J. Electrical Systems 20-11s (2024): 148-171

‘Asma Asdayana lbrahim, | SecloT MEReq : Automated
Massila Kamalrudin . . .
Tool To Elicit Security

Requirements For 1oT " Gournalof
Application Software Electrical
Development Systems

Abstract:

The use of Internet of Things (10T) applications has grown in popularity and significance because it allows people and services
to interact at any time and from any location. 10T will necessitate the development of new software tools as well as
interoperability: Until now, the Internet of Things opportunity has consisted of “simple” monitoring applications and related
tracking or location services. Security has long been regarded as a major concern in loT. It is critical for 10T application
developers to elicit security requirements of 10T applications at an early stage to avoid potential security issues. In this paper,
we describe our automated approach and tool, called SecloT_MEReq that helps to elicit security requirements of loT
applications. SecloT_MEReq provides a model-based approach together with patterns library that helps to capture
requirements that have been expressed in textual natural language requirements then extracted to Essential Use Cases (EUCs)
and Essential User Interface (EUI) models. We describe its design and implementation together with the results of evaluating
our tool’s usability. The results of the study showed that our tool can help requirements engineers to easily elicit security-
related requirements of 10T applications development.

Keywords: security requirement, Internet of Things, 10T technologies, elicitation, 10T applications, EUC, EUI

1 INTRODUCTION

Internet of Thing (10T) applications have been used widely as they allow interactions between people and
things anywhere and anytime. The use of 10T application is rapidly growing, especially in performing industrial
domain, smart city domain and health well-being domain [1]. There is also a plethora of applications being
developed to fulfil the needs of 10T application users. Regulation surrounding 10T is in the early stages or non-
existent, and is inconsistent across geographies. Security must be the factored in from the beginning of
development of any loT product or application. Security worries among businesses and consumers are driving an
increased interest in and need for government involvement. Many user consider the 10T opportunity exciting, but
many still feel they are lacking the necessary technology, skills or tools [2]. Some of developers do not have or
are unsure if they have the necessary technology today to deliver on 10T expectations. They are unsure or definitely
do not have the necessary skills and resources today to deliver on 10T expectations. Therefore, there is a need for
automation support to capture and elicit security related requirements at the early stage of loT application
requirements engineering. In our previous work [3], we conducted a study of common practices of involvement
in security requirements elicitation among practitioners in the area of 10T. The results of the study shows that the
professionals have knowledge and security training, but they did not know how to use and handle it in the earlier
phase of application developments. The survey also indicated there is a lack of a complete set of standard or
solutions for eliciting security requirements that can be applied during the process of applications development in
order to achieve quality and secure applications. This study also found that the respondents used multiple solutions
in handling the security issues rather that considering one solution only. Therefore, these challenges have
motivated us to:

i) Develop an automated tool support for eliciting security requirements

ii) Evaluate the tool to demonstrate its ability to enhance the correctness and usability for eliciting security

requirements of 10T applications.

This paper describes the approach and an automated tool that captures and elicits security requirements for loT
applications using Model-Driven Development (MDD) with semi-formalised model, Essential Use Cases (EUCs)
and Essential User Interface (EUI). We present background for this study, our prototype tool, and then we

politeknik Sultan Azlan Shah, 35950, Behrang, Malaysia
2Universiti Teknikal Malaysia Melaka, 76100, Malaysia
Email: asdayana@psas.edu.my,

massila@utem.edu.my (corresponding author)

148

J. Electrical Systems 20-11s (2024): 148-171

conducted evaluations to test and validate the efficacy of the developed approach and tool. Finally, we discuss
related works and future work.

2 RESEARCH BACKGROUND AND RELATED WORKS

IoT applications become an increasingly attractive target for cybercriminals. This will require security
engineers to work closely with the developers of the 10T capability to introduce security requirements early in the
design process. More connected devices mean more attack vectors and more possibilities for hackers to target us.
Some of the more frightening vulnerabilities found on 10T devices have brought 10T security further up the stack
of issues that need to be addressed quickly. The researcher found critical vulnerabilities in a wide range of 10T
devices and applications, which could be leveraged by hackers to carry out several malicious activities, including
monitoring live feeds, changing camera settings and authorizing other users to remotely view and control the
monitor. As defined by [1] vulnerabilities including poor encryption and backdoors that could allow unauthorized
access have been found. With any physical device, there is a chance that a hacker could manipulate it and get into
exposed USB ports or a debugger interface, if someone is able to unsuccessfully hack at the embedded level into
an IoT device’s memory and can be read the encryption key, every device that is or has been shipped become
vulnerable. The network is only as strong as its weakest link.

In another development, it was proven that Internet-connected cars can be compromised, as well, and
hackers can carry out any number of nefarious activities, including taking control of the entertainment system,
unlocking the doors or even shutting down the car in motion [2]. So, security is a very serious issue in loT
applications development. As applications devices with low quality or improper security are released into the
market, people may soon lose trust in the application and its devices that enter the market. Before being able to
secure a system, it is important to first understand the functional and technological details of the system to be
secured. This will require security engineers to work closely with the developers of the 10T capability to introduce
security requirements early in the design process. Using the methodical systems security engineering approach
for each loT implementation within an enterprise is recommended. Information security, privacy, and data
protection systematically be addressed at the design stage. Unfortunately, in many cases, they are added on later
once the intended functionality is in place. This is not only limits the effectiveness of the added on information
security and privacy measures but also is less efficient in terms of the cost to implement them. However, the 10T
objects do not always have enough computing power to implement all relevant security layer functionalities, the
heterogeneity of objects become very challenging in this context. Similarity, the heterogeneity of privacy policies
needs to be taken into account.

Meanwhile, Alsaadi & Tubaisat [1] mentions that there is lack of standards for authentication and
authorization of 10T edge devices. Some of 10T devices have no authentication capabilities while others have
limited support. Very few have capabilities that support multi-factor authentication. Although some standards or
commercial options are available, for example, certificate authentication, commercial or semi-commercial identity
providers such as Google, there is lack of ability to create device-specific profiles and authorization options and
the privacy implications of using these services providers has not been fully explored. Every single device and
sensor in the 10T represent a potential for risk.

In addition, with more connected devices mean more attack vectors and more possibilities for hackers to
target us. Wearable also can become a source of threat to our privacy, as hackers can use the motion sensors
embedded in smart watches to steal information that we are been typing, or they can gather data from smart
watches application or health tracker devices you might be using. Some of the most worries cases of 10T hacks
involves medical devices and can have detrimental and perhaps fatal consequences on patient health. Only by
ensuring the security, 10T can be more universal, so there is need to strengthen the security of the 1oT. Based on
recent reports, the number of connected ‘things’ is set to explode and expected to reach 100 billion by 2025 [3]
[7]. With a rapid increase in the demand for 10T applications, securing the information content delivered among
various entities involved in 10T applications development has become an important issue. Therefore, there is a
need to develop an approach or tool to secure the development of 10T applications in order to achieve quality and
secure applications.

Abraham [15] creates the GARMDROID tool. The tool was designed to help 10T software developers
and integrators assess 10T security issues using the visualisation of hardware requests from Android applications.

149

J. Electrical Systems 20-11s (2024): 148-171

The Android Asset Packaging Tool (AAPT), which is a component of the platform tool set, is the foundation upon
which GARMDROID is built. Clients could send malware samples and ask for analysis over a Web interface in
this execution. This process is dependent on a static review of the permissions that Android applications request.
During the analysis, GARMDROID uses a series of bash and python scripts to instruct AAPT to extract the
contents of the app's AndroidManifest.xml file and to filter the crucial strings. This happens once an android
application file (.apk) is uploaded by a user. Every time, in addition to the collection of permissions requests,
GARMDROID shows an inference of the hardware characteristics sought by the programme being examined.
These examples serve two purposes: to demonstrate how GARMDROID works and to focus the conversation on
observations that may help discover security risks in Android applications geared toward the Internet of Things.
The security requirements for 10T applications are not covered by this tool, which only assesses 10T security
concerns upon viewing of an Android application hardware request.

On other work, Dhillon & Kalra [5] create an AVISPA tool as part of their other work. It was created as
a push-button tool for examining complex Internet security protocols and applications. The protocols are written
in the HLPSL coding language (High Level Protocol Specification Language). HLPSL consists of basic roles that
represent various participants as well as roles that are composed to reflect basic role scenarios. Each role operates
independently of the others, gathering some initial data via parameters and corresponding with other roles via
channels. This paper suggests a simple key agreement and remote user authentication system based on biometrics
for secure access to 10T services. The protocol employs XOR and lightweight hashing techniques. It is resilient
against a variety of security assaults, according to the security analysis. The AVISPA tool is used for the formal
verification, which validates its security in the presence of a potential attacker. The four phases of the proposed
multifactor biometric user authentication are the phases of user registration, login, authentication, and password
change. The suggested protocol is extremely ideal for the resource-constrained 10T devices because it only makes
use of one-way hash, perceptual hash functions, and XOR operations, which are computationally less expensive.
It is resilient against a variety of security assaults, according to the security analysis. The AVISPA tool is used
for the formal verification, which validates its security in the presence of a potential intruder. The elicitation and
analysis of 10T applications in the early stages of development are not, however, covered by this work.

Meanwhile, ElicitO is a tool that supports a standardized quality terminology and ontological constructs
to capture NFRs throughout the RE activities [6]. ElicitO also supports knowledge-based reasoning methods,
enabling the semi-automation of RE tasks like conflict detection during priority setting and authenticity
verification during requirements validation. The tool contains two levels in total: The ontology layer is the top
layer, and in the Protege database, the quality and domain ontologies are encoded as OWL components. Under
application and GUI components, the user communication layer, which is the second layer, degrades. When the
Protege APl makes a request for domain knowledge and the associated quality attributes, the application
component interacts with the ontology layer. The graphical user interface is used to present the user with all query
results and information. MySQL serves as the underlying database for storing a requirements session. This
application supports RE efforts by utilising knowledge management strategies and high-quality ontologies. A
consistent vocabulary to handle quality concerns/aspects across RE activities is provided by the ontology, which
implements the quality measurements and attributes outlined by the 1SO/9126 quality model. Through a case
study involving the creation of an intranet portal project at the University of Manchester, they accept how the
framework and tool can be utilised to help the requirements elicitation and prioritisation activities in an effective
manner based on their observations. As part of its knowledge-based system capabilities, ElicitO also codifies the
quality model standard into automated ontologies, assisting in the semi-automation of RE tasks. Additionally,
ElicitO provides constructs that allow for the incorporation of quality concerns throughout the early phases of
software engineering as well as the explicit modelling of links between functional and NFRs. However, this tool
is employed to record NFRs during RE efforts. It cannot be used as a method to elicit security requirements.
Additionally, ElicitO does not offer security mechanisms for 10T applications and cannot be used across many
projects or apps by a range of stakeholders.

The Heuristic Requirements Assistant (HeRA) [7] is a tool that applies security-relevant heuristics to
requirements and service descriptions in order to identify possible security issues. HeRA raises awareness and
provides feedback while people write requirements. The HeRA tool supports technical experts, as well as security
experts, in identifying potential security issues. HeRA is integrated with the CC-based requirements method and

150

J. Electrical Systems 20-11s (2024): 148-171

together these two techniques make up the elicitation phase of SecReq. SecReq is a security requirements
elicitation and tracing methodology based upon the methodology connected toward ETSI. SecReq enhances the
ETSI methodology with security requirements elicitation and writing support, as well as requirements analysis
and tracing capabilities. The added elements are supported by a systematic use of different sources of security
expertise and experience and by integrating three existing techniques, namely the CC (from the ETSI
methodology), the heuristic requirements editor HeRA, and the model-based security engineering approach
UMLsec. Furthermore, HeRA provides a requirements editor who allows technicians to enter the system
functional information, for example the service requirements. The input to this editor is checked against security-
related heuristics. In particular, these heuristics search for keywords and patterns that may indicate security-
relatedness. This search for security keywords is in SecReq used, among other things to help a developer in
selecting appropriate parts of the CC security requirements knowledge: Thus, HeRA works closely together with
the CC-based method. However, this tool does not offer elicitation of security requirement of 10T application.

Gope & Hwang [8] created a BSN-Care to secure loT-based healthcare system, using BSN (Body Sensor
Network). One of the key 10T breakthroughs in healthcare is the use of BSN technology, which enables a patient
to be monitored via a network of wireless sensor nodes that are light and small-powered. Patients' privacy is put
at risk when new technology is developed for healthcare applications without taking security into account. LPU
is crucial in the system that is being suggested. The sensor data is gathered and securely sent to the BSN-Care
server. All of the fundamental security needs of an l0T-based healthcare system can be satisfied by the BSN-Care
system. However, this tool does not suggest how to elicit and analyse security requirements for other 10T -based
applications; it solely monitors security in the healthcare system.

The Haier SmartCare is a smart device made to manage and read data from several sensors positioned all
over a user's home, including a smoke detector, water leakage sensor, sensor to determine whether the doors are
open or closed, and sensor to determine whether the remote power is switched [9]. Through the ZigBee protocol,
these sensors are linked. The major purpose of this gadget is to provide customers with the ability to more
effectively monitor their houses while they are away and to receive alerts based on sensor data. They employ both
commercial and industrial 10T devices, from which the security of hardware, software, and networks is studied
and backdoors are identified, to better understand the security flaws of current 10T devices and to encourage the
creation of low-cost 10T security approaches. A thorough security analysis technique performed on a smart metre
and a home automation system demonstrates that most devices frequently have security flaws. To assist 10T
product manufacturers in securing their offerings, security solutions and mitigation techniques are explored. The
chosen sample 10T devices comprise a smart controller for a home automation system and a smart metre for
contemporary power networks, assuming that 10T devices are widely employed in both business and industrial
applications. They validate and illustrate the shortcomings of current loT device design techniques while
defending against various cyber-attacks from the hardware, software, and network layers through these
assessments. In order to deploy more secure devices in the upcoming loT age, they continue to create remedies to
reduce security concerns for existing 10T devices. This technology does not cover eliciting security criteria; rather,
it is used to monitor a house and receive alarms using sensor data.

3 MODEL-BASED APPROACH
3.1 Model-Driven Development (MDD)

Model-Driven Development (MDD) is a software engineering approach that uses model to create a
product. MDD is sometimes used interchangeably with model-driven engineering, and may refer to specific tools
and resources, or a model-driven approach [4] [5]. MDD is part of a trend toward more diverse approaches to the
development of IT products. Another aspect of this innovation is agile practices, which is in some cases are
associated with model-driven development. Ideas about the development and engineering process now play a
major role in IT processes, especially in larger companies where a more detailed staff hierarchy adds more layers
to a process.

MDD has emerged as one of the leading approaches for enabling rapid, collaborative application
development [6]. Because model-driven development uses visual modelling techniques to define data

151

https://www.mendix.com/visual-modeling/

J. Electrical Systems 20-11s (2024): 148-171

relationships, process logic, and build user interfaces, model-driven software development empowers both
developers and business users to rapidly deliver applications without the need for code [7] [5].

Atkinson & Kiihne [8] refine the simple one-size-fits-all view of instantiation and adopt a more
sophisticated view of metamodeling's role in MDD. This method places ontological instances of relationships,
which connect user concepts to their domain types, in a secondary role. In other words, linguistic instance-of
relationships cross (and form the basis for) linguistic metalevels, whereas ontological instance-of relationships do
not; they relate entities within a given level. This is the new UML 2.0 and MOF 2.0 standards' interpretation of
the four layer architecture. Although the latter take a primarily linguistic perspective, it is useful to allow
ontological (intralevel) instantiation to establish its own type of ontological (vertical) metalevel boundaries.

An organization's desire to increase the return on its software development investment is the primary
driver behind MDD. It accomplishes this in two main ways: By expanding the functionality that a primary
software artefact offers, it raises the short-term productivity of developers. It increases long-term productivity for
developers by slowing the rate at which a key piece of software ages. These requirements make it obvious that
visual modelling is one of the technological pillars of MDD assistance. Software can be written and implemented
using the MDD format, which is quick, efficient, and inexpensive.

For our study, we develop SecloTA Model that comprises the need of 1) security requirements and 2)
0T technologies to develop a secure 10T application. To develop a secure loT application, requirements that
almost needed are security requirements and its technologies. The security requirements that most needed are
authentication, authorization, availability, confidentiality, access control, and integrity while 10T technologies that
most used are sensor, mobility network, RFID system, Bluetooth and Wi-Fi. Combination of this two requirements
may help the developer to develop and design a secure loT application in the future. We use this model to our
approach to create our product and realise our approach using an automated approach. We also use semi-
formalised model using EUC and EUI.

3.2 Essential Use Case (EUC) and Essential User Interface (EUI)

An EUC is a structured narrative that is expressed in the users' and the application domain's language. It
entails the description of a single action or interaction in a compressed, abstract, technology-free, and independent
of implementation form. [8][9]. From the perspective of the users, an EUC is a comprehensive, meaningful, and
well-designed encounter. It embodies the goal or goals underlying the interaction and represents a specific role in
regard to a system. By removing the influence of implementation choices, EUCs allow users to pose fundamental
questions like "what's really happening" and "what do we really need to do." These inquiries frequently result in
crucial insights that empower users to reevaluate or reengineer various parts of the overall business process. While
capturing the needs, Figure 1 displays an example of natural language requirements on the left and an example of
an EUC on the right (adapted from [13]). On the left side of Figure 2, you can see the natural language
requirements from which the key terms are extracted (highlighted). A unique key phrase (important requirement)
is abstracted from the natural language requirements and is displayed in the EUC on the right-hand side of Figure
1. The user intents and system responsibility are two interrelated types of information that are represented by the
EUC, as shown in Figure 2.

The use case begins when the customer
System

User Responsibilit
¥

goes to the Customer Log-on page. There, Intention

the customer types in histher name and

customer ID on the form ana " submts Tt ———

The system then displays the Tech Suppdit T—————_ __h-i AEimEES
home page with a list of Problem T8 Present help
Categories. The customer clicks ~oa-l options.

installation help within the list, and the

system supplies the Incident Repart Form. 3.Select help
The customer completss and submits the T —_—
form, and the system presents a siiggesied T ™4 Request
recnlidian T T deription
T— [* 5.Describe
— problem
—__F
= _

T8 Offer possible
solutions

Figure 1: Example Natural Language Requirement and Example of EUC

152

J. Electrical Systems 20-11s (2024): 148-171

A paper prototype, abstract prototype, or low-fidelity model is what is known as an EUI prototype. For
a software system, it is also referred to as a “Ul prototype”, and it displays the broad concepts rather than the
precise elements of the Ul [9][10]. Similar to how EUC models describe behavioural requirements, an EUI
prototype represents user interface requirements in a way that is independent of technology. When designing a
system's user interface in its early stages, an EUI prototype is especially useful. It simulates the user interface
requirements that develop into the system's ultimate user interface through analysis and design [10]. It also enables
some investigation into a system's usability features. An example of an EUI prototype created from an EUC model
is shown in Figure 2. The user intention/system responsibility dialogues are used to capture the potential high-
level Ul functionality.

User Intention System Responsibility
Student identfies himseif Verifies ebgidity to enroll via BR129 Det
Eigibildy to Envoll

Indicate avadable seminars

Validate choice via BR130 Determing St
Choose seminar Edgibilly to Ervol in & Seminar

Vakdate schedule fit va BR143 Valdate
Seminar Schedute

Calculates fees via BR 180 Calculste St
and BRES Calculate Taxes for Seminar

Summanze fees

Request confirmation

Eneoll student in seminar

Confm enrollment
Add fees to student bill

Provide confirmation of enrollment

Figure 2: Example of EUI Prototype Iterates from EUC Model

4 AUTOMATED TOOL: SECIOT_MEREQ
The purpose of this study was to develop an approach and an automated tool to assist requirements engineers to
automatically capture and elicit the security-related requirements of 10T application. We developed an automated
tool, SecloT_MEReq, that automatically elicit the security requirements of 10T application. Our approach for
requirements elicitation employs the Model-Driven Development (MDD) using semi-formalised models,
Essential Use Cases (EUCs) and Essential User Interface (EUI). MDD emphasizes the use of models at a higher
abstraction level in the software development process and argues in favour of automation via model execution,
transformation, and code generation [17]MDD promotes reuse at the domain level, improves quality through
incremental model enhancements, lowers costs through the use of an automated process, and lengthens the useful
life of software solutions.

Therefore, this research proposes a new model-based approach to support requirements engineer in
eliciting security requirements for secure 10T applications development. Figure 3 below shows the new approach
of this research.

el S iy 3a. Exeraction
R sremeare R,
"""""""" e
Teea = = 4. Deriws EU
e l +—r o ity
= e == Fmen
Sraczt using mod
= EUCibmny B =S mode
= S R i P
T 1 ==
v 3o Sceactom - =
1. Seiect loT e | reizted ioT ——
St] A P P echmoiogies =i P
Liarye s
ChoozeiaT = 2 5 =
appEation, o . N
req_nmmm = = 5 Geemte
+“—> T T workane
T protocpoe
[P
Uz and Requirermers e
Engine= Tnchroiaghes
A I‘O\ ST
\“@ PRV p—— R T
to s I |

Figure 3: An overview of Model-based Approach for Eliciting Security Requirements

153

J. Electrical Systems 20-11s (2024): 148-171

In Step 1, textual requirements will be collected from user and requirement engineers. To begin, they
choose an 10T domain: (1) industrial domain, (2) smart city domain, and (3) health well-being domain. Second,
they select an 10T application. The industrial domain, for example, is divided into three domains: | logistic and
product lifetime management, ii) agriculture and breeding, and iii) industrial processing. Smart cities are divided
into four domains: | smart mobility and smart tourism, ii) smart grid, iii) smart homes/buildings, and iv) public
safety and environment monitoring. Finally, the domain of health and well-being is subdivided into two domains:
I medical and healthcare, and ii) independent living and inserted textual requirements. Lastly, they included a
textual requirement as a scenario from the 10T application. In Step 2, to generate an EUC model, the requirements
are analysed and extracted using the Essential Use Case (EUC) pattern library. Using keyword matching, the
searching process from the EUC pattern library is to find the associated EUI pattern based on the Ul and SR
inserted to find the associated security requirements and loT technologies. In Step 3, an EUC model then generated
using EUC pattern library. In this stage, EUC model also generated by extraction of 10T security requirement
from SecReq pattern library and loT Technologies from loTTech pattern library label as SUbEUC model. The
SecREQq pattern in the library (derived from SecloTA model) was associated with EUC model and the collection
of textual requirements. Meanwhile, the loTTech pattern library (derived from SecloTA model) was associated
with SUbEUC model. The attributes from loT technologies are assigned by keyword from EUC Model and textual
requirements. In Step 4, an EUI prototype model is the derived from EUC model using EUI pattern library. Here,
the associated from user interaction (Ul) and system responsibility (SR) from EUC model will derived EUI
prototype model form EUI pattern library to generate workable prototype. In Step 5, a workable prototype will be
generated to visualize the security requirements of 10T application. In Step 6, the user and requirements engineer
as well as the client stakeholders can visualise the security requirements in a form of workable prototype model
of a targeted 10T app to be developed. We develop SecloT_MEReq to realise this approach to elicit security
requirements and lot technologies that must be used by user to develop more secure 10T application.

4.1 EUC and EUI Pattern Libraries

We developed a set of EUI patterns in EUI Pattern Library from a collection of such patterns previously
identified by [9] together with the patterns that were developed by [18], which are all applicable across various
domains.

Table 1: Example of EUC and EUI Pattern Libraries

EUC Pattern .
: EUI Pattern Related Security
User Interaction System EUI Pattern Catedor Requirement
uI) Responsibility (SR) gory d
Identify self
R i i N
equest identity Authentication
Request Input ID
. e Access control
identification
Access system
R
equest status Authorization
Select status Input status Inout Availabilit
Provide status pu y
Select option . Integrity
. In ion . -
Enter option put optio Confidentiality
Enter detail . .
. Input detail Authentication
Input detail
Enter location . . .
. Submit location Integri
Select location grity
Verify user
Verify identity Display ID Authorization
Verify ID Display
Update status . Availability
. Display status . o
Update option Play Confidentiality

154

J. Electrical Systems 20-11s (2024): 148-171

Display status

Receive status

Access control

Select amount
Choose transaction

List payment

Choose option
Choose item
Choose event

List option

Offer choice
Offer solution

List of choice

Display detail Receive detail Availability

Show information Display

Show location information Availability

Show item View item Availability

Display item

Validate payment Integrity

Show payment Display payment Access control

Show code Availability
Choose payment Integrity

List

Access control

Confidentiality
Availability

Availability

4.2 SecReq Pattern

Library

We developed a security requirements pattern library (SecReq) to support the elicitation of the security
related properties from the related security requirements. The purpose of security requirements pattern library is
to help RE to increase correctness issues, especially to elicit security requirements before proceed for application
development. The generic nature of the security pattern library contributes to its usefulness as it can be utilized
and applied in any domain of 10T application. Further, the usage of pattern library can minimize human time effort
for eliciting correct security requirements.

Table 2: Example of SecReq Pattern Library

Example Keyword
from EUI Model

for Security
Requirements

Examples Attributes

Related
Security

Requirements

Examples of 1oT Domain Related

Input ID

Enter detail
Register

Input code and ID

Username
Password

PIN

ID card

Fingerprint

Retinal pattern
Biometric identifier

Authentication

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
(Healthcare Monitoring, Children
Protection, Home Security)

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

Verify ID
Check details
Provide information

Permission
Verify
Gain access

Authorization

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
(Healthcare Monitoring, Children
Protection, Home Security)

155

J. Electrical Systems 20-11s (2024): 148-171

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

List options
View detail
Display status
Show coordinate
Provide code

Accessible
Obtainable
Software patching

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
(Healthcare Monitoring, Children
Protection, Home Security)

Availability

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

Sends data

Submit location
Request information
Choose options

Get information
Detect signal
Process information

Limits access
Unreadable data
Restricted access

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
Confidentiality | (Healthcare Monitoring, Children
Protection, Home Security)

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

Submit billing
Validate data
Notify location
Confirm transaction
Process information
Record details

Protect data
Unmodified data
Unaltered data

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
Integrity (Healthcare Monitoring, Children
Protection, Home Security)

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

Receive information
Transmit data
Select amount
Generate code

Limited access
Control the access

Smart City Domain (Smart Parking
System, Warehouse Management,
Smart Farming)

Health Well-being Domain
(Healthcare Monitoring, Children
Protection, Home Security)

Access control

Industrial Domain (Mobile
Ticketing, Smart Shopping,
Animal Tracking)

156

J. Electrical Systems 20-11s (2024): 148-171

4.3 1oTTech Pattern Library

We developed a loT technologies pattern library (loTTech) to support the elicitation of the loT
technologies from the related technologies used in 10T applications. The purpose of 10T Tech pattern library is to
help RE to increase correctness issues, especially to elicit 10T technologies before proceed for application
development.

Table 3: Example of loTTech Pattern Library

Example Keyword from

Example Attributes /

loT Technologies

Examples of 10T Domain

Detect vibration

Current detection

EUI Model Devices of 10T Related
technologies
Health Well-being Domain
Check status Tgmpqrature (Chllt!ren Protection, Home
. Vibration Security)
Detect motion . Sensor
Motion

Industrial Domain (Animal
Tracking)

Provide location
Display location
Make payment
Send code

Provide notification
Search location

North coordinate
East coordinate
Altitude

Signals

Locator

Identifier

Tracker

Mobility
Connection density
Spectral efficiency
Latency

Peak data rate

Mobile networks
(GPS, QR Code,
4G/5G)

Smart City Domain (Smart
Parking System, Home
Security, Smart Farming))

Health Well-Being Domain
(Healthcare Monitoring,
Children Protection, Home
Security)

Industrial Domain (Mobile
Ticketing, Smart Shopping,

Smart City Domain (Smart
Parking System, Warehouse

Confirm status

Access point-centered

Identify code Management)
Verify code
Verify item EE:B :aegzléc:znsponder RFID system Health Well-Being Domain
Check status (Children Protection)
Scan tags
Industrial Domain (Smart
Shopping, Animal Tracking)
Smart City Domain (Smart
Farming, Smart Parking
System)
Detect signal Access_ point — Health Well-Being Domain
. Scalability Wi-Fi (WLAN, 2
Check signal N (Healthcare Monitoring,
s Diversity IEEE 802) X .
Verify item Children Protection, Home
Hotspot .
Security)
Industrial Domain (Smart
Farming)
Health Well-Being Domain
Detect signal (Healthcare Monitoring,
Check signal Packet-based Bluetooth Home Security)

Industrial Domain (Mobile
Ticketing, Animal Tracking)

Based on Table 2 and Table 3, SecReq and loTTech pattern library were develop using keyword
matching, The system will identify the keyword inserted by user in the textual requirement for various of loT

157

J. Electrical Systems 20-11s (2024): 148-171

application scenario that collected from published literature and verified by experts. When using SecloT_MEReq,
a requirement engineer key in the requirements in the form of user story in the textual requirements text area.
Then, EUC models are extracted from textual requirements. This is done by using EUC pattern library. We then
map the EUC model into EUI model uisng EUC pattern library. Then the security requiremens and iot
technologies are generated and sugeested from the support of SecReq and IoTTech pattern library.

5 EXAMPLE OF USAGE

Daniyal, a requirements engineer would like to elicit the security requirements provided by the client-
stakeholder using SecloT_MEReq. He sits with Sofea, who is the 10T Developer to elicit the requirements, which
she had captured earlier. First, he need to login to access to SecloT_MEReq. Besides, he also can clicks the Home
tab which give an information about SecloT_MEReq. Also, the Definition tab helps them to understand the terms
for 10T Domain, Security Requirements and loT Technologies. To use the tool, he then clicks the Tool tab and
the choose 10T domain and the application that listed from the tool. From there, he inserted the textual
requirements in the form of business scenario and clicks “Update Model” (Figure 4).

SecloT_MEReq: Automated Too! to Eliit Security Requirements for 0T Applications

Step 1: Choose loT Domain,
loT application and
Insert textual requirement

s +—— Step 2:Click Update Model

Figure 4: Tool page for SecloT_MEReq

Home Definitior Tool @ Log Out
e B —
[

SecloT_MEReq: Automated Tool to Elicit Security Requirements for IoT Applications

\
S Step 3: Click the EUl and EUC to show the
suggested security requirements and loT technologies.

Figure 5: EUI and EUC generated for tool

As show in Figure 5, after Sofea click button, “Update Model”, SecloT_MEReq will generate EUC and
EUI from EUC pattern library and EUI pattern library. Here, she then uses the tool to elicit the attributes for the
particular EUC and EUI model that can be viewed. As shown in Figure 6, Sofea click on the EUC of “Identify
Self” to its user interaction. In this example the EUI model for the EUC model of “Identify Self” is “Input ID”.
For this case, the attributes display are “username”, “password”, “PIN”, “fingerprint”, and “retinal pattern” for
suitable security requirement “Authentication”. The tool help them to identify the security requirement that they

needed to develop an 10T application based on the requirements attributes.

158

J. Electrical Systems 20-11s (2024): 148-171

Appicston

SecloT_MEReq: Automated Tool to Elicit Security Requirements for loT Applications

Jusae itaracon

inds the location selected by using
GFS. Then,the GFS location updated

User need to baok the parking area by

Sy

#Abome Definiton Todl @ logOut

) | ==

BN eingapart

ESSENTAL USER INTERACTION (1)

user mieracion vodel

rean0
At e

Mty st
e uger |
system

0

Step 4: The tool suggested the attributes
and suitable security requirement

Figure 6: Security Requirements Elicitation in SecloT_MEReq (1)

As shown in Figure 7, to get better understanding, Sofea that click another user interaction for EUC
model “Check item detail” and “Check item detail” also display for EUI model. Here, for this case, tool generate
“permission”, “verify”, and “gain access” for attributes for security requirement “authorization”.

SecloT_MEReq; Automated Tool to Elicit Security Requirements for loT Applications

#Home Definton Tool

=

@ Log Out

—

Step 4: The tool suggested the attributes
and suitable security requirement

Figure 7: Security Requirements Elicitation in SecloT_MEReq (2)

Next, as shown in Figure 8, Sofea clicks user interaction “Check GPS coordinate” from update GPS for
EUC model and “Check coordinate” for EUI model. Attributes that generated from tool are “fingerprint”, “PIN”,
“password”, “username”, “retinal pattern”. Security requirement suggested by tool is “authentication” and “GPS”

for 10T technologies.

Sebect o7 Domain

T

User need 1o bock the pasking area by
using ma ueeris
in

Gystem.

0 the user. The gives the
detals of the selected parking areas:

such s the name, price per minute.
number o total avallable slots. User

billing informtion will s2nd 1o the user
t

Updrievodel

SecioT_MEReq: Automated Tool

#Home Defntion Tool B LogOut

Nty GPS locsion

Step 5: The tool suggested the attributes
and suitable 10T technologies

Figure 8: 10T Technologies Elicitation in SecloT_MEReq (1)

159

J. Electrical Systems 20-11s (2024): 148-171

Then, Sofea decide to click system responsibility “Show coordinate” from update GPS for EUC model
and “Show coordinate” for EUI model. Attributes that generated from tool are “permission”, “gain access”, and
“veirfy”. Security requirement suggested by tool is “authorization” and “GPS” for [oT technologies. She also can
click any of the EUC model to generate the security requirement and 10T technologies suggested by tool for the

10T domain.

SecloT_MEReq: Automated Tool to Elicit Security Requirements for loT Applications

e

M Home Definitior Te & Log Oout
bl 1| umasacces T’ .
- e

e Step 5: The tool suggested the attributes
and suitable loT technologies

Figure 9: 10T Technologies Elicitation in SecloT_MEReq (2)

6 ARCHITECTURE AND IMPLEMENTATION

We have developed a prototype tool, called SecloT_MEReq based on the approach in the previous
section. The objective is to assist requirements engineers in eliciting security requirements during requirements
elicitation with client-stakeholders. Our tool provides the (1) extraction of EUC and EUI model (2) extraction of
security requirement from SecReq; and (3) extraction loT technologies from IoTTech pattern library.
SecloT_MEreq has been developed using PHP programming language and adopts Model-View-Controller
(MVC) design pattern and three-tier architecture. MVC design pattern was implemented to develop a platform-
independence software application that supports different platforms, such as mobile devices, tablets, and different
browsers on different operating system. As shown in, Figure 10, MVC pattern divides an interactive application
into three components: Model, View and Controller.

User Action—> BREIGIEIEE ———Update

<«—Update Notify-

Figure 10: The MVC Design Pattern

The Model manages the application's data and business logic, the View is in charge of presenting the data
or model to the user via the browser, and the Controller manages the communication between the model and the
view. SecloT MEReq's development was inspired by the works of [19] [20], and the identification of the
associated security elements are based on the definitions from the basic security services.

Figure 11 illustrates the high-level architecture of the SecloT_MEReq tool that comprises three tiers;
presentation, application processing, and data management layer. The layout is three-tier architecture, where each
layer is separated from each other. This independency allows for better performance, easier maintenance and more
scalable architecture [21].

160

J. Electrical Systems 20-11s (2024): 148-171

Web Browser

=¥

< Controller
A
Apache Server l

—

Generate EUC and EUI model Generate Workable Prototype
Extract Extract
Extract EUI loTTech

|

SecReq ‘ loTTech ‘

Figure 11: SecloT_MEReq High Level Architecture

Extract EUC

I
.I
< —

MySQL Server

The presentation layer handles the interaction between the users and the system. The View and Controller
exist in the presentation layer. Here, a web client from any platform such as an iPad, mobile phone or desktop can
request to access the SecloT_MEReq tool. The user interacts with the SecloT_MEReq tool through the Controller
component. The Controller that contains the client-side scripting, handles the http request processing and business
logic of the tool. It receives user input as events and translates them into service request for the Model or the View.
When a user accesses the SecloT_MEReq, the scripts in the Controller will determine the type of browser and
device used by the user. Then, it will request the correct view from the View component. Each view has associated
controller component. Next, the View component will make requests from the Model to fetch the data from
business and data layer and display the information to the user.

At the business processing layer, the Apache server hosted the PHP implementation for the main event
handlers of SecloT_MEReq. This contains the key elements for the extraction of security requirements and loT
technologies components from the textual requirements, extraction of application scenario components at the
SecloT_MEReq template editor, analysis and evaluation of the model-based component and business scenario
syntax from pattern library.

At the data management layer, MySQL database server contains the EUC, EUI, security requirements
and loT technologies libraries. A Java module supports the extraction of the security requirements and 10T
technologies from the generated EUC and EUI models. This process extract both the security requirements and
10T technologies from the SecReq and loTTech Pattern Libraries. A sequence of SecReq and loTTech are
extracted and visualised together with the workable prototype.

161

J. Electrical Systems 20-11s (2024): 148-171

7 EVALUATION AND RESULTS

7.1 Usability Study

We ran two usability tests to assess the usability of our approach and tool for eliciting security requirements
for the correctness test. In the first usability test, respondents were required to use our tool and complete a series
of questionnaires in order to provide feedback on the usability of our tool. A total of 56 undergraduate students
participated in this usability test. The participants are all majoring in Software Engineering and taking the Software
Requirement course. During the second usability test, respondents were required to use our tool and respond to
semi-structured interview questions about its usability. The interview questions are described in detail. Semi-
structured interviews with 12 industrial experts were conducted via Google Meet for this usability test. The
purpose of these interviews was to gather their thoughts and perceptions on the usability of SecloT MEReq, which
aids in eliciting security requirements from an loT industrial standpoint.

This usability study required the participants to perform two main tasks: (1) to explore the tool to
accomplish the required tasks and (2) to complete a survey questionnaire upon completion of the tasks. The survey
questionnaire was designed to elicit the users’ perception regarding the usefulness, ease of use, ease of learning,
and satisfaction of the tool based on a five-level Likert scale. The questionnaire also include the Cognitive
Dimension (CD) and open-ended questions. We considered Cronbach’s Alpha test to measure the reliability of
our questionnaire. The alpha coefficient for this group is 0.872, suggesting that the items have relatively high
internal consistency. It is proven that the questionnaire has high reliability. This result is based on [22] who claims
that a reliability coefficient of 0.70 or higher is considered “acceptable” in most social science research situations.

We conducted the evaluation of our SecloT_MEReq tool with two group (Group A and Group B) which
is focusing on the automatic generation of security requirements and key-textual structures with completeness
checking from our two pattern libraries, SecReq and loTTech. In this evaluation, the participants were requested
to perform two tasks:

Evaluation : Elicitation of Security Requirement for 0T Application using SecloT_MEReq Tool. The tasks
for the evaluation are:

a) Taskl : Exploring the SecloT_MEReq tool capabilities to automatically generate the analysis of
security requirements and loT technologies from our pattern library, SecReq and loTTech. Here, the
participant were explained with the step using the tool.

b) Task 2 : Demonstration using video demonstration and the observation of the functionality of the tool.
Here, the participants are requested to insert the 10T domain, application and textual requirements into
the tool to generate the suggestion of attributes, security requirements and 10T technologies.

7.1.1 Video Demonstration and Observation Result for Task 1 and Task 2

In this evaluation, the participants communicated through video conferencing using Zoom application, with the
researcher/observer to gain understanding of using the tool. Overall, we found that most of the participants were
interested using the tool as it is able to automatically generate the security requirements and 10T technologies
from our pattern libraries, EUC, EUI, SecReq and loTTech. The tool also helps them to see the analysis for textual
requirement by highlighting the related components. However, we got a few feedbacks from the participants
indicated that they were uncomfortable with the the font size display in the tool where the font is to small that
make them difficult to read the content. These comments were noted for future work.

Participants were asked about their proficiency in using the SecloT_MEReq tool and their experience in
using any tools similar to our SecloT_MEReq, before they moved to usability and CD notation study. The results
are shown in Figure 12 and Figure 13.

162

J. Electrical Systems 20-11s (2024): 148-171

Proficiency Level of Using the SecloT_MEReq

Tool

80.0
& 600
S 400
T 200 . .
o
g 00 : : — ,
a Novice Intermediate Proficient/skilled

B Group A 50.0 46.7 3.3
Group B 42.3 57.7 0.0
Proficiency Level
B Group A Group B
Figure 12: Proficiency level of Using the SecloT_MEReq Tool
Experience with any tool on checking
security requirement correctness similar to
SecloT_MEReq

100
()
- [
o —
o Yes No
‘ng Group A 26.7 73.3

Group B 15.4 84.6

Experience with any other tool

B Group A Group B

Figure 13: Experience with any tool on checking security requirement correctness similar to SecloT_MEReq

Based on the background results provided, from Group A and Group B, all of the participants were
identified as novice and intermediate in using the SecloT_MEReq tool and the web design tool used to construct
SecloT_MEReq. This indicates that they have some background in using web-based tool design. Most of them
were thus unfamiliar with tool design. Less than 30% of the participant have experience in using familiar tool.
But, based on the result, we concluded that these groups of users were unfamiliar with RE tools like
SecloT_MEReq. The same group of participants was also used in our next phase of evaluation. The results of the
usability criteria and CD study based on the questionnaire are shown in Figure 14, Figure 15, Figure 16, Figure
17, Table 4 and Table 5. Figure 14 presents the results of each usability criterion. For each criterion, the results
of each corresponding three-question block were averaged to produce the results shown. There is a strong
agreement among the participants in terms of the usefulness of the tool, where 90% (Group A) and 98.7% (Group
B) of the participants strongly agreed or agreed that the tool was useful to assist them in eliciting security
requirements because it automate the process and makes the eliciting process of security requirements easier. We
have also found that 87.8% (Group A) and 94.9% (Group B) of the participants felt that the tool was easy to use
because the interface design of the tool is user-friendly and they found less inconsistencies in the tool. In terms of
ease of learning, 88.9% (Group A) and 97.4% (Group B) of the participants claimed that it was very easy to learn
since the flow and the interface design of tool is simple and user-friendly. Additionally, 80% (Group A) and 97.5%
(Group B) of the participants were satisfied with the tool as there were no special technical skills required to write
complete security requirements. There were only a small number of participants form both group (less 10%) who
were undecided or disagree on the usefulness aspect of the tool. For Ease of Use, there was a slight disagreement

163

J. Electrical Systems 20-11s (2024): 148-171

(2.2% from Group A and 1.3% from Group B) where the participants feel uncomfortable with certain
terms/keywords while dealing with the security requirements components. Overall, the usability results show that
our prototype tool is useful, easy to use and learn. Users also expressed their high level of satisfaction when using

the tool.

SecloT_MEReq Usability Result from Group A

)
o
g II
7}
e — | | II
w .
a Strongly . Undecide Strongly
Disagree Disagree d Agree Agree
W Usefulness 0.0 0.0 10.0 57.8 32.2
M Ease of Use 0.0 2.2 10.0 60.0 27.8
Ease of Learning 0.0 4.4 6.7 50.0 38.9
Satisfaction 0.0 7.8 12.2 57.8 22.2
Figure 14: Usability Study of SecloT_MEReq from Group A
SecloT_MEReq Usability Result for Group B
-
oo 60.0
- 50.0
c 40.0
@ 30.0
S 0
- R - Undecid Strongl
rongly . ndecide rongly
Disagree Disagree d Agree Agree
B Usefulness 0.0 0.0 1.3 28.2 70.5
M Ease of Use 0.0 1.3 3.8 37.2 57.7
Ease of Learning 0.0 0.0 2.6 25.6 71.8
Satisfaction 0.0 0.0 2.6 38.5 59.0

Figure 15: Usability Study of SecloT_MEReq from Group B

Figure 16, Figure 17, Table 4 and Table 5 shows the result of the CD study. The CD study allows us to
explore in more detail the reasons for users’ perceptions as well as further discussion on the strengths and
weaknesses of the tool. The results are based on percentage depending on the number of participants’ answers for

each scale.
Table 4: CD Study Result of SecloT_MEReq from Group A

Cognitive Strongly Disagree Undecided Agree Strongly

Dimension Disagree (%0) (%) (%) (%) Agree (%)
Visibility 0.00 0.00 13.33 70.00 16.67
Viscosity 0.00 0.00 13.33 66.67 20.00
Diffuseness 0.00 0.00 23.33 56.67 20.00
Hard Mental Effort 10.00 53.33 10.00 20.00 6.67
Error-proneness 10.00 40.00 20.00 26.67 3.33
Closeness of
mapping 0.00 0.00 16.67 66.67 16.67
Consistency 0.00 0.00 13.33 70.00 16.67
Hidden
dependencies 0.00 0.00 10.00 80.00 10.00

164

J. Electrical Systems 20-11s (2024): 148-171

Cognitive Strongly Disagree Undecided Agree Strongly
Dimension Disagree (%) (%) (%) (%) Agree (%)
Progressive
Evaluation 0.00 0.00 16.67 66.67 16.67
Premature
Commitment 0.00 0.00 16.67 60.00 23.33
Positive Result of CD Study from Group A
__100.00 86.67 86.67 83.33 86.67 90.00 g333 g333
£ 50.00 > 63.33
8 60.00 I 50.00
€ 40.00 I
[
2 20.00
[
e 0.0
\ & 0‘5 R SN
3 & 4’\"(' &Qp 'z}é (\Q/ @QQ ;,\‘3@’ 605\0 oéé)% &,5\,
N &) & & O &
Q & R ¢ & X R
bg & & &
N < Q,Q
€ & N
S S
Figure 16: Positive Result of CD Study of SecloT_MEReq from Group A
Table 5: CD Study Result of SecloT_MEReq from Group B
Cognitive Strongly Disagree Undecided Agree Strongly
Dimension Disagree (%) (%) (%) (%) Agree (%)
Visibility 0.00 7.69 7.69 38.46 46.15
Viscosity 0.00 3.85 11.54 46.15 42.31
Diffuseness 0.00 3.85 0.00 61.54 34.62
Hard Mental Effort 3.85 65.38 11.54 11.54 7.69
Error-proneness 3.85 57.69 11.54 7.69 19.23
Closeness of 0.00 0.00 3.85 57.69 38.46
mapping
Consistency 0.00 0.00 3.85 57.69 38.46
g“dde” . 0.00 3.85 3.85 73.08 19.23
ependencies
Progressive 0.00 0.00 7.69 50.00 42.31
Evaluation
zremat.“re 0.00 0.00 15.38 50.00 34.62
ommitment

Positive Result of CD Study from Group B

120.00
< 10000 84.62 88.46 96.15 s 96.15 96.15 92.31 92.31 g, ¢,
= 80.00 61.54
gp 60.00
£ 40.00
@ 20.00
(8]
E 0.00
'»* QA B & @
& ‘ ‘*L)\ & Q}‘O ef"" .*@ \66 q,‘o°’\ &
RS s{\\"’ b@ & &\f—; K & S
RN SRS & <

Figure 17: Positive Result of CD Study of SecloT_MEReq from Group B

165

J. Electrical Systems 20-11s (2024): 148-171

We summarize the results for each dimension as follows.

Visibility : About 86.67% (Group A) and 84.62% (Group B) of the participants either strongly agreed or
agreed that they can see the various part of the tool that show clearly the five components requirements: textual
natural language requirements in the textual editor, EUC model, EUI model, test requirements and test cases. They
could also easily see the dependencies of each component as a visual link and highlights are provided. The
remaining 13.33% (Group A) and 7.69% (Group B) of the participants are undecided and 7.69% participants from
Group B are in disagreement.

Viscosity: 86.67% (Group A) and 88.46% (Group B) of the participants either strongly agreed or agreed
that the tool allowed them to make changes easily to the textual requirements. Strong result of both visibility and
viscosity show that the participants from both group were comfortable with the tool.

Diffuseness : 76.67% (Group A) and 96.15% (Group B) of the participants were strongly agree or agree
that the notation used by the tool is succinct and not long-winded and 13.33% of the participants from Group A
were undecided. However, 3.85% of the participants from Group B were disagree and thought it was hard to
understand the notation when using it for the first time. They were confused the different between security
requirements and the attributes.

Hard Mental Effort: About 63.33% (Group A) and 69.23% (Group B) of the participants either strongly
disagreed or disagreed that this tool needs a lot of effort to solve the tasks. They were quite contented as this tool
is able to extract the security requirement automatically, which minimises a lot of their time and effort. However,
there was still some dissatisfaction from 26.67% (Group A) and 19.23% (Group B) of the participants who thought
this tool still required effort to understand the notation and the layout when using it for the first time.

Error-proneness: 50% (Group A) and 61.54% (Group B) of the participants either strongly disagreed or
disagreed that the tool leads the user to make errors. This is because the extracted security requirement is believed
to be accurate as all the security attributes and 10T technologies patterns are already pre-defined in the library.
However, 21.54% of the participants from both Group A and B were undecided: they may have believed that the
tool could be constrained by the size of the library.

Close of Mapping: Most participants (83.33% from Group A and 96.15% from Group B) either strongly
agreed or agreed that the notation used was closely related to the results. They understood the labels used to
describe the requirement components. Only 10% of the participants from Group A and 3.85% from Group B were
undecided with the notation used.

Consistency: 86.67% (Gorup A) and 96.15% (Group B) of the participants were either strongly agreed
or agreed that they could easily identify the requirements components: textual natural language, EUC model, EUI
model, test requirements and test cases throughout the task. Only 13.33% (Group A) and 3.85% (Group B) of the
participants were undecided: they were unsure about the different between security requirements and security
attributes but believed that the notations used were consistent and straight-forward.

Hidden Dependencies: 90% (Group A) and 92.31% (Group B) of the participants either strongly agreed
or agreed that the dependencies among the three requirements components were visible. Visual links are provided
to show the dependencies between all requirements components (textual requirements, EUC model, EUI model,
test requirements and test cases) when trace-back is performed. Highlights with yellow color help to visualise the
dependencies among components. Only 10% of the participants from Group A and 3.85% from Group B were
undecided with this.

Progressive Evaluation: 83.33% (Group A) and 92.31% (Group B) of the participants also either
strongly agreed or agreed that SecloT_MEReq allows users to evaluate their work at any time and to verify the
security requirement produced by the library. Here, participants could make changes to the textual requirements
if they did not agree with the tool‘s decision. Only 16.67 % and 7.69% from both Group A and B were undecided
with this dimension.

Premature Commitment : This dimension reflects the sequence of using this tool in order to achieve the
results. 83.33% (Group A) and 84.62% (Group B) of the participants strongly agreed or agreed that the tool allows
a user to perform the task from any direction. Another 16.67% (Group A) and 15.38% (Group B) were undecided.

The questionnaire also contains open-ended questions to obtain the participants’ feedbacks about the
positive points of the tool. Based on our analysis of the keywords provided by the participants, there were two
main themes identified: ‘useful’ and ‘ease of use’. Table 6 shows the result of the open-ended question related to
the positive points of the tool given by the participants.

166

J. Electrical Systems 20-11s (2024): 148-171

Table 6: Frequency Table for the Result of Open-ended Question

Group A Group B
Keywords Frequency Percentage (%) Frequency Percentage (%)
Useful 11 36.67 12 46.15
Ease of Use 9 30 11 42.31

Based on Table 7, almost 82.82% (Group A and B) of the participants felt the tool was useful to assist
them in eliciting complete security requirements because the tool automate the process of eliciting security
requirements. Among the similar responses stated from Group A were “It is good as it can help me to elicit the
requirement correctly”, “The function works well and can help a lot in elicit the requirements” and “The tool is
efficient and it does not consume too much time comparing to eliciting manually”. Another response from group
B were stated as “The tool is very straightforward and very helpful in eliciting the security requirements”, “Help
to elicit more quickly” and “Because SecloT_MEReq can help user to protect data”. These responses show that
the tool was useful and helpful for them to automatically elicit the correct security requirements from the pattern
libraries.

Table 7: Frequency Table for the Result of Open-ended Question

Group A Group B
Keywords
Frequency Percentage (%0) Frequency Percentage (%)
Nothing to be improved 25 83.33 21 87.77
Better interface design 4 13.33 3 11.54
Provide user manual - - 2 7.69
Others 1 1.33 - -

Based on Table 7, the top suggestion is nothing to be improved, the top suggestion is nothing to improved,
which received about 83.33% from Group A and 87.77% from Group B. Among the similar comments were
“none”. Another 13.33% from Group A and 11.54% from Group B suggest for better interface design. Among the
similar comments by the participants were “the Ul can be upgraded from time to time”, “make user interface more
interesting”, “improve the interface” and “improve the interface of the system”. Another 7.69% from Group B
suggest to provide user manual based on the suggestion “make user manual” and “put user manual to ease the
user”. Only 1.33% participant from Group A give feedback to make “Mobile version”. In summary, the results
from this usability study showed a positive feedback from the participants. This indicates that our tool is useful
and easy to use to assist in eliciting security requirements. The ultimately can help to decrease the development
cost.

Figure 18 shows the result of comparison of positive result of CD study for Group A and Group B. Based
on the result, the were a similarity result for Group A and B. The result shows that both group have a same thought
of the CD study for the SecloT_MEReq for visibility (Group A — 86.67%, Group B — 84.62%), viscosity (Group
A — 86.67%, Group B — 88.46%), hard mental effort (Group A — 63.33%, Group B — 69.23%), error-proneness
(Group A — 50.00%, Group B — 61.54%), closeness of mapping (Group A — 83.33%, Group B — 96.15%),
consistency (Group A — 86.67%, Group B — 96.15%), hidden dependencies (Group A — 90.00%, Group B —
92.31%), progressive evaluation (Group A — 83.33%, Group B — 92.31%) and premature commitment (Group A
— 83.33%, Group B — 84.62%). Both of the group agreed that our tool have high positive result of cognitive
dimension. While the result for diffuseness have a little bit differences (Group A — 76.67%, Group B — 96.15%)
because of the confusion between security requirements and attributes. It was hard to them to understand the
notification because they were using it for the first time.

167

J. Electrical Systems 20-11s (2024): 148-171

Comparison of Positive Result of CD Study of
SecloT_MEREq for Group A and Group B

120.00
100.00
80.00
1)
Qo
8
S 60.00
it
&
40.00
20.00
0.00 cl P P
s . . . Hard Error- osene . Hidden rqgres remat
Visibilit | Viscosit = Diffuse ssof | Consist sive ure
ness Mental | pronen mappin | enc depend Evaluati Commit
y y Effort ess PP ¥ encies
g on ment

BmGroupA 86.67 | 86.67 76.67 @ 63.33 50.00 83.33 86.67 90.00 83.33 83.33
EmGroupB 84.62 | 8846 96.15 69.23 6154 96.15 96.15 9231 @ 9231 84.62

CD Study Result

B Group A EGroup B
Figure 18: Comparison of Positive Result of CD Study of SecloT_MEReq from Group A and Group B

As shown in Figure 19, the result of the opinion of useful and ease of use of SecloT_MEReq for Group
A and Group B have a similarity. Both of the student agreed that our tool, SecloT_MEReq is useful (Group A —
55%, Group B — 52.17%) and ease of use (Group A — 45%, Group B — 47.12%). They agreed that our tool was
useful to help and assist the user in eliciting complete security requirements because the tool automate the process
of eliciting security requirements. They also felt that out tool can ultimately can help to decrease the development
cost.

Opinion of Useful and Ease of Use of
SecloT_MEReq for Group A and Group B

° 60

2 %

|5 30

o 20

@ 10

o 0

Group A Group B
H Useful 55 52.17
M Ease of Use 45 47.82
Keywords

B Useful M Ease of Use

Figure 19: Opinion of Useful and Ease of Use of SecloT_MEReq from Group A and Group B

168

J. Electrical Systems 20-11s (2024): 148-171

7.2 Use of SecloT_MEReq by requirements engineering professionals

The second usability test was conducted to gain the feedbacks from the experts in the field of software
development and testing regarding the usability of SecloT_MEReq. This usability test was conducted with 12
industrial experts where all participant’s opinion regarding SecloT_MEReq is analysed. Semi-structured
interviews were carried out and demonstration of SecloT_MEReq was conducted using Google Meet application.
The demographic of participants are specifically in the field of software engineer, system analyst, programmer,
IT analyst and IT application. They have between two and fifteen years working experience in the 10T industry.
Prior to the interview, we informed them the purpose of the interview and defined the different terminologies and
definitions used in our interview questions to ensure the consistency of responses. We provided a brief description
of our tool and show them the video demonstration and gave them the access to a link that provides them the
overview the tool using samples of textual requirements from their recent projects.

Based on the interview results and comments, it indicates that they agreed that SecloT_MEReq tool is
simpler and easier to be understood and learnt. It also helps to reduce the time and effort in eliciting security
requirements of 10T applications. We concluded that our automated tool approach is useful and helpful to
requirements engineer to elicit security requirements for Internet of Things (IoT) applications based on their
feedback that indicates the words “helpful, very helpful, really helps” etc. Most of the participants also agreed
that our tool can help them to visualize elicitation security attributes and then conduct early elicitation of the
security requirements of 10T application. This result is similar with the finding that we have found from the open-
ended questions in our survey. From the interview, all of the experts agreed that our SecloT_MEREeq tool is
useful and helpful in eliciting correct security requirements. They found that the auto-elicitation of the
requirements really helps for better understanding for security requirements correctness. They agreed that this tool
automates the eliciting process, provides guidance on how to elicit security requirements. This tool provides early
elicited and helps to reduce mistakes at the early stage. These could avoid repeatable tasks and reduce cost in
eliciting security requirements. Besides, it will avoid the increase of timeframe because of required task to redo
by the system analyst and 10T developer. This tool also helps for elicit 10T technologies suitable used for develop
secure 10T application that will lead to good/quality application. All of the experts also expressed their satisfaction
that this tool could help in assisting the process of eliciting security requirements. All of them have never used
any tools that are similar to SecloT_MEREeq.

Based on the two usability tests conducted, we concluded that our automated tool approach is useful and
helpful to requirements engineers to elicit security requirements. Most of the participants also agreed that our tool
can help them to elicit the correctness of security requirements and loT technologies before proceeding to the
development stage.

8 CONCLUSION

Requirement engineers need to elicit security requirements for loT application at an early stage of
development. We have developed an automated tool called SecloT_MEReq for security requirements of mobile
apps by employs the idea of Model-Driven Development (MDD) using semi formalised EUCs and EUIs prototype
model. Evaluation of our prototype tool with real security examples and end users shows positive results.
However, we faced several limitations, but they can be ameliorated in future works. First, the size of the security
requirement (SecReq) and loT technologies (loTTech) library. This research focuses on developing security
requirement pattern library drawn from a collection of literature review and requirements from industries. Hence,
it is limited to the functional security requirements. In this case, eliciting non-functional requirements is beyond
the scope of this approach. Secondly, our tool can only extract the prototypes that were predefined in our libraries.
Here, the libraries were designed and developed based on our case studies and sample requirements/scenarios
collected from various sources of 10T domain. Therefore, a wider collection of keywords was required to enhance
the scalability of the library. We believe, this research arises from the need to have an automated approach for
eliciting security requirements and correctness checking to support requirements engineers and client-stakeholders
in the process to ensure the correctness of the security requirements named SecloT_MEReq. This tool is still at
the prototype stage. Although this approach has a strong potential in assisting the requirements engineer
community and loT developers in eliciting security requirements, there are some future works that need to be
done. We hope to extend the tool capabilities by embedding Al technique for the keyword searching to allow the

169

J. Electrical Systems 20-11s (2024): 148-171

tool to be trained to automatically extract the newly found components for other domains in our libraries. And
also, the enhancement of the visualization view and layout of SecloT_MEReq tool with embedded user manual
for novice user or beginner user. This improvement is helpful in guiding the novice users to use the tool easily.

ACKNOWLEDGEMENT

The authors would like to gratefully acknowledge the assistance and funding made available by the Universiti
Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education, Malaysia under the Fundamental
Research Grant Scheme (FRGS), grant no.: FRGS/1/2022/ICT03/UTEM/01/1. Also, thanks to Politeknik Sultan
Azlan Shah (PSAS) for its support and all those who participate in the study and helped to facilitate the research
process.

REFERENCES

[1] E. Alsaadi and A. Tubaishat, “Internet of Things: Features, Challenges, and Vulnerabilities,”
International Journal of Advanced Computer Science and Information Technology, vol. 4, no. 1, pp. 1-
13, 2015.

[2] B. Russell, C. Garlati, and D. Lingenfelter, “Security Guidance for Early Adopters of the Internet of
Things (IoT),” Mobile Working Group Peer Reviewed Document, no. April, 2015.

[3] K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things: An Overview Undertanding the Issues of a
More Connected World,” 2015.

[4] C. Atkinson and T. Kiihne, “Model-Driven Development: A Metamodeling Foundation,” IEEE Software,
vol. 20, no. 5, pp. 36-41, 2003, doi: 10.1109/MS.2003.1231149.

[5] S. Winkler and J. von Pilgrim, “A Survey of Traceability in Requirements Engineering and Model-Driven
Development,” Software and Systems Modeling, vol. 9, no. 4, pp. 529-565, 2010, doi: 10.1007/s10270-
009-0145-0.

[6] J. David and G. Whittam, “Model-Driven Development,” IEEE Software, 2008.

[7] R. France and B. Rumpe, “Model-Driven Development of Complex Software: A Research Roadmap,”
FoSE 2007: Future of Software Engineering, pp. 37-54, 2007, doi: 10.1109/FOSE.2007.14.

[8] R. Biddle, J. Noble, and E. Tempero, “From Essential Use Cases to Objects,” in forUSE 2002
Proceedings, 2002, vol. 1, no. 978.

[9] L. L. Constantine and L. A. D. Lockwood, “Structure and Style in Use Cases for User Interface Design,”
vol. 1, no. 978. Addison-Wesley Longman Publishing Co., Boston, MA, 2001.

[10] S. W. Ambler, “Essential (Low Fidelity) User Interface Prototypes,” 2003.

[11] R.-M. Abraham, P. J. Escamilla-Ambrosio, J. Happa, and E. Ahuirre-Anaya, “GARMDROID : IoT
Potential Security Threats Analysis Through the Inference of Android Applications Hardware Features
Requirements,” Applications for Future Internet, vol. 2, pp. 6374, 2017, doi: 10.1007/978-3-319-49622-
1.

[12] P. K. Dhillon and S. Kalra, “A Lightweight Biometrics Based Remote User Authentication Scheme for
IoT Services,” Journal of Information Security and Applications, vol. 0, pp. 1-16, 2017, doi:
10.1016/j.jisa.2017.01.003.

[13] H. A.B. Taiseera, P. R. F. Sampaio, and P. Laucopoulos, “Eliciting and Prioritizing Quality Requirements
Supported by Ontologies: A Case Study using ElicitO Framework and Tool,” Expert System, vol. 00, no.
00, 2012, doi: 10.1111/j.1468-0394.2012.00625.X.

[14] S. Hilde, H. Shareeful, and K. Schneider, “Eliciting Security Requirements and Tracing Them to Design:
An Integration of Common Ceriteria, Heuristics, and UMLsec,” Security Requirements Engineering, vol.
15, no. Special Issues, pp. 63-93, 2010, doi: 10.1007/s00766-009-0093-9.

[15] P. Gope and T. Hwang, “BSN-Care: A Secure loT-Based Modern Healthcare using Body Sensor
Network,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1368-1376, 2016.

[16] J. Wurm, K. Hoang, O. Arias, A. R. Sadeghi, and Y. Jin, “Security analysis on consumer and industrial
IoT devices,” Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, vol.
25, pp. 519-524, 2016, doi: 10.1109/ASPDAC.2016.7428064.

170

[17]

[18]

[19]

[20]

[21]
[22]

J. Electrical Systems 20-11s (2024): 148-171

G. Loniewski, E. Insfran, and S. Abrahdo, “A Systematic Review of The Use of Requirements
Engineering Techniques in Model-Driven Development,” Lecture Notes in Computer Science, vol. 6395
LNCS, no. PART 2, pp. 213-227, 2010, doi: 10.1007/978-3-642-16129-2_16.

M. Kamalrudin, J. Hosking, and J. Grundy, “MaramaAIC: Tool Support for Consistency Management
and Validation of Requirements,” Automated Software Engineering, pp. 1-45, 2016. doi:
10.1007/s10515-016-0192-z.

M. Kamalrudin, J. Grundy, and J. Hosking, “Tool Support For Essential Use Cases To Better Capture
Software Requirements,” in ACM The International Conference on Automated Software Engineering,
ASE 2010, 2010, pp. 255-264. doi: 10.1145/1858996.1859047.

M. Kamalrudin, J. Grundy, and J. Hosking, “Automated Support for Consistency Management and
Validation of Requirements,” The University of Auckland, 2011.

lan Sommerville, Software Engineering, 7th Edition. 2004.
G. UCLA: Statistical Consulting, “What does Cronbach’s alpha mean.docx.” 2016.

171

