRD spectrum of LCPS embedded with Zn nanoparticle Sample-1(S1), showed the intense peaks at 20 values of 31.02°,
36.33% The lines at d= 2.881 A° (most intense), 2.471 A° corresponds to the CuO and LCPS reflection.

Figure 10 XRD spectrum of LCPS embedded with Zn nanoparticle Sample-2(S2) showed the intense peaks at 20 values of 36.05°,
43.25% and 68.40°. The lines at d= 2.090 A° (most intense), 2.489 A Zn, and LCPS reflection.

Figure 11, XRD spectrum of LCPS embedded with Zn nanoparticle Sample-3(S3), showed the absence of peaks. This may be due
to improper sample preparation. Figure 12, XRD spectrum of LCPS embedded with Zn nanoparticle Sample-4(S4), showed intense
peaks at 20 values of 31.80°, 36.32°, 39.06°, 43.26° 56.55° and 62.80°. The lines at d= 2.0895 A® (most intense), 2.471 A° and
2.8115 A correspond to the Zn reflection.
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Figure 9: XRD spectrum of LCPS embedded with Zn Figure 10: XRD spectrum of LCPS embedded with Zn
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Figure 11: XRD spectrum of LCPS embedded with Zn Figure 12: XRD spectrum of LCPS embedded with Zn
nanoparticles (S3) nanoparticles (S4)
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The results of LCPS embedded with different nanoparticle with different concentration showed sharp peak at different angles. XRD
graph confirms the presence of ZnO, CuO and Zn nanoparticles in LCPS. The broadening of peaks revealed the size of the
nanoparticles was in the order of nanometer. ZnO nanoparticles were added to the LCPS matrix, which improved the crystalline
characteristics more than CuO and Zn nanoparticles implanted with LCPS.

Fourier Transform Infrared Spectrometer Studies
For pure LCPS, the peak present at 3382 cm was due to O-H stretching of polymer and benzenoid rings and the peak present at
3026 cm™* was due to C-H stretching shown in Figure 13. Similarly, the different peaks were obtained at different wavelengths for
LCPS embedded with different concentration of ZnO nanoparticle are shown in Figure 14, Figure 15, Figure 16 and Figure 17. The
combined graph is shown in Figure 18. The presence of phenyl liquid crystals is confirmed by the peak near 3500 cm™ range.
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Figure 13: FTIR spectrum of pure LCPS (S0)
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Figure 14: FTIR spectrum of LCBS embedded with 0.2% ZnO
nanoparticles (S1)

0
40000

Figure 15: FTIR Spectrurmn of LCPS embedded with
0.5% ZnO nanoparticles (S2)
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Figure 16: FTIR spectrum of LCPS embedded with 0.8% ZnO
nanoparticle (S3)
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1.0% ZnO nanoparticles (54) Figure 18: Combined FTIR spectrum of LCPS embedded with

different concentration of ZnO nanoparticles

Differential Scanning Calorimetry Studies

The phase transition temperature for pure LCPS is 126°C and maximum heat flow is 20.5 mW and is showed in Figure 19. The
phase transition temperature for LCPS embedded with 0.2% ZnO nanoparticle is 138°C and maximum heat flow is 21.13 mW as
shown in Figure 20. The phase transition temperature for LCPS embedded with 1% ZnO nanoparticle is 154°C and maximum heat
flow is 23.75 mW as shown in Figure 21. The phase transition of LCPS embedded with 0.2% Zn nanoparticle is 125°C, 142.5°C
and the value of maximum heat flow is 21.4 mW as shown in Figure 22. LCPS embedded with 0.3% Zn nanoparticle is 125°C,
131°C and value of maximum heat flow is 20.53 mW as shown in Figure 23. LCPS embedded with 0.5% Zn nanoparticle is 125°C,
130°C and value of maximum heat flow is 17.2 mW as shown in Figure 24. LCPS embedded with 0.8% Zn nanoparticle is 150°C
and value of maximum heat flow is 21 mW as shown in Figure 25. LCPS embedded with 1% Zn nanoparticle is 142°C and value
of maximum heat flow is 20.7 mW as shown in Figure 26. LCPS embedded with 0.4% CuO nanoparticle is 138°C and value of

maximum heat flow is 20.65 mW as shown in Figure 27. LCPS embedded with 0.5% CuO nanoparticle is 114°C and value of
maximum heat flow is 20.18 mW as shown in Figure 28.
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Figure 20: DSC graph of LCPS embedded with ZnO (S1)

Figure 19: DSC graph of pure LCPS
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Figure 21: DSC graph of LCPS embedded with ZnO (S1)
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Figure 22: DSC graph of LCPS embedded with 0.2% Zn
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Figure 23: DSC graph of LCPS embedded with 0.3% Zn
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Figure 24: DSC graph of LCPS embedded with 0.5% Zn
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Figure 25: DSC graph of LCPS embedded with 0.8% Zn
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Figure 26: DSC graph of LCPS embedded with 1% Zn
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Figure 27: DSC graph of LCPS embedded with 0.4% CuO Figure 28: DSC graph of LCPS embedded with 0.5% CuO

Table 1 gives the comparison of phase transition temperature and heat flow characterzed by DSC for pure LCPS and LCPS
embedded with different concentrations of ZnO , Zn, and CuO nanoparticles.

Sr. No. Name of Sample Phase transition temperature Heat flow (mW)

1. Pure LCPS 126°C 20.5
2. LCPS + 0.2 % ZnO NP 138°C 21.13
3. LCPS + 1.0 % ZnO NP 154°C 20.75
4. LCPS + 0.2 % Zn NP 125°C, 142.5°C 21.4
5. LCPS + 0.3 % Zn NP 125°C, 131°C 20.53
6. LCPS + 0.5 % Zn NP 125°C, 130°C 17.2
7. LCPS + 0.8 % Zn NP 150°C 21

8. LCPS + 1.0 % Zn NP 142°C 20.7
9. LCPS + 0.4 % CuO NP 138°C 20.65
10. LCPS + 0.5 % CuO NP 114°C 20.18

Conclusions

Table 1: Phase transition temperature measurement

ZnO nanoparticles significantly enhanced the crystalline properties of LCPS when compared to Zn and CuO nanoparticles. CuO
nanoparticles implanted in LCPS function better than Zn nanoparticles placed in LCPS when it comes to electrical and electronic
devices. The polymer phase with inorganic nanoparticles enhances the polymer matrix's thermal and mechanical stability. A better
dopant for the creation of optically active LCPS materials is ZnO when compared to Zn and CuQ. The optical and thermal properties
of LCPS for use in displays are enhanced by ZnO nanoparticles.
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