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Abstract- Around the world, thyroid disease is considered one of the most highly detected endocrinopathies; for
the overall health of a human, thyroid illness is regarded as a significant concern since the thyroid gland controls
the human body's metabolism. A dependable, automatic and precise machine-learning (ML) system for thyroid
detection is necessary to save time and lower mistake rates. The proposed strategy seeks to overcome previous
work's constraints, such as improper comprehensive feature analysis, prediction accuracy improvement,
dependability and visualization. Here, 29 clinical factors from a public dataset on thyroid disorders from the
California University, Irvine ML repository were employed. By examining symptoms in the early stages and
displacing the manual examination of these characteristics, the medical features enabled us to develop a Machine
Learning (ML) model that may forecast thyroid-related diseases. Understanding the purpose of features in the
prediction tasks of the thyroid is made more accessible with visualization and feature analysis. Furthermore, data
balancing and 5-fold CV with using the synthetic minority oversampling technique, intend to solve the over-fitting
issue. Because numerous classifiers are involved in the prediction task, learning maintains the trustworthiness of
the thyroid forecasting system. Using the proposed Rule-based-Generative Clustering (RGC) with the k-CV
method, the suggested model achieved a specificity of 99%, an accuracy of 99.1% and a sensitivity of 99%. This
makes it suitable for real-time diagnostic schemes to facilitate disease identification and encourage early-stage
treatment.
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1. INTRODUCTION

The substantial rise in human metabolism, reproductive activity and neuronal growth are regulated mostly by
thyroid hormones. Regular physical functions: humans are impacted when the thyroid gland cannot produce an
optimal hormone level regularly [1]. This is termed thyroid dysfunction. From a medical perspective, thyroid
issues can lead to thyroid cancer and thyroiditis. The two chief thyroid-related disorders are hypothyroidism and
hyperthyroidism [2]. Globally, the prevalence of thyroid disorders is increasing, leading up to thirty to forty
percent of patients assessed in endocrine institutions [3]. Roughly sixty percent of Americans do not know they
have a thyroid condition, which affects an estimated 20 million people [4]. Since the difficulties caused by the
thyroid illness may be difficult to distinguish from other disorders. It is a challenging process and consumes too
much time. The traditional method to diagnose thyroid disorder comprises humerous blood works and proper
examination by medical experts. However, the primary concern is accurately diagnosing the illness when it is still
in its initial phases [5]. Because blood tests can provide vital information on many thyroid hormones, doctors use
factors like triiodothyronine (T3), thyroid-stimulating hormone (TSH), thyroid-stimulating immunoglobulin (TSI)
and thyroxin (T4) for suspecting thyroid dysfunction [6]. Twenty-nine clinical features in the dataset were selected
for the model's training. Since the data are collected in real-time, pre-processing is necessary to acquire relevant
inputs for the ML classifier [7]. Data cleaning, resampling, normalizing and encoding are all part of the data pre-
processing step. SMOTE algorithm can be used for data balancing to resolve imbalances in the dataset and reduce
bias [8]. By utilizing K-nearest neighbors, SMOTE creates synthetic samples for the minority class. Cross-
validation can also be used to check for over-fitting and ensure the models aren’t adequately employed in the
training samples and may be extended to newly incoming data [9]. The previous study concentrated on the
diagnosis of hypothyroidism among the many thyroid conditions, which include thyroiditis, goiter, thyroid
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malignancy, etc. However, the correct database to train the model and architecture can also be used to address
other diseases [10]. The significant contributions of the presented study.

The creation of an automated, straightforward, accurate and ML thyroid prediction framework can be integrated.
The proposed Rule-Generative Clustering (RGC) was applied to comprehend the function of different clinical
features in thyroid risk prediction.

Includes 29 characteristics that, by examining early symptoms, can be used to predict and categorize thyroid
conditions. Moreover, it takes the place of laborious manual examination of these characteristics. The SMOTE
was used to balance data and guarantee that the outcomes were impartial.

The proposed model uses a generative rule concept rather than just one machine learning algorithm; it guarantees
the prediction model's reliability.

The work is summarized as follows: section 2 compares various prevailing approaches. The methodology is
drafted in section 3, and numerical outcomes are in section 4. The outcomes are summarized in section 5.

2. RELATED WORKS

Conventional machine learning techniques: The researchers developed a thyroid disease prediction framework
[11] that employs "multi-kernel SVM," a kernel-based classification technique. Optimizing feature selection was
done with a population-based meta-heuristic approach that emulated the gray wolves’ hunting strategy and
leadership quality and improved gray wolf optimization (GWO) [12] to increase the classification process's
efficacy. The population is guided to advantageous areas of the search space by the three aptest candidate
solutions: beta, delta and alpha about GWO. We found the ideal feature combination by scanning the feature space
adaptively. This method attained 94.5% specificity, 99.05% sensitivity, and 97.49% accuracy [13]. The authors
suggest that new and powerful processes are necessary to increase performance and enable the identification of
thyroid disorders, as existing techniques necessitate extensive computations. To enhance the disease prediction
with the help of the given parameters in the dataset, the authors in [14] used an experiential method to compare
the results of DT, RF, ANN, and K-NNs. Additionally, modification of the dataset is done to provide an accurate
prediction and it was done on both unsampled and sampled datasets to enhance the comparison outcomes. Once
the dataset was modified, the RF algorithm achieved 91% specificity and 94.8% accuracy [15].

Jha et al. [13] employed machine learning (ML) approaches, like RF, LR, DNN, GBM and SVM to identify
compounds that have a high probability of initiating thyroid hormone homeostasis. For further testing, the early
identification of these chemicals is beneficial in identifying thyroid illness. The ToxCast database offers details
on molecular occurrences. With F1-values of 0.81 and 0.83, the TR and TPO showed the most positive predictive
outcomes. Three feature-choosing approaches, principal component analysis (PCA), univariate feature selection
(UFS) and recursive feature extraction (RFE) were examined in another study [14] about ML algorithms. While
UFS chooses the most powerful features and recursive feature extraction eliminates the least robust features till a
predetermined feature count is attained, principal component analysis [15] converts data into lower dimensions
from high-dimension. Univariate feature selection is an extremely utilized model for certain strategy; RFE is done
by constantly selecting the essential features. With an accuracy of 99.35%, the Recursive Feature Elimination and
ML classifiers exhibited the best outcomes. Nevertheless, the sample size (n = 519) was limited. A substantial
dataset was needed to evaluate the method's effectiveness [16] — [17].

Comprehensive evaluations of prediction thyroid disorders by utilizing several Machine Learning classifiers, both
by involving and without involving feature selection strategies, were carried out in another study [18]. It differed
from the other studies include extra features like blood pressure, pulse rate, and BMI characteristics. Feature
selection in L2 and L1 norms was used in one experiment set, and the other was performed without it [19]. Here,
L2 regularization reduced weight magnitudes to deal over-fitting where feature selection is substantially achieved
with L1-regularization by eliminating unnecessary features. L1 performs well when a feature subset is significant,
while L2 retains a broader collection of traits. With the L2 selection and NB classifier, the final model attained a
perfect accuracy of 100%. Another study [20] explored several k-NN classifiers for distance functions in the same
database. They also performed a selection of features using the test called chi-squared and L1 norm. Features
correlated highly with the target variable are found using the chi-squared test [21]. When handling discrete or
category data, this is helpful. Not only does it increase interpretability and avoid over-fitting, but it also improves
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the model's performance. 100% accuracy was attained using chi-squared methods with KNN, cosine distance
functions and Euclidean. Nevertheless, a public thyroid database has not yet been used to validate the suggested
model. Therefore, its performance in real-time scenarios and over-fitting areas is not verified.

Santos et al. [22] utilized ML methods, like RF, DT, K-star classifiers and sequential minimum optimization
(SMO), to predict hypothyroidism-related diseases. During SVM training, large-scale quadratic programming
optimization problems are solved. SMO breaks these lengthy optimization processes into more manageable,
analytically targeted tasks [23]. The proposed work handled three thousand seven hundred seventy-two different
records. The outcomes are achieved with RF and DT with 98 % and 99% accuracy respectively. However, the
current study did not take hyperthyroid prediction into account. There has been a lot of discussion on how well-
supervised and unsupervised classifiers predict thyroid problems. Different research [24] focused on the concept
of features that are relevant and medical applications, deviating from this pattern. They enumerated the four
features considered the best and most helpful in determining thyroid disorder and showed how simple and
inexpensive it was for practitioners to assess these features. Additionally, they outlined the disadvantages of not
attempting to test the entire thyroid panel, which is a common practice in various countries. In conclusion, the
outcomes exhibit stability and are unlikely to change based on the classifier employed or the underlying features
of the dataset, including imbalance.

Prediction accuracy has to be improved in the existing studies investigated based on traditional methodologies
because prediction accuracy measures are essential when considering machine learning in the medical field [25].
Furthermore, there was no evidence for reassessing the models' reliability because they were based only on one
machine learning classifier. CAD systems can only use the suggested models once they are proven reliable. While
some studies have demonstrated excellent accuracy, their development was based on private rather than public
datasets, and their data acquisition was subject to permissions, privacy, secrecy, and other issues [26]. With DL
networks, the investigation is done with wider training data, powerful computations, black-box nature and longer
training periods. Moreover, the essential characteristics of decision-making still need to be discovered. This work
proposes a system with adequate trustworthiness by utilizing a classifiers ensemble, in which many classifiers
contribute to the decision-making of diagnosis to address these problems. The classic ML algorithms guaranteed
the model's ease of use and performance. Furthermore, the attributes are accessible and examined at any point. By
using public data to train the model, it will be able to handle a broader range of data and be integrated into CAD
systems in real-time scenarios [27] — [28].
Table 1: Comparison of existing approaches

Ref Method Input variable Output Performance
evaluation
Customized 29 clinic pathological | Thyroid peroxidase 91% specificity
[16] Alexnet characteristics (TPO) active, and 94.7 %
inactive Accuracy.
ML + RFE Molecular descriptors | Hypothyroid, non- F1-score 0.83
[18] classifier hypothyroid
L2 selection + NB Age, ID, sex, FT4, Hypo- and hyper- 99.45% Accuracy
classifier FT3, T4, TSHand T3 thyroid, and
normal
multi-kernel + clinicopathological Hyperthyroid, 97.49% Accuracy,
SVM Gray wolf characteristics-29 normal and 94.5% specificity
[15] optimization hypothyroid and 99.05%
sensitivity
SMO + RF Gender, 1D, BMI, age, | Hypothyroid, non- 100%
[14] pulse rate, pregnancy, hypothyroid Accuracy
BP, TSH, T4 and T3
CNN 29 clinicopathological | Thyroiditis, cystic, 100%
characteristics normal, adenoma, Accuracy
[19] cancer and multi-
nodular goiter
KNN+ Chi-square | Gender, ID, BMI, age, Hyperthyroid, 100%
[22] test pulse rate, pregnancy, normal and Accuracy
BP, TSH, T4 and T3 hypothyroid
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3. METHODS AND MATERIALS
3.1. Database

The utilized thyroid dataset was accessed from the UCI ML repository [29]. Six databases totaling 2800 training
and 972 test examples are included, all from the Garvan Institute, Australia. This was applied to categorize binary
data. The predictive variable in the database was labeled as categorical, with "P" denoting hypothyroidism and
"N" indicating the opposite. The dataset contains several features corresponding to the patients' various
clinicopathological traits. There was a total of 29 actual or category attributes present. The characteristics include
sex, age, antithyroid drugs,thyroid surgery, query _hyperthyroid, 1131 treatment,  pregnancy,
query_hyperthyroid, query_hypothyroid, query on thyroxine and query_hypothyroid. The following blood
parameters were taken into consideration: TSH (the genuine TSH value), TSH_measured, TT4 referral_source,
T3, T4U, TT4 _measured, TBG, T3 _measured, FTI_measured, FTI, lithium, T4U_measured, TBG_measured,
tumor, hypo pituitary, and goiter. The target variable employed in this study was hypothyroidism.

UCI-based
thyroid

dataset

v v
Training Testing
v
Perform pre-processing A2
with SMOTE Independent
dataset

'

Choose RGC
features.

\ 4

Train rule generative
concept.

y
Perform k-fold CV

v

Measure prediction
accuracy

v

Evaluate performance
metrics

A

The flow of the classifier model

526



J. Electrical Systems 20-11s (2024): 523-535

3.2. SMOTE

Issues with data imbalance occur in datasets in real-time scenarios. The SMOTE was employed to deal with
thyroid database’s data imbalance problem. The minority class oversampling is a popular solution to the
imbalanced dataset issue. However, duplicating current instances from a minority class might not offer fresh
perspectives. Instead, SMOTE uses the knowledge from preexisting examples to create new synthetic ones. In the
feature space, samples near one another are selected via the SMOTE approach. It makes a line that connects the
sample chosen to its five closest neighbors, on average, and afterward creates fresh samples. By bridging the gap
between two examples and their arbitrarily chosen neighbors, this synthetic example efficiently raises the minority
class's depiction. We reduced the issue of over-fitting that can result from random oversampling by using SMOTE.
By ensuring that synthetic examples are produced systematically relies on the minority class instances distribution
that already exist, this strategy enhances the model's capacity for generalization.

3.3. Prediction with Rule-Generative Clustering (RGC)

The K-means clustering technique pre-processes the data and clusters the source samples after collecting them.
Additionally, a rule for data encoding is suggested for the clustered data sample’s encoding and streamlining of
the data form. This rule works with K-means clustering to perform data mining in the first layer and sort the
samples to create a sample library. The following are the guidelines and procedures. The proposed clustering
technique determines three factors: data samples are classified with Euclidean distance; the clustering is assessed
with criterion function; and optimal classification clusters are found with coefficients evaluation. To achieve
sample classification, the clustering approach adopts Euclidean distance among each sample data and cluster
center. The samples are then placed into the cluster with the smallest Euclidean distance. Eq. (1) can be used to
compute the Euclidean distance.

M

n

RCE)

i=1

dx, YD) = |G =) + (=) + ot (=) =

Here, X = (xq,x5,...,%,) is @ sample that is unclassified in n —dimensional space that associates with the
elements (the non-faulty node’s voltage data) in the source sample library’s. Y/ = (y/,y/,...,y]) is the j
cluster’s center. During the first-time sample classification process, whichever sample may be chosen randomly
as the cluster center. The cluster center is updated using the mean of all samples within each cluster, and its
inconsistency, like not updating, is monitored by the criteria function. Eq. (2) given below shows the criterion
function, which aims to minimize the sum of the squared errors between the cluster center and the cluster samples:

X o, (2
min (x! - )
)

j= xl! EXf,yl.l eyJ

Here, the number of the clusters is K, the j* cluster center is ¥;, the i** element data is yij,xl.j is the i*" element
data in X;, and the j* cluster’s random sample is X;. The cluster center ceases to update when the criteria function
of formula Eg. (2) the sample into K —clusters is over. The contour coefficients of various clusters are computed
and used to find the ideal cluster count for K-means clustering in first-layer data mining. The cluster count with
the most significant contour coefficient is then fixed to be the perfect cluster count. The contour coefficient
calculation procedure for each sample of a cluster is presented in Eq. (3):

(1) Firstly, the computation of a;, shows whether the cluster cohesion is done. (The average distance between x
and every other point in its cluster).

(2) Next, the separation degree b, is computed among the clusters and the others. (The average distance between
all points in different clusters and x).
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(3) Finally, the computation of S, the contour coefficient, is done. (The difference between b, and «a, is divided
by the most significant value among the two).

by —, 3
max(by, <)

S, =

The contour coefficient’s value is in the [—1, 1] range. The S, value will be more significant if the contour
coefficient’s value is closer to 1. The existing cluster number K’s contour coefficient is determined by averaging
the all-sample’s contour coefficients. The classification operation is better with a more significant contour
coefficient and greater distance between the clusters. Consequently, the ideal cluster number for the source sample
library is determined by looking at the K value with the most significant contour coefficient.

3.4. Rule generation

Fig 2 shows the guidelines for applying the K —means clustering approach to clustering in a source sample library:
By increasing K from 5, the enumeration approach yields the ideal number of clusters. The following is a
description of the clustering rules when there are K clusters:

1) First, K samples are selected randomly to create the initial cluster center.

2) Every sample is sorted into the cluster with the smallest Euclidean distance based on the distance it takes to get
to the center of each cluster, as determined by Eq. (1).

3) To establish whether the minimum is obtained, the criterion function is computed by averaging all samples
within every cluster, and it is designated as the cluster center.

4). Till the Eq. (2) criterion function approaches the lowest, this process will be repeated.

Normal clustering
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Rule-generative clustering model

Fig 2: Proposed Rule-generative clustering model

The optimum K values of the clusters on the various nodes differ whenever the clustering of source samples
happens based on different failure types. To find its optimal K and finish clustering the source samples on each
node, each source sample in a different node must go through the abovementioned procedure. Following the
source samples’ clustering, there are some similarities among the samples in each cluster. Even though there are
some similarities between each cluster’s samples, once clustering is done, the data form becomes easier to manage.
To simplify the data, self-encoding is applied to the categorized samples following the clustering of the source
sample libraries. The following rules are created to preserve the encoded data’s critical attribute data, like the
cluster and node to which the sample belongs: After clustering, each sample is queried first for the node (T), then
for the cluster (W), and TOW is the last coding form. For instance, T € N (N is an integer that indicates the node
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number excluding the defective node), 0 < W < K,and W € N. The TOW value indicates that the sample is
the voltage data sample classified into the 15¢ node 3™ cluster. Coding rules are illustrated in Fig 2 after self-
encoding and clustering. Following the source samples’ self-encoding and clustering, the sample data take on a
more manageable and compact form. The 1%-layer data mining is finished when the source sample library is
changed into the sample library by processing the source samples using self-encoding and K-means clustering. It
extracts the inner relationships between the source samples and various unlabeled data samples, maximizes the
relevance of the data sample within its cluster, and sets up the data mining process for the second layer.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The findings from every experiment while developing the system are discussed and shown. Numerous pre-
processing techniques were applied to enhance the system's performance, such as encoding categorical data and
identifying and managing missing values. Different machine learning classifier algorithms were tested in addition
to hyper-parameter adjustment and cross-validation. The prepared model's effectiveness was assessed by
evaluating its accuracy, sensitivity, specificity, and other attributes. Step one started by using a thyroid dataset as
the work wanted a database in a real-world scenario with sufficient training data. In routine medical operations, a
system created from a real-time database can be helpful. More data is necessary for increased accuracy.
Researchers must additionally deal with extra difficulties when utilizing private healthcare data for research, such
as getting consent to collect the data, privacy and confidentiality issues, etc. Numerous scholars use this publicly
available thyroid disorder database. The SMOTE technique was applied during pre-processing because the dataset
had data imbalance issues. A data-mining technique called data pre-processing is employed to make the raw data
acquired more useful. The pre-processing is done using the Pandas Python library. Value-containing attributes,
including letters and digits, were present in the actual data. To be readable by machines, it needs to be encoded.
As a result, data were transformed into data frames, and the Sklearn label encoder was used to encode the data.
The "int64" data type was then applied to all 29 attributes. Subsequently, redundant rows were removed from the
encoded data to perform data cleaning and guarantee that the input for the classifier would not be redundant. Next,
as indicated in Table 2, the summary of statistical data was assessed through standard deviation and mean etc.
The term "percentile” refers to the number of values that fall below the given percentile.

Table 2: Data summary

Index Age Sex TSH T3 TT4 T4U FTI1
Count 3712 3712 3712 3712 3712 3712 3712
Mean 46 1.2 123 31 120 65 108
SD 20 0.5 82 20 97 32 97
Min 0 0 0 0 0 0 0
25% 27 1 64 17 21 47 18
50% 49 1 112 24 80 58 57
75% 62 2 166 31 225 70 220
Max 92 2 286 70 24 145 235
Table 3: Performance evaluation
Classifier Class PPV NPV TPR TNR Accuracy Misclassification
rate
LR 0 86 88 89 86 87 0.12
1 87 86 86 89
NN 0 95 95 95 94 94 0.05
1 94 94 94 95
DT 0 96 96 96 94 95 0.04
1 95 95 94 96
k-NN 0 94 94 95 88 91 0.08
1 89 89 88 95
SVM 0 90 90 91 84 88 0.11
1 85 85 84 95
Bagging 0 89 89 91 91 89 0.018
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1 79 79 93 93
Boosting 0 95 95 95 93 98 0.005
1 93 93 93 95
Proposed 0 99 99.1 99 99.5 99 0.004
1 98.8 98 98.5 99.6
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After pre-processing, the target and data features are extracted from the pre-processed data frame. The feature-
target data were obtained to use in the ML phases. Using 80:20 split, dataset was separated into eighty percent of
data into training sets and the remaining twenty percent into testing sets. After splitting the data using SVM, NN,
LR, DT and KNN algorithms with 5-fold cross-validation, we utilized numerous ML models. The DT classifier
produced the highest classification accuracy of 95.62%. As the methodology is intended for clinical disease
identification, where correctness is crucial, more improvement in prediction accuracy was necessary. Reliability
was yet another issue in integrating the model into real-time systems. The RGC learning algorithms were used to
meet these goals. They outperformed traditional classifiers, with 99.5% accuracy being the highest level attained
through RGC. In this case, non-thyroid classes are indicated by class 0, and thyroid classes are marked by class
1. As shown in Table 2, we assessed the model's true-negative rate (TNR), misclassification rate, PPV, NPV and
TPR. Out of all the data samples, accuracy is the number of samples from the test dataset correctly classified. TPR
or sensitivity is expressed as the ratio of correctly identified positive cases amongst all positive cases. Eq. (4) to
Eq. (8) defines specificity, also known as TNR, as the ability of the model to correctly classify a data sample,
including a negative instance amongst the entire negative cases. Precision, also known as PPV, evaluates the
performance by correctly predicting the positive cases to those that the methodology predicts. Eq. (4) states that
the chance of data sample having a negative screening test that doesn’t have a particular disorder is known as the
NPV. TN and TP accurately predict positive and negative situations. The terms "false positive” and "false
negative" refer to incorrectly identifying positive cases as negative and negative cases as positive.

Acc = TP+TN (4)
TP+TN + FP +FN

Recall = TPZ—% ®)

Precision = % ©

TNR = % Y

NPV = TNT+N FN ©

The models undergo fine-tuning using rule-based clustering and Fig 8 displays the classification error curve. With
7000 obs/s prediction speed, the finalized RGC approach required 148.82 s for training. We exported the FNR
and TPR plots for the finished thyroid prediction model by using the RGC scheme to observe the performance of
each class’s classifier. In this case, FPs are 14, false negatives (FNs) are 3406, true positives (TPs) are 21 and true
negatives (TNs) are 3399. The TPR calculates the number of observations correctly classified for every true class.
The FNR provides the proportion of incorrectly identified observations to correctly identified observations. There
are summaries for each true class in the plot's final two columns to the right. FDR and PPV plots are presented as
shown in Fig 4 to Fig 8, as FP values are essential to our classification problem. FDR measures the ratio of wrongly
categorized observations for every predicted class, and PPV represents the fraction of correctly classified data in
every expected class.

Table 4: Benchmark method comparison

Ref Method Result
[16] ANN Acc = 95%, pre = 95%, recall = 95% and F1-score
= 95%

[18] RF Acc = 94%, pre = 94.5%, recall = 91%

[19] MLP Acc = 89%

[23] NN Acc = 98%

[25] RF Acc =91%

[26] XG-boost Acc = 95%, PPV = 95%, NPV = 93%

[28] SMOTE Acc = 93%, pre = 95% and AUC = 93%

Proposed Acc =99%, pre = 98.9%, recall = 99.1% and F1-

score = 99%
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Based on the currently selected classifier, the TPR and FPR for different classification score boundaries are shown
on the ROC curve. The area under the ROC curve (AUC) value is equivalent to the combination of an ROC curve,
considering that FPR is from FPR = zero to FPR = one. The Area under the Curve is used to quantify the efficiency
of the classifier as a whole; a value of one, which is the maximum, implies a better performance by the classifier.
The perfect separation between negative and positive classes in a model's predicted probability is shown by an
AUC of 1.000. However, because different matrices consider variables like trade-offs, class imbalance, and
classification threshold, this does not always translate into 100% performance in other metrics. Each performance
metric provides different performance features and system behavior. Table 5 compares the suggested model’s
performance with a few related works experimented on the same database.

Comparison with benchmark approaches
100

95

9
1Ll
80

RF: MLP RF XG-boost SMOTE proposed
Proposed vs. Existing

Values
o

a1

Fig 9: Accuracy comparison with benchmark approaches

Individuals prescribed to the thyroid centers for assessment are in the user database. The user dataset is a valuable
tool for assessing and training the proposed methodology since it contains significant medical variables for
diagnosing disorders related to the thyroid, which is the primary focus of the prediction model. This would
guarantee the model's suitability for this particular task. Techniques like SMOTE and cross-validation can reduce
bias and increase generalizability. By retraining the model with a suitable database, this research can also be
expanded to many similar clinical disease identification applications. The suggested methodology is helpful for
disease identification in real-time because it exhibits numerous essential features and attributes, like improved
robustness, accuracy, specificity, sensitivity, adaptability, and the potential to be incorporated into prediction
systems. Using the suggested ML model, our approach can be integrated to enable patient data entry and predict
the patient's thyroid condition. After a labeled public database becomes available, we will evaluate a multi-class
thyroid classification model. Then, RGC is tested in addition to the display of feature relevance in classification
decisions.

5. CONCLUSION

Thyroid diseases are increasingly becoming highly prevalent; the discovery of them in their early stages is vital;
treatment can prevent complications, and death rates can be decreased; the identification of these disorders has
grown in importance within the medical community. Precisely forecasting the disease course and realizing the
interaction of medical signs are crucial for clinical disease identification and treatment. Thus, the need for an
efficient real-time system arises. Most previous research has concentrated on a single model that does not
guarantee increased accuracy or model reliability. In contrast, rule-based essential requirements for ML models
are utilized in medical systems. No one knows the primary standards by which the decisions are determined, even
though some ML techniques provide more accuracy than the standard ML limitations. Therefore, all of the
restrictions are removed in this work by creating a traditional ML model using a Rule-Generative Clustering
(RGC) learning strategy and appropriate clinical feature analysis. Foreseeing the disease course and the clinical
symptom’s interdependence or characteristics is essential to clinical diagnosis and treatment. Together with 99.1%
specificity and PPV, 99% sensitivity and NPV, and 100 AUC, the model yielded 99.5% accuracy. The use of
approaches in producing binary classification judgments ensures model reliability. Furthermore, building the
model using open databases contributes to the model's stability when considering real-time system use.
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