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Abstract- Around the world, thyroid disease is considered one of the most highly detected endocrinopathies; for 

the overall health of a human, thyroid illness is regarded as a significant concern since the thyroid gland controls 

the human body's metabolism. A dependable, automatic and precise machine-learning (ML) system for thyroid 

detection is necessary to save time and lower mistake rates. The proposed strategy seeks to overcome previous 

work's constraints, such as improper comprehensive feature analysis, prediction accuracy improvement, 

dependability and visualization. Here, 29 clinical factors from a public dataset on thyroid disorders from the 

California University, Irvine ML repository were employed. By examining symptoms in the early stages and 

displacing the manual examination of these characteristics, the medical features enabled us to develop a Machine 

Learning (ML) model that may forecast thyroid-related diseases. Understanding the purpose of features in the 

prediction tasks of the thyroid is made more accessible with visualization and feature analysis. Furthermore, data 

balancing and 5-fold CV with using the synthetic minority oversampling technique, intend to solve the over-fitting 

issue. Because numerous classifiers are involved in the prediction task, learning maintains the trustworthiness of 

the thyroid forecasting system. Using the proposed Rule-based-Generative Clustering (RGC) with the k-CV 

method, the suggested model achieved a specificity of 99%, an accuracy of 99.1% and a sensitivity of 99%. This 

makes it suitable for real-time diagnostic schemes to facilitate disease identification and encourage early-stage 

treatment. 
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1. INTRODUCTION 

The substantial rise in human metabolism, reproductive activity and neuronal growth are regulated mostly by 

thyroid hormones. Regular physical functions: humans are impacted when the thyroid gland cannot produce an 

optimal hormone level regularly [1]. This is termed thyroid dysfunction. From a medical perspective, thyroid 

issues can lead to thyroid cancer and thyroiditis. The two chief thyroid-related disorders are hypothyroidism and 

hyperthyroidism [2]. Globally, the prevalence of thyroid disorders is increasing, leading up to thirty to forty 

percent of patients assessed in endocrine institutions [3]. Roughly sixty percent of Americans do not know they 

have a thyroid condition, which affects an estimated 20 million people [4]. Since the difficulties caused by the 

thyroid illness may be difficult to distinguish from other disorders. It is a challenging process and consumes too 

much time. The traditional method to diagnose thyroid disorder comprises numerous blood works and proper 

examination by medical experts. However, the primary concern is accurately diagnosing the illness when it is still 

in its initial phases [5]. Because blood tests can provide vital information on many thyroid hormones, doctors use 

factors like triiodothyronine (T3), thyroid-stimulating hormone (TSH), thyroid-stimulating immunoglobulin (TSI) 

and thyroxin (T4) for suspecting thyroid dysfunction [6]. Twenty-nine clinical features in the dataset were selected 

for the model's training. Since the data are collected in real-time, pre-processing is necessary to acquire relevant 

inputs for the ML classifier [7]. Data cleaning, resampling, normalizing and encoding are all part of the data pre-

processing step. SMOTE algorithm can be used for data balancing to resolve imbalances in the dataset and reduce 

bias [8]. By utilizing K-nearest neighbors, SMOTE creates synthetic samples for the minority class. Cross-

validation can also be used to check for over-fitting and ensure the models aren’t adequately employed in the 

training samples and may be extended to newly incoming data [9]. The previous study concentrated on the 

diagnosis of hypothyroidism among the many thyroid conditions, which include thyroiditis, goiter, thyroid 
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malignancy, etc. However, the correct database to train the model and architecture can also be used to address 

other diseases [10]. The significant contributions of the presented study. 

 The creation of an automated, straightforward, accurate and ML thyroid prediction framework can be integrated. 

The proposed Rule-Generative Clustering (RGC) was applied to comprehend the function of different clinical 

features in thyroid risk prediction. 

1. Includes 29 characteristics that, by examining early symptoms, can be used to predict and categorize thyroid 

conditions. Moreover, it takes the place of laborious manual examination of these characteristics. The SMOTE 

was used to balance data and guarantee that the outcomes were impartial.  

2. The proposed model uses a generative rule concept rather than just one machine learning algorithm; it guarantees 

the prediction model's reliability. 

The work is summarized as follows: section 2 compares various prevailing approaches. The methodology is 

drafted in section 3, and numerical outcomes are in section 4. The outcomes are summarized in section 5. 

2. RELATED WORKS 

Conventional machine learning techniques: The researchers developed a thyroid disease prediction framework 

[11] that employs "multi-kernel SVM," a kernel-based classification technique. Optimizing feature selection was 

done with a population-based meta-heuristic approach that emulated the gray wolves’ hunting strategy and 

leadership quality and improved gray wolf optimization (GWO) [12] to increase the classification process's 

efficacy. The population is guided to advantageous areas of the search space by the three aptest candidate 

solutions: beta, delta and alpha about GWO. We found the ideal feature combination by scanning the feature space 

adaptively. This method attained 94.5% specificity, 99.05% sensitivity, and 97.49% accuracy [13]. The authors 

suggest that new and powerful processes are necessary to increase performance and enable the identification of 

thyroid disorders, as existing techniques necessitate extensive computations. To enhance the disease prediction 

with the help of the given parameters in the dataset, the authors in [14] used an experiential method to compare 

the results of DT, RF, ANN, and K-NNs. Additionally, modification of the dataset is done to provide an accurate 

prediction and it was done on both unsampled and sampled datasets to enhance the comparison outcomes. Once 

the dataset was modified, the RF algorithm achieved 91% specificity and 94.8% accuracy [15]. 

Jha et al.  [13] employed machine learning (ML) approaches, like RF, LR, DNN, GBM and SVM to identify 

compounds that have a high probability of initiating thyroid hormone homeostasis. For further testing, the early 

identification of these chemicals is beneficial in identifying thyroid illness. The ToxCast database offers details 

on molecular occurrences. With F1-values of 0.81 and 0.83, the TR and TPO showed the most positive predictive 

outcomes. Three feature-choosing approaches, principal component analysis (PCA), univariate feature selection 

(UFS) and recursive feature extraction (RFE) were examined in another study [14] about ML algorithms. While 

UFS chooses the most powerful features and recursive feature extraction eliminates the least robust features till a 

predetermined feature count is attained, principal component analysis [15] converts data into lower dimensions 

from high-dimension. Univariate feature selection is an extremely utilized model for certain strategy; RFE is done 

by constantly selecting the essential features. With an accuracy of 99.35%, the Recursive Feature Elimination and 

ML classifiers exhibited the best outcomes. Nevertheless, the sample size (n = 519) was limited. A substantial 

dataset was needed to evaluate the method's effectiveness [16] – [17]. 

Comprehensive evaluations of prediction thyroid disorders by utilizing several Machine Learning classifiers, both 

by involving and without involving feature selection strategies, were carried out in another study [18]. It differed 

from the other studies include extra features like blood pressure, pulse rate, and BMI characteristics. Feature 

selection in L2 and L1 norms was used in one experiment set, and the other was performed without it [19]. Here, 

L2 regularization reduced weight magnitudes to deal over-fitting where feature selection is substantially achieved 

with L1-regularization by eliminating unnecessary features. L1 performs well when a feature subset is significant, 

while L2 retains a broader collection of traits. With the L2 selection and NB classifier, the final model attained a 

perfect accuracy of 100%. Another study [20] explored several k-NN classifiers for distance functions in the same 

database. They also performed a selection of features using the test called chi-squared and L1 norm. Features 

correlated highly with the target variable are found using the chi-squared test [21]. When handling discrete or 

category data, this is helpful. Not only does it increase interpretability and avoid over-fitting, but it also improves 
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the model's performance. 100% accuracy was attained using chi-squared methods with KNN, cosine distance 

functions and Euclidean. Nevertheless, a public thyroid database has not yet been used to validate the suggested 

model. Therefore, its performance in real-time scenarios and over-fitting areas is not verified. 

Santos et al. [22] utilized ML methods, like RF, DT, K-star classifiers and sequential minimum optimization 

(SMO), to predict hypothyroidism-related diseases. During SVM training, large-scale quadratic programming 

optimization problems are solved. SMO breaks these lengthy optimization processes into more manageable, 

analytically targeted tasks [23]. The proposed work handled three thousand seven hundred seventy-two different 

records. The outcomes are achieved with RF and DT with 98 % and 99% accuracy respectively. However, the 

current study did not take hyperthyroid prediction into account. There has been a lot of discussion on how well-

supervised and unsupervised classifiers predict thyroid problems. Different research [24] focused on the concept 

of features that are relevant and medical applications, deviating from this pattern. They enumerated the four 

features considered the best and most helpful in determining thyroid disorder and showed how simple and 

inexpensive it was for practitioners to assess these features. Additionally, they outlined the disadvantages of not 

attempting to test the entire thyroid panel, which is a common practice in various countries. In conclusion, the 

outcomes exhibit stability and are unlikely to change based on the classifier employed or the underlying features 

of the dataset, including imbalance. 

Prediction accuracy has to be improved in the existing studies investigated based on traditional methodologies 

because prediction accuracy measures are essential when considering machine learning in the medical field [25]. 

Furthermore, there was no evidence for reassessing the models' reliability because they were based only on one 

machine learning classifier. CAD systems can only use the suggested models once they are proven reliable. While 

some studies have demonstrated excellent accuracy, their development was based on private rather than public 

datasets, and their data acquisition was subject to permissions, privacy, secrecy, and other issues [26]. With DL 

networks, the investigation is done with wider training data, powerful computations, black-box nature and longer 

training periods. Moreover, the essential characteristics of decision-making still need to be discovered. This work 

proposes a system with adequate trustworthiness by utilizing a classifiers ensemble, in which many classifiers 

contribute to the decision-making of diagnosis to address these problems. The classic ML algorithms guaranteed 

the model's ease of use and performance. Furthermore, the attributes are accessible and examined at any point. By 

using public data to train the model, it will be able to handle a broader range of data and be integrated into CAD 

systems in real-time scenarios [27] – [28]. 

Table 1: Comparison of existing approaches 

Ref Method Input variable Output Performance 

evaluation 

 

[16] 

Customized 

Alexnet 

29 clinic pathological 

characteristics 

Thyroid peroxidase 

(TPO) active, 

inactive 

91% specificity 

and 94.7 % 

Accuracy. 

 

[18] 

ML + RFE 

classifier 

Molecular descriptors Hypothyroid, non-

hypothyroid 

F1-score 0.83 

 L2 selection + NB 

classifier 

Age, ID, sex, FT4, 

FT3, T4, TSH and T3 

Hypo- and hyper-

thyroid, and 

normal 

99.45% Accuracy 

 

 

[15] 

multi-kernel + 

SVM Gray wolf 

optimization 

clinicopathological 

characteristics-29 

Hyperthyroid, 

normal and 

hypothyroid 

97.49% Accuracy, 

94.5% specificity 

and 99.05% 

sensitivity  

 

[14] 

SMO + RF  Gender, ID, BMI, age, 

pulse rate, pregnancy, 

BP, TSH, T4 and T3  

Hypothyroid, non-

hypothyroid 

100%  

Accuracy 

 

 

[19] 

CNN 29 clinicopathological 

characteristics 

Thyroiditis, cystic, 

normal, adenoma, 

cancer and multi-

nodular goiter 

100% 

Accuracy 

 

[22] 

 KNN+ Chi-square 

test 

Gender, ID, BMI, age, 

pulse rate, pregnancy, 

BP, TSH, T4 and T3 

Hyperthyroid, 

normal and 

hypothyroid 

100% 

Accuracy 
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3. METHODS AND MATERIALS 

3.1. Database 

The utilized thyroid dataset was accessed from the UCI ML repository [29]. Six databases totaling 2800 training 

and 972 test examples are included, all from the Garvan Institute, Australia. This was applied to categorize binary 

data. The predictive variable in the database was labeled as categorical, with "P" denoting hypothyroidism and 

"N" indicating the opposite. The dataset contains several features corresponding to the patients' various 

clinicopathological traits. There was a total of 29 actual or category attributes present. The characteristics include 

sex, age, antithyroid drugs,thyroid_surgery, query_hyperthyroid, I131_treatment, pregnancy, 

query_hyperthyroid, query_hypothyroid,  query on thyroxine and query_hypothyroid. The following blood 

parameters were taken into consideration: TSH (the genuine TSH value), TSH_measured, TT4 referral_source, 

T3, T4U, TT4_measured, TBG, T3_measured, FTI_measured, FTI, lithium, T4U_measured, TBG_measured, 

tumor, hypo pituitary, and goiter. The target variable employed in this study was hypothyroidism. 

 

 

The flow of the classifier model 

 

UCI-based 

thyroid 

dataset 

Training  Testing 

Perform pre-processing 

with SMOTE 

Choose RGC 

features. 

 

Train rule generative 

concept. 

 

Perform k-fold CV 

 

Measure prediction 

accuracy 

Independent 

dataset 

Evaluate performance 

metrics 
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3.2. SMOTE 

Issues with data imbalance occur in datasets in real-time scenarios. The SMOTE was employed to deal with 

thyroid database’s data imbalance problem. The minority class oversampling is a popular solution to the 

imbalanced dataset issue. However, duplicating current instances from a minority class might not offer fresh 

perspectives. Instead, SMOTE uses the knowledge from preexisting examples to create new synthetic ones. In the 

feature space, samples near one another are selected via the SMOTE approach. It makes a line that connects the 

sample chosen to its five closest neighbors, on average, and afterward creates fresh samples. By bridging the gap 

between two examples and their arbitrarily chosen neighbors, this synthetic example efficiently raises the minority 

class's depiction. We reduced the issue of over-fitting that can result from random oversampling by using SMOTE. 

By ensuring that synthetic examples are produced systematically relies on the minority class instances distribution 

that already exist, this strategy enhances the model's capacity for generalization. 

3.3. Prediction with Rule-Generative Clustering (RGC) 

The K-means clustering technique pre-processes the data and clusters the source samples after collecting them. 

Additionally, a rule for data encoding is suggested for the clustered data sample’s encoding and streamlining of 

the data form. This rule works with K-means clustering to perform data mining in the first layer and sort the 

samples to create a sample library. The following are the guidelines and procedures. The proposed clustering 

technique determines three factors: data samples are classified with Euclidean distance; the clustering is assessed 

with criterion function; and optimal classification clusters are found with coefficients evaluation. To achieve 

sample classification, the clustering approach adopts Euclidean distance among each sample data and cluster 

center. The samples are then placed into the cluster with the smallest Euclidean distance. Eq. (1) can be used to 

compute the Euclidean distance. 

𝑑(𝑋, 𝑌𝑖) =  √(𝑥1 − 𝑦1
𝑗
)

2
+ (𝑥2 − 𝑦2

𝑗
)

2
+ ⋯ + (𝑥𝑛 − 𝑦𝑛

𝑗
)

2
=  √∑(𝑥𝑖 − 𝑦𝑖

𝑗
)

2
𝑛

𝑖=1

 

(1) 

Here, 𝑋 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a sample that is unclassified in 𝑛 −dimensional space that associates with the 

elements (the non-faulty node’s voltage data) in the source sample library’s.  𝑌𝑗  =  (𝑦1
𝑗
 , 𝑦2

𝑗
 , . . . , 𝑦𝑛

𝑗
) is the 𝑗𝑡ℎ 

cluster’s center. During the first-time sample classification process, whichever sample may be chosen randomly 

as the cluster center. The cluster center is updated using the mean of all samples within each cluster, and its 

inconsistency, like not updating, is monitored by the criteria function. Eq. (2) given below shows the criterion 

function, which aims to minimize the sum of the squared errors between the cluster center and the cluster samples: 

 

𝑚𝑖𝑛 ∑ ∑ (𝑥𝑖
𝑗

− 𝑦𝑖
𝑗
)

2
 

𝑥
𝑖
𝑗

∈𝑋𝑗,𝑦
𝑖
𝑗

∈𝑌𝑗

𝐾

𝑗=1

 

(2) 

Here, the number of the clusters is 𝐾, the 𝑗𝑡ℎ cluster center is 𝑌𝑗, the 𝑖𝑡ℎ element data is 𝑦𝑖
𝑗
, 𝑥𝑖

𝑗
 is the 𝑖𝑡ℎ element 

data in 𝑋𝑗, and the 𝑗𝑡ℎ cluster’s random sample is 𝑋𝑗. The cluster center ceases to update when the criteria function 

of formula Eq. (2) the sample into 𝐾 −clusters is over. The contour coefficients of various clusters are computed 

and used to find the ideal cluster count for K-means clustering in first-layer data mining. The cluster count with 

the most significant contour coefficient is then fixed to be the perfect cluster count. The contour coefficient 

calculation procedure for each sample of a cluster is presented in Eq. (3):  

(1) Firstly, the computation of 𝛼𝑘 shows whether the cluster cohesion is done. (The average distance between 𝑥 

and every other point in its cluster). 

(2) Next, the separation degree 𝑏𝑘 is computed among the clusters and the others. (The average distance between 

all points in different clusters and 𝑥).  
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(3) Finally, the computation of 𝑆𝑘, the contour coefficient, is done. (The difference between 𝑏𝑘 and 𝛼𝑘 is divided 

by the most significant value among the two). 

𝑆𝑘 =  
𝑏𝑘 −∝𝑘

max(𝑏𝑘 , ∝𝑘)
 

(3) 

The contour coefficient’s value is in the [−1, 1] range. The 𝑆𝑘 value will be more significant if the contour 

coefficient’s value is closer to 1. The existing cluster number 𝐾’𝑠 contour coefficient is determined by averaging 

the all-sample’s contour coefficients. The classification operation is better with a more significant contour 

coefficient and greater distance between the clusters. Consequently, the ideal cluster number for the source sample 

library is determined by looking at the 𝐾 value with the most significant contour coefficient. 

3.4. Rule generation 

Fig 2 shows the guidelines for applying the 𝐾 −means clustering approach to clustering in a source sample library: 

By increasing 𝐾 from 5, the enumeration approach yields the ideal number of clusters. The following is a 

description of the clustering rules when there are 𝐾 clusters:  

1) First, 𝐾 samples are selected randomly to create the initial cluster center.  

2) Every sample is sorted into the cluster with the smallest Euclidean distance based on the distance it takes to get 

to the center of each cluster, as determined by Eq. (1). 

 3) To establish whether the minimum is obtained, the criterion function is computed by averaging all samples 

within every cluster, and it is designated as the cluster center.  

4). Till the Eq. (2) criterion function approaches the lowest, this process will be repeated. 

 

 

Fig 2: Proposed Rule-generative clustering model 

The optimum 𝐾 values of the clusters on the various nodes differ whenever the clustering of source samples 

happens based on different failure types. To find its optimal 𝐾 and finish clustering the source samples on each 

node, each source sample in a different node must go through the abovementioned procedure. Following the 

source samples’ clustering, there are some similarities among the samples in each cluster. Even though there are 

some similarities between each cluster’s samples, once clustering is done, the data form becomes easier to manage. 

To simplify the data, self-encoding is applied to the categorized samples following the clustering of the source 

sample libraries. The following rules are created to preserve the encoded data’s critical attribute data, like the 

cluster and node to which the sample belongs: After clustering, each sample is queried first for the node (𝑇), then 

for the cluster (𝑊), and 𝑇0𝑊 is the last coding form. For instance, 𝑇 ∈  𝑁 (𝑁 is an integer that indicates the node 
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number excluding the defective node), 0 <  𝑊 ≤  𝐾, and 𝑊 ∈  𝑁. The 𝑇0𝑊 value indicates that the sample is 

the voltage data sample classified into the 1𝑠𝑡  node 3𝑟𝑑 cluster. Coding rules are illustrated in Fig 2 after self-

encoding and clustering. Following the source samples’ self-encoding and clustering, the sample data take on a 

more manageable and compact form. The 1st-layer data mining is finished when the source sample library is 

changed into the sample library by processing the source samples using self-encoding and 𝐾-means clustering. It 

extracts the inner relationships between the source samples and various unlabeled data samples, maximizes the 

relevance of the data sample within its cluster, and sets up the data mining process for the second layer. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

The findings from every experiment while developing the system are discussed and shown. Numerous pre-

processing techniques were applied to enhance the system's performance, such as encoding categorical data and 

identifying and managing missing values. Different machine learning classifier algorithms were tested in addition 

to hyper-parameter adjustment and cross-validation. The prepared model's effectiveness was assessed by 

evaluating its accuracy, sensitivity, specificity, and other attributes. Step one started by using a thyroid dataset as 

the work wanted a database in a real-world scenario with sufficient training data. In routine medical operations, a 

system created from a real-time database can be helpful. More data is necessary for increased accuracy. 

Researchers must additionally deal with extra difficulties when utilizing private healthcare data for research, such 

as getting consent to collect the data, privacy and confidentiality issues, etc. Numerous scholars use this publicly 

available thyroid disorder database. The SMOTE technique was applied during pre-processing because the dataset 

had data imbalance issues. A data-mining technique called data pre-processing is employed to make the raw data 

acquired more useful. The pre-processing is done using the Pandas Python library. Value-containing attributes, 

including letters and digits, were present in the actual data. To be readable by machines, it needs to be encoded. 

As a result, data were transformed into data frames, and the Sklearn label encoder was used to encode the data. 

The "int64" data type was then applied to all 29 attributes. Subsequently, redundant rows were removed from the 

encoded data to perform data cleaning and guarantee that the input for the classifier would not be redundant. Next, 

as indicated in Table 2, the summary of statistical data was assessed through standard deviation and mean etc. 

The term "percentile" refers to the number of values that fall below the given percentile. 

Table 2: Data summary 

Index Age Sex TSH T3 TT4 T4U FTI1 

Count 3712 3712 3712 3712 3712 3712 3712 
Mean 46 1.2 123 31 120 65 108 

SD 20 0.5 82 20 97 32 97 

Min 0 0 0 0 0 0 0 

25% 27 1 64 17 21 47 18 

50% 49 1 112 24 80 58 57 

75% 62 2 166 31 225 70 220 

Max 92 2 286 70 24 145 235 

 

Table 3: Performance evaluation 

Classifier Class PPV NPV TPR TNR Accuracy Misclassification 

rate 

LR 0 86 88 89 86 87 0.12 

1 87 86 86 89 

NN 0 95 95 95 94 94 0.05 

1 94 94 94 95 

DT 0 96 96 96 94 95 0.04 

1 95 95 94 96 

k-NN 0 94 94 95 88 91 0.08 

1 89 89 88 95 

SVM 0 90 90 91 84 88 0.11 

1 85 85 84 95 

Bagging 0 89 89 91 91 89 0.018 
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1 79 79 93 93 

Boosting 0 95 95 95 93 98 0.005 

1 93 93 93 95 

Proposed 0 99 99.1 99 99.5 99 0.004 

1 98.8 98 98.5 99.6 

 

 

Fig 3: Performance evaluation for class 0 

 

Fig 4: Performance evaluation for class 1 

 

Fig 5: Accuracy comparison 
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Fig 6: Misclassification rate 

 

Fig 7: Confusion matrix 

 

 

Fig 8: ROC computation  
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After pre-processing, the target and data features are extracted from the pre-processed data frame. The feature-

target data were obtained to use in the ML phases. Using 80:20 split, dataset was separated into eighty percent of 

data into training sets and the remaining twenty percent into testing sets. After splitting the data using SVM, NN, 

LR, DT and KNN algorithms with 5-fold cross-validation, we utilized numerous ML models. The DT classifier 

produced the highest classification accuracy of 95.62%. As the methodology is intended for clinical disease 

identification, where correctness is crucial, more improvement in prediction accuracy was necessary. Reliability 

was yet another issue in integrating the model into real-time systems. The RGC learning algorithms were used to 

meet these goals. They outperformed traditional classifiers, with 99.5% accuracy being the highest level attained 

through RGC. In this case, non-thyroid classes are indicated by class 0, and thyroid classes are marked by class 

1. As shown in Table 2, we assessed the model's true-negative rate (TNR), misclassification rate, PPV, NPV and 

TPR. Out of all the data samples, accuracy is the number of samples from the test dataset correctly classified. TPR 

or sensitivity is expressed as the ratio of correctly identified positive cases amongst all positive cases. Eq. (4) to 

Eq. (8) defines specificity, also known as TNR, as the ability of the model to correctly classify a data sample, 

including a negative instance amongst the entire negative cases. Precision, also known as PPV, evaluates the 

performance by correctly predicting the positive cases to those that the methodology predicts. Eq. (4) states that 

the chance of data sample having a negative screening test that doesn’t have a particular disorder is known as the 

NPV. TN and TP accurately predict positive and negative situations. The terms "false positive" and "false 

negative" refer to incorrectly identifying positive cases as negative and negative cases as positive. 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(7) 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(8) 

The models undergo fine-tuning using rule-based clustering and Fig 8 displays the classification error curve. With 

7000 obs/s prediction speed, the finalized RGC approach required 148.82 s for training. We exported the FNR 

and TPR plots for the finished thyroid prediction model by using the RGC scheme to observe the performance of 

each class’s classifier. In this case, FPs are 14, false negatives (FNs) are 3406, true positives (TPs) are 21 and true 

negatives (TNs) are 3399. The TPR calculates the number of observations correctly classified for every true class. 

The FNR provides the proportion of incorrectly identified observations to correctly identified observations. There 

are summaries for each true class in the plot's final two columns to the right. FDR and PPV plots are presented as 

shown in Fig 4 to Fig 8, as FP values are essential to our classification problem. FDR measures the ratio of wrongly 

categorized observations for every predicted class, and PPV represents the fraction of correctly classified data in 

every expected class. 

Table 4: Benchmark method comparison 

Ref Method Result 

[16] ANN Acc = 95%, pre = 95%, recall = 95% and F1-score 

= 95% 

[18] RF Acc = 94%, pre = 94.5%, recall = 91%  
[19] MLP Acc = 89% 
[23] NN Acc = 98%  
[25] RF Acc = 91% 
[26] XG-boost Acc = 95%, PPV = 95%, NPV = 93%  
[28] SMOTE Acc = 93%, pre = 95% and AUC = 93% 

 Proposed Acc = 99%, pre = 98.9%, recall = 99.1% and F1-

score = 99% 
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Based on the currently selected classifier, the TPR and FPR for different classification score boundaries are shown 

on the ROC curve. The area under the ROC curve (AUC) value is equivalent to the combination of an ROC curve, 

considering that FPR is from FPR = zero to FPR = one. The Area under the Curve is used to quantify the efficiency 

of the classifier as a whole; a value of one, which is the maximum, implies a better performance by the classifier. 

The perfect separation between negative and positive classes in a model's predicted probability is shown by an 

AUC of 1.000. However, because different matrices consider variables like trade-offs, class imbalance, and 

classification threshold, this does not always translate into 100% performance in other metrics. Each performance 

metric provides different performance features and system behavior. Table 5 compares the suggested model’s 

performance with a few related works experimented on the same database. 

 

Fig 9: Accuracy comparison with benchmark approaches 

Individuals prescribed to the thyroid centers for assessment are in the user database. The user dataset is a valuable 

tool for assessing and training the proposed methodology since it contains significant medical variables for 

diagnosing disorders related to the thyroid, which is the primary focus of the prediction model. This would 

guarantee the model's suitability for this particular task. Techniques like SMOTE and cross-validation can reduce 

bias and increase generalizability. By retraining the model with a suitable database, this research can also be 

expanded to many similar clinical disease identification applications. The suggested methodology is helpful for 

disease identification in real-time because it exhibits numerous essential features and attributes, like improved 

robustness, accuracy, specificity, sensitivity, adaptability, and the potential to be incorporated into prediction 

systems. Using the suggested ML model, our approach can be integrated to enable patient data entry and predict 

the patient's thyroid condition. After a labeled public database becomes available, we will evaluate a multi-class 

thyroid classification model. Then, RGC is tested in addition to the display of feature relevance in classification 

decisions.  

5. CONCLUSION 

Thyroid diseases are increasingly becoming highly prevalent; the discovery of them in their early stages is vital; 

treatment can prevent complications, and death rates can be decreased; the identification of these disorders has 

grown in importance within the medical community. Precisely forecasting the disease course and realizing the 

interaction of medical signs are crucial for clinical disease identification and treatment. Thus, the need for an 

efficient real-time system arises. Most previous research has concentrated on a single model that does not 

guarantee increased accuracy or model reliability. In contrast, rule-based essential requirements for ML models 

are utilized in medical systems. No one knows the primary standards by which the decisions are determined, even 

though some ML techniques provide more accuracy than the standard ML limitations. Therefore, all of the 

restrictions are removed in this work by creating a traditional ML model using a Rule-Generative Clustering 

(RGC) learning strategy and appropriate clinical feature analysis. Foreseeing the disease course and the clinical 

symptom’s interdependence or characteristics is essential to clinical diagnosis and treatment. Together with 99.1% 

specificity and PPV, 99% sensitivity and NPV, and 100 AUC, the model yielded 99.5% accuracy. The use of 

approaches in producing binary classification judgments ensures model reliability. Furthermore, building the 

model using open databases contributes to the model's stability when considering real-time system use. 
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