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Abstract: - Lifestyle diseases are becoming significant global public health concern. These diseases include hypertension, diabetes, heart
diseases, asthma, obesity etc. This paper explores the use of ML models to predict lifestyle diseases, focusing on diabetes and heart
disease. We utilized publicly available datasets—PIMA Diabetes and Cleveland Heart Disease to develop eight distinct ML models: k
Nearest Neighbors (KNN), Logistic Regression (LR) , Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Deep
Neural Network (DNN), ADABoost, and XGBoost. Our approach emphasizes data preprocessing techniques to ensure high-quality input
for model training, including the handling of missing values, and standard scaling for normalization. The importance of each feature was
assessed using the ANOVA F-value method. We used stratified sampling for splitting dataset to maintain equal class distribution. Our
findings indicate that DNN and XGBoost achieved the highest predictive performance on the PIMA Diabetes dataset, with recall values
of 0.89 and 0.92, respectively along with AUC scores of 0.836 and 0.83, respectively. For the Cleveland Heart Disease dataset, AdaBoost
emerged as the most reliable model, demonstrating a precision of 0.85, a recall of 0.909, and a high AUC of 0.924. Overall, this research
highlights the potential of ML techniques in improving the early detection of lifestyle diseases, while also addressing the challenges of
dataset quality and model interpretability.

Keywords: Lifestyle factors, Diabetes prediction, Heart disease prediction, Ensemble learning, Deep Neural Network
(DNN), Lifestyle diseases.

I.  INTRODUCTION

Lifestyle diseases are becoming a major public health concern globally. Lifestyle diseases are result of personal
behavior and environment. Symptoms of these diseases are developed due to improper food intake, physical
inactivity, smoking, alcohol consumption or stress. Few common lifestyle diseases are hypertension, diabetes,
heart diseases, obesity, high blood pressure etc.

The rise of lifestyle diseases is interrelated to modernization. With advancement of lifestyle, people are shifting
from traditional and physically demanding lifestyle to more comfortable living. This also includes increased
consumption of processed food, high sugar, high salt, unhealthy fats, and exposure to pollution and toxins. The
increase of new technologies and automated systems have undoubtedly revolutionized various aspects of daily life
and reduced physical work in numerous fields. While these advancements brought convenience and efficiency,
they have also inadvertently contributed to a lifestyle, which resulted in rise of lifestyle-related diseases like
hyper-tension, diabetes, heart diseases, obesity and high blood pressure. Furthermore, the pressure of modern life
contributes to mental health issues, which can turn in to physical health problems.

A large portion of population globally is affected with lifestyle diseases. These diseases play a substantial role in
global mortality rates as well. Addressing lifestyle diseases requires a multiple approaches. Awareness programs,
educating people about healthy living, encouraging physical activities and healthy diet can reduce the burden of
these diseases and can improve overall public health. On the other hand, early prediction and detection are very
effective preventive measures. By utilizing ML and Al, a person can have personalized health assistance and
assessment. By accurately predicting the onset of these diseases, individuals and healthcare professionals alike
can implement timely and appropriate preventive measures, ultimately working towards the betterment of public
health and well-being worldwide.

Current studies demonstrate that ML techniques are playing significant role in the field of medical research, and
are offering the capacity to improve disease prediction and diagnosis.

In this paper, we have presented a study on the total eight ML algorithms for the prediction of lifestyle diseases.
Our aim is to develop accurate prediction models for a range of lifestyle diseases. Our research in this paper
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focuses on two major lifestyle diseases: diabetes, and heart disease. We have assessed the performance of our
study in measures of precision, recall, Accuracy, AUC and F1-score.

The objectives of this research are to develop advanced models, which can identify a person at possibility of
lifestyle diseases; and provide healthcare practitioners, particularly physicians, with a reliable and efficient tool
for disease detection and prediction. By integrating Al-based solutions into medical practice, we aim to streamline
healthcare processes and improve patient outcomes.

A. Selection of Articles
We have searched relevant articles on online databases PubMed, IEEE Xplore, and Scopus. Keywords and

phrases used in the searching includes "lifestyle disease detection”, "early prediction of diabetes", "heart disease",
"machine learning in medical diagnosis", "deep learning in healthcare", "classification models for healthcare" and
so on. The search was restricted to journal articles and conference proceedings. We have selected papers
employing Al and ML techniques, including but not limited to deep learning, transfer learning and ensemble
methods. Articles published within the last five years were given priority to ensure the inclusion of recent

advancements in the field.

B. Organization of the Article

Following the introduction, paper is structured as follows: Section 2 highlights a comprehensive literature review
focusing in the domain of lifestyle disease prediction and Al-based approaches. Literature review provides
insights into current advancements, existing methodologies and gaps in the research. Section 3 presents the
methodology used in our research, which includes dataset collection, feature extraction, data preprocessing, and
data splitting. It also outlines various models we have implemented. Section 4 gives overview of performance
parameters used for the evaluation of these models, ensuring robust assessment of their effectiveness. In Section
5, we compare the results of various models and discussed the performance of our proposed model. Lastly,
Section 6 summarizes the paper with key findings, highlighting significance of our research and its potential
implications for future studies in the field.

Il. RELATED WORK

The rise of lifestyle diseases has become a major global health concern. Traditional diagnostic methods often
involve time-consuming procedures. Consequently, many researchers are now utilizing ML and Al to develop
effective and accurate diagnostic tools. Early prediction and diagnosis of lifestyle diseases play a crucial role in
contemporary medical research, with existing models encompassing statistical methods and various ML
techniques.

Approximately 53.7 Crore people aged 20 to 79 were living with diabetes in 2021. This number is estimated to
rise to 64.3 Crore by 2030 and 78.3 Crore by 2045. It is estimated that diabetes caused 67 lac deaths in 2021 [6].
Alarmingly, about half of those living with diabetes remain unaware of their condition, highlighting the critical
need for early detection and the identification of at-risk individuals to provide necessary support.

Singh et al. (2023) enhanced the performance of diabetes diagnosis and prediction through the implementation of
ML approaches, specifically ANN and deep learning algorithms [17]. Their proposed framework improves
classification results, contributing to early detection and better cure of diabetes. In their study, Wee et al. (2023)
emphasized the importance of feature selection and dimensionality reduction in predictive models. They
compared the accuracy of LR, SVM, RF, and ANN, both with all features and after feature selection, highlighting
the significance of high-quality data in achieving optimal model performance [19].

Chang et al. (2022) classified diabetes using various ML algorithms, aiming to develop effective models capable
of accurately identifying individuals based on relevant health indicators [4]. Yasar (2021) highlighted a feature
selection process using swarm-based algorithms, demonstrating how optimized feature subsets improve
classification accuracy [20]. Tanim et al. (2024) proposed DeepNetX2, a deep neural network integrated with
Explainable Al techniques to enhance interpretability while maintaining high accuracy in diabetes diagnosis [18].
This paper also discusses the interrelation between diabetes and heart diseases. Mathukiya et al. (2024) provided a
comparison of multiple ML techniques in diabetes detection, concluding that Random Forest performed
exceptionally well, yielding high accuracy [12].

Heart disease continues to be a major cause of death globally. Begum et al. (2024) outlined an 10T-based system
using deep learning to predict heart disease in real time by examining sensor data available from wearable devices
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[2]. Several studies [8], [11], [13] have demonstrated the efficiency of ML techniques such as LR, kNN and RF,
in processing vast amounts of medical data to provide accurate predictions of heart disease. Ahmed et al. (2023)
reported that the RF model significantly outperformed traditional methods in predicting heart disease risk factors
[1]. Similarly, Bhatt et al. (2023) highlighted the effectiveness of KNN in handling large datasets, achieving high
accuracy in their predictions [3]. Jebamalar et al. (2024) [7] emphasized the robustness of LR in classifying
patients with varying risk levels, while Kavitha et al. (2021) [9] demonstrated that a combination of these ML
techniques could further improve prediction accuracy. Together, these studies underscore the potential of ML
approaches in progressing early detection and diagnosis of heart disease.

I1l. METHODOLOGY

After analyzing and studying variety of papers on diseases prediction, we came up with a unique framework that
can be applied on diseases dataset, which involves following key steps: data collection, data processing, feature
selection or extraction, data splitting, and model validation as demonstrated in Fig. 1. Table 1 outlines the details
of datasets used for this research. After collecting proper dataset, process starts with data processing, in which
data visualization and missing value treatment is performed. Rather than training algorithm on dataset directly,
here we have used ANOVA feature selection method and Chi Square based test to find relevancy of features to
the diseases. After this, data is partitioned into training and testing sets as illustrated in Table 4. Data is trained on
different eight algorithms. These algorithms hyper parameters are set as described in Table 3. The final stage
involves performance evaluation, where the model’s effectiveness is assessed across multiple metrics, providing
comprehensive insights into its predictive capabilities.

A Data Description

Comprehensive analysis of lifestyle diseases, covering four distinct types was conducted in this study. We have
included a total of four datasets that encompass lifestyle and health-related factors, which facilitates research into
the diagnosis of lifestyle diseases.

The Cleveland Heart Disease dataset available at UCI repository [5] comprises of 13 features, including clinical
and diagnostic attributes, to predict the presence of heart disease in 303 individuals. Kaggle's PIMA Diabetes
dataset [15] provides nine features related to diabetes risk factors, assisting in the classification of diabetes
presence indicated by the binary variable among 768 individuals. The summary of these datasets is given in
Tablel. Table 2 and Table 3 represent the statistical analysis of continuous attributes for PIMA diabetes and
Cleveland Heart Diseases respectively. We have also employed violin plots and boxplots to visualize distribution
of continuous features with respect to the target attributes, which are illustrated in Fig. 2 and Fig. 3 for PIMA
diabetes and Cleveland Heart Diseases respectively.

B. Data Preprocessing

Quality data is essential for training any algorithm effectively, and data preprocessing plays a key role in
generating such quality data. Data preprocessing typically involves three critical phases. In the first phase,
handling missing values, we address issues such as incomplete or missing data points. In the PIMA dataset, some
numeric attributes such as Skin Thickness (Skin), Body Mass Index (BMI), and Glucose (Plas) contain values of
0 in a few records, indicating missing data. We have replaced these missing values with the mean value of the
respective attribute to ensure the model is trained effectively. For categorical (string) data, records with missing
values are deleted to maintain data integrity and quality. In second phase, to speed up the algorithm's calculations
and normalize the data within a specific range, standard scaling (Also known as z-score normalization) is
performed.

Table 1 Dataset description

Dataset No Disease Source Total Target Attribute Number of
Features Samples
1. PIMA Diabetes Kaggle [15] 9 Class (Binary) 768
UcCl
2. Cleveland Heart Disease | epository 13 Target — Heart 303
[5] Disease(Binary)

6940


https://www.kaggle.com/datasets/kumargh/pimaindiansdiabetescsv?resource=download

J. Electrical Systems 20-3 (2024): 6938-6951

/ N\
| |
l I
I PIMA. Cl;\;e]and I
| Diabetes doart |
| Disease 1
! |
| |
\ /
Q Datasets 4

\

Handling Missing Values

Data Scaling

7 3\ |
ANOVA. F-value Method, l-‘ea . on ! (Stareiard sealing)
Chi-8quare Test | i !

A . L) \ Preprocessing

ez

iStratiﬁed Samplingi
{ J

Training
Classifiers
Wi N .
Evaluation A K-Nearest Neighbor
Parameters Logistic Regression
ConusormMact: Decision Tree A CcSsVv
Accuracy
Sensitivity / Recall Support Vector Machine
Specificity Random Forest
F1score
Precision ~ Deep Neural Network
3 AUC ADA Boost New data
XGBoost
e ~
\

T { PREDICTION )
Vo TS = N4
| Grid Search
3. Method
N _______©

Fig. 1 System Design for Prediction

Table 2 Statistical analysis of attributes in PIMA diabetes

class preg plas pres skin test mass pedi age

Mean 0 3.3 110 68.2 19.7 68.8 30.3 0.43 31.2

1 4.87 141 70.8 22.2 100 35.1 0.55 37.1

. 0 2 107 70 21 39 30.1 0.336 27

Median

1 4 140 74 27 0 34.3 0.449 36

Standard 0 3.02 26.1 18.1 14.9 98.9 7.69 0.299 11.7

deviation 1 3.74 31.9 21.5 17.7 139 7.26 0.372 11

. 0 0 0 0 0 0 0 0.078 21
Minimum

1 0 0 0 0 0 0 0.088 21

. 0 13 197 122 60 744 57.3 2.33 81
Maximum

1 17 199 114 99 846 67.1 2.42 70
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Table 3 Statistical analysis of Cleveland heart disease on continuous attributes
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target age trestbps chol cp thalach oldpeak
0 56.6 134 251 0.478 139 1.59
Mean
1 52.5 129 242 1.38 158 0.583
. 0 58 130 249 0 142 14
Median

1 52 130 234 2 161 0.2
Standard 0 7.96 18.7 49,5 0.906 22.6 1.3
deviation 1 9.55 16.2 53.6 | 0.952 19.2 0.781
. 0 35 100 131 0 71 0

Minimum
1 29 94 126 0 96 0
. 0 77 200 409 3 195 6.2

Maximum
1 76 180 564 3 202 4.2

C. Feature Extraction

For building successful predictive model, correlation of each attribute with the target attribute is crucial. It enables
us to determine the importance of each attribute, which is key to achieving accurate predictions. We have utilized
ANOVA F-value method, specifically ‘f classif’ class from ‘sklearn.feature selection’ in Python, along with
‘SelectKBest’ class for feature selection. Alternatively chi square method can also be used with ‘SelectKBest’
class to select important feature. Feature selection also helps in reducing the dimensionality. This approach
provides us with a high level of confidence in our analysis, ensuring that we only include relevant features in our
predictive model. Co-relation of each attribute is displayed in Fig. 4 for each dataset.

D. Data splitting

We have used Stratified sampling for categorical datasets to split data so that data is evenly distributed as per the
labels. We have used 4:1 ratio for training and testing data.

Bey—3g

pres

skin

ciass class class class

age

test
—
mass

class class class class

Fig. 2 Box plots and violin plots with respect to target attribute of PIMA diabetes
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Fig. 3 Box plots and violin plots of continuous features with respect to target attribute of Cleveland Heart
Disease

Logistic Regression finds the probability that a given input x belongs to a particular class. Probability of given
input for particular class is given by (2) and decision boundary of logistic regression is determined by (3).
1 2
Phy=11x= 1 + e~ (Bot+Bix1++Baxq)

where B0,B1,...,pd are the parameters to be estimated.
o — {1 ifP(y =1|x) = 0.5 (3)
y 0 otherwise
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Fig. 4 Co-relation of each attribute with target

In Decision Tree, internal node contains the test for decision and each branch represents the outcome of the test.
Coming to the end, leaf node finally represents the class. This model is very easy to interpret. The decision rule
for a node is based on a measure of Gini impurity. Gini impurity for a binary classification problem is given by:
¢ (4)

Gini(D) =1 = > (p)?
i=1
where pi is the proportion of samples that belong to class i in dataset D.
Random Forest uses bagging method. It constructs a number of decision trees during the training. Each tree is

trained on a random subset of the data. When new data needs to be classified, each tree makes a prediction, and
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final decision is decided by voting among all trees. The prediction of a Random Forest for classification is given
in (5).

y = mOde{S\lli 3\72' R S\In} (5)
where §,, is the prediction of the nth decision tree.
Support Vector Machine constructs hyperplane(s) in a high-dimensional space to separate different classes. For a
linear SVM, (6) is used for the decision function and class is predicted with (7).

n
) = Bo+ Y 4K (x5, %)
i=1
Where, K (x;,x) is the kernel function, and o; are the model parameters obtained from training.
§= {1 iffx) =0 @)
—1 otherwise
Deep Neural Network has multiple layers of neurons, with each neuron applying activation function to its input

neurons. For a feed forward DNN with L layers, the output of the Ith layer a® is given by (8).

a® = G(w(l)a(l—l) + b(l)) 8)
Here, WO represents weights of Ith layer, b® represents biases of Ith layer, and o is the activation function.
ADABOoost is combines the predictions of weak classifiers and create a strong classifier. XGBoost is a boosting
method that uses tree models. It builds trees sequentially. Each tree corrects the error that is observed in the
previous ones. The prediction function for XGBoost is shown in (9).

K
9= ) )
k=1

Where fy is a function in the space of regression trees.

(6)

9)

E. Hyper parameter tuning

For machine learning classification tasks, several algorithms with distinct hyper parameters are employed. Grid
search method is used to tune hyper parameters. The K-Nearest Neighbors (KNN) algorithm utilizes various
values of K (the number of neighbors) ranging from 2 to 7, using Euclidean distance for proximity calculations,
with a leaf size of 30, implemented through sklearn.neighbors. Logistic Regression applies L2 regularization with
a regularization parameter (C=1) and uses the Ibfgs optimization algorithm, available in sklearn.linear_model.
The Decision Tree classifier, using the Gini impurity as the splitting criterion, is experimented with max depths
from 3 to 6, implemented via sklearn.tree. Random Forest models, part of sklearn.ensemble, grow 100 to 175
trees, with Gini impurity used for splitting. Support Vector Machines (SVMs) employ multiple kernels such as
linear, RBF, polynomial, and sigmoid with C=1, handled by sklearn.svm. For deep learning, a Deep Neural
Network (DNN) with varying iterations (100 to 250) is used, adapting the hidden layer size to each dataset. It
applies the Adam optimizer with a learning rate of 0.001 and an alpha of 0.001, implemented through
sklearn.neural_network. ADABoost leverages decision trees (maximum depth of 4) as base estimators for
multiclass classification with the SAMME boosting algorithm, testing up to 125 estimators and a learning rate of
1.0 (sklearn.ensemble). XGBoost, a powerful gradient boosting library (xgboost), uses up to 175 estimators, a
maximum depth of 3, and a learning rate of 0.1. For multiclass problems like obesity datasets, the softmax
objective function is applied, while binary classification tasks use the logistic function. These algorithms, tuned
with appropriate hyperparameters, form a robust ensemble for classification tasks. All experiments were
conducted using Python 3.11 on the Spyder IDE 5.4.3, within the Anaconda environment.

IV. PERFORMANCE PARAMETERS

Data models applied to lifestyle disease detection have demonstrated encouraging results. However, relying solely
on accuracy is insufficient. To ensure the effectiveness of these models, it is crucial to assess their performance
using suitable evaluation metrics. The following key metrics are important for gauging their execution.

A. Accuracy

Accuracy is a fraction of correctly predicted instances to the total instances. This parameter does not work well if
dataset in imbalanced.
Total Correct Predictions _ NtNn+ N1p

Accuracy = -
y All Predictions Ntn+NTp+ Npp+NEN
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B. Precision

Precision is ratio of True Positive instances to total instances predicted as Positive. Precision is particularly used
when dataset is imbalanced.

.. Actual Predicted Positive Ntp
Precision = - — =
All Predicted Positive Ntp+Ngp
C. Recall

Recall is ratio of True Positive instances to the total positive instances. For imbalanced data recall is also used to
measure performance of model.

_ Actual Predicted Positive _  Ntp
Recall = _ — =
All Predicted Positive Ntp+Ngp
D. F1 Score
F1 Score is the harmonic mean of precision and recall.
2

F1 Score = ————

—_——

precision recall
E. ROC Curve (Receiver Operating Characteristics)

ROC curve is used to plots True Positive Rate (sensitivity) and False Positive Rate at various threshold values.
Value of Area Under ROC curve represents the model’s performance. Higher value represents better
performance.

V. RESULTS

The results highlight the predictive performance of various machine learning models on PIMA Diabetes, and
Heart Disease. We evaluated the models based on key metrics such as precision, recall, F1 score, accuracy, and
AUC, considering both the training and testing phases.

Table 5 and Table 6 contain the results of the models and Fig. 5 offers a graphical representation of these results
for PIMA Diabetes. For Heart diseases dataset, results and graphical analysis is included in Table 7, Table 8 and
Fig. 6.

These results clearly states that we are getting better predictive results for models using ensemble methods,
including Random Forest, XGBoost and ADABoost models. As ensemble methods are averaging the prediction
of multiple models, the risk of overfitting, bias and variance are reduces. In addition to ensemble methods, DNN
has also demonstrated its strong predictive capabilities.

Table 4 Confusion Metrics and ROC Curve for PIMA Diabetes

Algorithm Confusion Metrics ROC curve
Training Testing
Receiver Operating Characteristic (ROC) Curve
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Table 5 Evaluation of models during training and testing phases for PIMA Diabetes

Training Testing
Model - .
Prer?sm Recall |F1 score Acc;;rac AUC Pregmo Recall [F1 score Acc;rac AUC
kNN 0.85 0.85 0.85 0.85 | 0.934 || 0.59 0.72 0.65 0.72 0.78
LR 0.77 0.73 0.75 0.76 0.85 0.61 0.83 0.7 0.75 0.82
Dei(_:ision 0.83 0.87 0.85 0.85 | 0.917 || 0.57 0.78 0.66 0.72 | 0.792
RF 0.82 0.86 0.84 0.84 0.93 0.59 0.83 0.69 0.74 | 0.838

SVM 0.77 | 0.74 | 0.756 | 0.76 | 0.855 | 0.6 0.83 | 0.697 | 0.746 | 0.819
DNN 0.84 | 0.89 | 0.868 | 0.865 | 0.941 || 0.61 | 0.89 | 0.72 | 0.766 | 0.836
ADABOOST| 0.84 | 0.86 | 0.856 | 0.855 | 0.945 | 0.57 | 0.89 0.7 0.73 | 0.817
XGBOOST | 087 | 092 | 089 | 089 | 096 | 058 | 092 | 0.71 | 0.74 | 0.83

B Precision M Recall F1score [ Accuracy B AUC

1.00
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Fig. 5 Graphical analyses of models on PIMA Diabetes dataset

Table 6 Confusion Metrics and ROC Curve for Heart Disease

Algorithm Confusion Metrics ROC curve
Training Testing
Receiver Operating Characteristic (ROC) Curve
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Table 7 Evaluation of models during training and validation phases for Heart Disease

Training Testing
Model Pregisio Recall |F1 score ACC)l;lraC AUC Pregisio Recall |F1 score Acc;rac AUC
kNN 091 | 0.848 | 0.878 | 0.87 | 0948 | 0.84 | 0.818 | 0.83 | 0.819 | 0.888
LR 0.82 0.9 0.86 0.84 | 0923 | 0.769 | 0.909 | 0.83 0.80 | 0.899
Decision Tree | 0.90 | 0.969 | 0.93 092 | 0971 || 0.81 | 0.909 | 0.857 | 0.836 | 0.875
RF 0919 | 095 | 0936 | 0.929 | 0.985 | 0.78 | 0.969 | 0.86 | 0.836 | 0.918
SVM 090 | 0939 | 0921 | 0913 | 0.971 || 0.837 | 0.939 | 0.88 | 0.868 | 0.904
DNN 0.94 0.98 0.96 096 | 0989 | 0.75 | 0.848 0.8 0.77 | 0.874
ADABOOST | 0.92 0.93 0.92 092 | 0984 | 0.85 | 0.909 | 0.88 0.86 | 0.924
XGBOOST 0.98 1 0.99 0.99 0.99 0.75 | 0.909 | 0.82 0.78 0.85
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Fig. 6 Graphical analyses of models on Heart Disease dataset

VI. DISCUSSION

In PIMA Diabetes, Deep Neural Networks (DNN) and XGBoost demonstrate the best testing performance. DNN
has a recall of 0.89 and an F1 score of 0.72, while XGBoost matches DNN’s recall and has slightly better
precision, making both models reliable for identifying diabetic patients. The AUC values for DNN (0.836) and
XGBoost (0.83) confirm that these models are strong at distinguishing between positive and negative diabetes
cases. Models like Random Forest and AdaBoost show good performance during training but have significantly
lower test precision, indicating overfitting.
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As depicted in Table 8, XGBoost and DNN show exceptionally high performance during training. However, this
may indicate that models are fitting training data too closely, making the model overfit. On the other hand,
Adaboost maintains the best balance between training and testing. With a precision of 0.85, recall of 0.909, and
F1 score of 0.88 on testing data, along with high AUC of 0.924, it performs reliably across both phases, which
ensures accurate diagnosis while minimizing false negatives. SVM is another strong performer in the testing
phase with recall of 0.939 and an F1 score of 0.88, making it a good option when accuracy is critical. In disease
prediction recall is especially important because it measures how many true positive diseases are correctly
identified by the model. Missing positive cases could have serious consequences, so models with high recall are
preferred. Adaboost and SVM offer strong recall values 0.909 and 0.939 respectively in testing phase making
them particularly suitable for heart disease prediction. Logistic Regression also shows stable performance
between training and testing with recall of 0.909 making it a simple but effective model for situation where
interpretability is crucial.

VIl. CONCLUSION

Our research presents prediction of lifestyle diseases, specifically diabetes and heart disease using ML models.
We focused on Diabetes and heart diseases. The results of our research demonstrated the effectiveness of
ensemble learning models such as Random Forest, ADABoost and XGBoost. Additionally, DNN is also proved
to be highly competitive with ensemble Learning methods. These models are able to capture complex patterns
within a dataset, resulting in consistently superior performance across various evaluation metrics compared to
other traditional models. By incorporating multiple ML techniques, we were able to enhance the reliability of our
model. Overall, our work contributes the advancement in healthcare sectors and provides insights into the
application of ML in diseases diagnosis and prediction. However, several limitations exist in our research. Model
performance may be impacted by dataset quality, size, and potential imbalances or missing values. Overfitting
could also constrain generalization to new data if not adequately addressed. Future work should focus on refining
the models by exploring more advanced techniques, such as deep learning, to further improve accuracy.
Additionally, enhancing model interpretability will be crucial to provide actionable insights for healthcare
practitioners. We also plan to explore the NHANES dataset for diabetes prediction using similar machine learning
techniques to expand the scope of our research.
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