
J. Electrical Systems 20-11s (2024): 148-171

148

1Asma Asdayana Ibrahim,
2Massila Kamalrudin

 SecIoT_MEReq : Automated

Tool To Elicit Security

Requirements For IoT

Application Software

Development

Abstract:

The use of Internet of Things (IoT) applications has grown in popularity and significance because it allows people and services

to interact at any time and from any location. IoT will necessitate the development of new software tools as well as

interoperability: Until now, the Internet of Things opportunity has consisted of “simple” monitoring applications and related

tracking or location services. Security has long been regarded as a major concern in IoT. It is critical for IoT application

developers to elicit security requirements of IoT applications at an early stage to avoid potential security issues. In this paper,

we describe our automated approach and tool, called SecIoT_MEReq that helps to elicit security requirements of IoT

applications. SecIoT_MEReq provides a model-based approach together with patterns library that helps to capture

requirements that have been expressed in textual natural language requirements then extracted to Essential Use Cases (EUCs)

and Essential User Interface (EUI) models. We describe its design and implementation together with the results of evaluating

our tool’s usability. The results of the study showed that our tool can help requirements engineers to easily elicit security-

related requirements of IoT applications development.

Keywords: security requirement, Internet of Things, IoT technologies, elicitation, IoT applications, EUC, EUI

1 INTRODUCTION

Internet of Thing (IoT) applications have been used widely as they allow interactions between people and

things anywhere and anytime. The use of IoT application is rapidly growing, especially in performing industrial

domain, smart city domain and health well-being domain [1]. There is also a plethora of applications being

developed to fulfil the needs of IoT application users. Regulation surrounding IoT is in the early stages or non-

existent, and is inconsistent across geographies. Security must be the factored in from the beginning of

development of any IoT product or application. Security worries among businesses and consumers are driving an

increased interest in and need for government involvement. Many user consider the IoT opportunity exciting, but

many still feel they are lacking the necessary technology, skills or tools [2]. Some of developers do not have or

are unsure if they have the necessary technology today to deliver on IoT expectations. They are unsure or definitely

do not have the necessary skills and resources today to deliver on IoT expectations. Therefore, there is a need for

automation support to capture and elicit security related requirements at the early stage of IoT application

requirements engineering. In our previous work [3], we conducted a study of common practices of involvement

in security requirements elicitation among practitioners in the area of IoT. The results of the study shows that the

professionals have knowledge and security training, but they did not know how to use and handle it in the earlier

phase of application developments. The survey also indicated there is a lack of a complete set of standard or

solutions for eliciting security requirements that can be applied during the process of applications development in

order to achieve quality and secure applications. This study also found that the respondents used multiple solutions

in handling the security issues rather that considering one solution only. Therefore, these challenges have

motivated us to:

i) Develop an automated tool support for eliciting security requirements

ii) Evaluate the tool to demonstrate its ability to enhance the correctness and usability for eliciting security

requirements of IoT applications.

This paper describes the approach and an automated tool that captures and elicits security requirements for IoT

applications using Model-Driven Development (MDD) with semi-formalised model, Essential Use Cases (EUCs)

and Essential User Interface (EUI). We present background for this study, our prototype tool, and then we

1Politeknik Sultan Azlan Shah, 35950, Behrang, Malaysia
2Universiti Teknikal Malaysia Melaka, 76100, Malaysia
Email: asdayana@psas.edu.my,
massila@utem.edu.my (corresponding author)

J. Electrical Systems 20-11s (2024): 148-171

149

conducted evaluations to test and validate the efficacy of the developed approach and tool. Finally, we discuss

related works and future work.

2 RESEARCH BACKGROUND AND RELATED WORKS

IoT applications become an increasingly attractive target for cybercriminals. This will require security

engineers to work closely with the developers of the IoT capability to introduce security requirements early in the

design process. More connected devices mean more attack vectors and more possibilities for hackers to target us.

Some of the more frightening vulnerabilities found on IoT devices have brought IoT security further up the stack

of issues that need to be addressed quickly. The researcher found critical vulnerabilities in a wide range of IoT

devices and applications, which could be leveraged by hackers to carry out several malicious activities, including

monitoring live feeds, changing camera settings and authorizing other users to remotely view and control the

monitor. As defined by [1] vulnerabilities including poor encryption and backdoors that could allow unauthorized

access have been found. With any physical device, there is a chance that a hacker could manipulate it and get into

exposed USB ports or a debugger interface, if someone is able to unsuccessfully hack at the embedded level into

an IoT device’s memory and can be read the encryption key, every device that is or has been shipped become

vulnerable. The network is only as strong as its weakest link.

In another development, it was proven that Internet-connected cars can be compromised, as well, and

hackers can carry out any number of nefarious activities, including taking control of the entertainment system,

unlocking the doors or even shutting down the car in motion [2]. So, security is a very serious issue in IoT

applications development. As applications devices with low quality or improper security are released into the

market, people may soon lose trust in the application and its devices that enter the market. Before being able to

secure a system, it is important to first understand the functional and technological details of the system to be

secured. This will require security engineers to work closely with the developers of the IoT capability to introduce

security requirements early in the design process. Using the methodical systems security engineering approach

for each IoT implementation within an enterprise is recommended. Information security, privacy, and data

protection systematically be addressed at the design stage. Unfortunately, in many cases, they are added on later

once the intended functionality is in place. This is not only limits the effectiveness of the added on information

security and privacy measures but also is less efficient in terms of the cost to implement them. However, the IoT

objects do not always have enough computing power to implement all relevant security layer functionalities, the

heterogeneity of objects become very challenging in this context. Similarity, the heterogeneity of privacy policies

needs to be taken into account.

Meanwhile, Alsaadi & Tubaisat [1] mentions that there is lack of standards for authentication and

authorization of IoT edge devices. Some of IoT devices have no authentication capabilities while others have

limited support. Very few have capabilities that support multi-factor authentication. Although some standards or

commercial options are available, for example, certificate authentication, commercial or semi-commercial identity

providers such as Google, there is lack of ability to create device-specific profiles and authorization options and

the privacy implications of using these services providers has not been fully explored. Every single device and

sensor in the IoT represent a potential for risk.

In addition, with more connected devices mean more attack vectors and more possibilities for hackers to

target us. Wearable also can become a source of threat to our privacy, as hackers can use the motion sensors

embedded in smart watches to steal information that we are been typing, or they can gather data from smart

watches application or health tracker devices you might be using. Some of the most worries cases of IoT hacks

involves medical devices and can have detrimental and perhaps fatal consequences on patient health. Only by

ensuring the security, IoT can be more universal, so there is need to strengthen the security of the IoT. Based on

recent reports, the number of connected ‘things’ is set to explode and expected to reach 100 billion by 2025 [3]

[7]. With a rapid increase in the demand for IoT applications, securing the information content delivered among

various entities involved in IoT applications development has become an important issue. Therefore, there is a

need to develop an approach or tool to secure the development of IoT applications in order to achieve quality and

secure applications.

Abraham [15] creates the GARMDROID tool. The tool was designed to help IoT software developers

and integrators assess IoT security issues using the visualisation of hardware requests from Android applications.

J. Electrical Systems 20-11s (2024): 148-171

150

The Android Asset Packaging Tool (AAPT), which is a component of the platform tool set, is the foundation upon

which GARMDROID is built. Clients could send malware samples and ask for analysis over a Web interface in

this execution. This process is dependent on a static review of the permissions that Android applications request.

During the analysis, GARMDROID uses a series of bash and python scripts to instruct AAPT to extract the

contents of the app's AndroidManifest.xml file and to filter the crucial strings. This happens once an android

application file (.apk) is uploaded by a user. Every time, in addition to the collection of permissions requests,

GARMDROID shows an inference of the hardware characteristics sought by the programme being examined.

These examples serve two purposes: to demonstrate how GARMDROID works and to focus the conversation on

observations that may help discover security risks in Android applications geared toward the Internet of Things.

The security requirements for IoT applications are not covered by this tool, which only assesses IoT security

concerns upon viewing of an Android application hardware request.

On other work, Dhillon & Kalra [5] create an AVISPA tool as part of their other work. It was created as

a push-button tool for examining complex Internet security protocols and applications. The protocols are written

in the HLPSL coding language (High Level Protocol Specification Language). HLPSL consists of basic roles that

represent various participants as well as roles that are composed to reflect basic role scenarios. Each role operates

independently of the others, gathering some initial data via parameters and corresponding with other roles via

channels. This paper suggests a simple key agreement and remote user authentication system based on biometrics

for secure access to IoT services. The protocol employs XOR and lightweight hashing techniques. It is resilient

against a variety of security assaults, according to the security analysis. The AVISPA tool is used for the formal

verification, which validates its security in the presence of a potential attacker. The four phases of the proposed

multifactor biometric user authentication are the phases of user registration, login, authentication, and password

change. The suggested protocol is extremely ideal for the resource-constrained IoT devices because it only makes

use of one-way hash, perceptual hash functions, and XOR operations, which are computationally less expensive.

It is resilient against a variety of security assaults, according to the security analysis. The AVISPA tool is used

for the formal verification, which validates its security in the presence of a potential intruder. The elicitation and

analysis of IoT applications in the early stages of development are not, however, covered by this work.

Meanwhile, ElicitO is a tool that supports a standardized quality terminology and ontological constructs

to capture NFRs throughout the RE activities [6]. ElicitO also supports knowledge-based reasoning methods,

enabling the semi-automation of RE tasks like conflict detection during priority setting and authenticity

verification during requirements validation. The tool contains two levels in total: The ontology layer is the top

layer, and in the Protege database, the quality and domain ontologies are encoded as OWL components. Under

application and GUI components, the user communication layer, which is the second layer, degrades. When the

Protege API makes a request for domain knowledge and the associated quality attributes, the application

component interacts with the ontology layer. The graphical user interface is used to present the user with all query

results and information. MySQL serves as the underlying database for storing a requirements session. This

application supports RE efforts by utilising knowledge management strategies and high-quality ontologies. A

consistent vocabulary to handle quality concerns/aspects across RE activities is provided by the ontology, which

implements the quality measurements and attributes outlined by the ISO/9126 quality model. Through a case

study involving the creation of an intranet portal project at the University of Manchester, they accept how the

framework and tool can be utilised to help the requirements elicitation and prioritisation activities in an effective

manner based on their observations. As part of its knowledge-based system capabilities, ElicitO also codifies the

quality model standard into automated ontologies, assisting in the semi-automation of RE tasks. Additionally,

ElicitO provides constructs that allow for the incorporation of quality concerns throughout the early phases of

software engineering as well as the explicit modelling of links between functional and NFRs. However, this tool

is employed to record NFRs during RE efforts. It cannot be used as a method to elicit security requirements.

Additionally, ElicitO does not offer security mechanisms for IoT applications and cannot be used across many

projects or apps by a range of stakeholders.

The Heuristic Requirements Assistant (HeRA) [7] is a tool that applies security-relevant heuristics to

requirements and service descriptions in order to identify possible security issues. HeRA raises awareness and

provides feedback while people write requirements. The HeRA tool supports technical experts, as well as security

experts, in identifying potential security issues. HeRA is integrated with the CC-based requirements method and

J. Electrical Systems 20-11s (2024): 148-171

151

together these two techniques make up the elicitation phase of SecReq. SecReq is a security requirements

elicitation and tracing methodology based upon the methodology connected toward ETSI. SecReq enhances the

ETSI methodology with security requirements elicitation and writing support, as well as requirements analysis

and tracing capabilities. The added elements are supported by a systematic use of different sources of security

expertise and experience and by integrating three existing techniques, namely the CC (from the ETSI

methodology), the heuristic requirements editor HeRA, and the model-based security engineering approach

UMLsec. Furthermore, HeRA provides a requirements editor who allows technicians to enter the system

functional information, for example the service requirements. The input to this editor is checked against security-

related heuristics. In particular, these heuristics search for keywords and patterns that may indicate security-

relatedness. This search for security keywords is in SecReq used, among other things to help a developer in

selecting appropriate parts of the CC security requirements knowledge: Thus, HeRA works closely together with

the CC-based method. However, this tool does not offer elicitation of security requirement of IoT application.

Gope & Hwang [8] created a BSN-Care to secure IoT-based healthcare system, using BSN (Body Sensor

Network). One of the key IoT breakthroughs in healthcare is the use of BSN technology, which enables a patient

to be monitored via a network of wireless sensor nodes that are light and small-powered. Patients' privacy is put

at risk when new technology is developed for healthcare applications without taking security into account. LPU

is crucial in the system that is being suggested. The sensor data is gathered and securely sent to the BSN-Care

server. All of the fundamental security needs of an IoT-based healthcare system can be satisfied by the BSN-Care

system. However, this tool does not suggest how to elicit and analyse security requirements for other IoT-based

applications; it solely monitors security in the healthcare system.

The Haier SmartCare is a smart device made to manage and read data from several sensors positioned all

over a user's home, including a smoke detector, water leakage sensor, sensor to determine whether the doors are

open or closed, and sensor to determine whether the remote power is switched [9]. Through the ZigBee protocol,

these sensors are linked. The major purpose of this gadget is to provide customers with the ability to more

effectively monitor their houses while they are away and to receive alerts based on sensor data. They employ both

commercial and industrial IoT devices, from which the security of hardware, software, and networks is studied

and backdoors are identified, to better understand the security flaws of current IoT devices and to encourage the

creation of low-cost IoT security approaches. A thorough security analysis technique performed on a smart metre

and a home automation system demonstrates that most devices frequently have security flaws. To assist IoT

product manufacturers in securing their offerings, security solutions and mitigation techniques are explored. The

chosen sample IoT devices comprise a smart controller for a home automation system and a smart metre for

contemporary power networks, assuming that IoT devices are widely employed in both business and industrial

applications. They validate and illustrate the shortcomings of current IoT device design techniques while

defending against various cyber-attacks from the hardware, software, and network layers through these

assessments. In order to deploy more secure devices in the upcoming IoT age, they continue to create remedies to

reduce security concerns for existing IoT devices. This technology does not cover eliciting security criteria; rather,

it is used to monitor a house and receive alarms using sensor data.

3 MODEL-BASED APPROACH

3.1 Model-Driven Development (MDD)

Model-Driven Development (MDD) is a software engineering approach that uses model to create a

product. MDD is sometimes used interchangeably with model-driven engineering, and may refer to specific tools

and resources, or a model-driven approach [4] [5]. MDD is part of a trend toward more diverse approaches to the

development of IT products. Another aspect of this innovation is agile practices, which is in some cases are

associated with model-driven development. Ideas about the development and engineering process now play a

major role in IT processes, especially in larger companies where a more detailed staff hierarchy adds more layers

to a process.

MDD has emerged as one of the leading approaches for enabling rapid, collaborative application

development [6]. Because model-driven development uses visual modelling techniques to define data

https://www.mendix.com/visual-modeling/

J. Electrical Systems 20-11s (2024): 148-171

152

relationships, process logic, and build user interfaces, model-driven software development empowers both

developers and business users to rapidly deliver applications without the need for code [7] [5].

Atkinson & Kühne [8] refine the simple one-size-fits-all view of instantiation and adopt a more

sophisticated view of metamodeling's role in MDD. This method places ontological instances of relationships,

which connect user concepts to their domain types, in a secondary role. In other words, linguistic instance-of

relationships cross (and form the basis for) linguistic metalevels, whereas ontological instance-of relationships do

not; they relate entities within a given level. This is the new UML 2.0 and MOF 2.0 standards' interpretation of

the four layer architecture. Although the latter take a primarily linguistic perspective, it is useful to allow

ontological (intralevel) instantiation to establish its own type of ontological (vertical) metalevel boundaries.

An organization's desire to increase the return on its software development investment is the primary

driver behind MDD. It accomplishes this in two main ways: By expanding the functionality that a primary

software artefact offers, it raises the short-term productivity of developers. It increases long-term productivity for

developers by slowing the rate at which a key piece of software ages. These requirements make it obvious that

visual modelling is one of the technological pillars of MDD assistance. Software can be written and implemented

using the MDD format, which is quick, efficient, and inexpensive.

For our study, we develop SecIoTA Model that comprises the need of 1) security requirements and 2)

IoT technologies to develop a secure IoT application. To develop a secure IoT application, requirements that

almost needed are security requirements and its technologies. The security requirements that most needed are

authentication, authorization, availability, confidentiality, access control, and integrity while IoT technologies that

most used are sensor, mobility network, RFID system, Bluetooth and Wi-Fi. Combination of this two requirements

may help the developer to develop and design a secure IoT application in the future. We use this model to our

approach to create our product and realise our approach using an automated approach. We also use semi-

formalised model using EUC and EUI.

3.2 Essential Use Case (EUC) and Essential User Interface (EUI)

An EUC is a structured narrative that is expressed in the users' and the application domain's language. It

entails the description of a single action or interaction in a compressed, abstract, technology-free, and independent

of implementation form. [8][9]. From the perspective of the users, an EUC is a comprehensive, meaningful, and

well-designed encounter. It embodies the goal or goals underlying the interaction and represents a specific role in

regard to a system. By removing the influence of implementation choices, EUCs allow users to pose fundamental

questions like "what's really happening" and "what do we really need to do." These inquiries frequently result in

crucial insights that empower users to reevaluate or reengineer various parts of the overall business process. While

capturing the needs, Figure 1 displays an example of natural language requirements on the left and an example of

an EUC on the right (adapted from [13]). On the left side of Figure 2, you can see the natural language

requirements from which the key terms are extracted (highlighted). A unique key phrase (important requirement)

is abstracted from the natural language requirements and is displayed in the EUC on the right-hand side of Figure

1. The user intents and system responsibility are two interrelated types of information that are represented by the

EUC, as shown in Figure 2.

 Figure 1: Example Natural Language Requirement and Example of EUC

J. Electrical Systems 20-11s (2024): 148-171

153

A paper prototype, abstract prototype, or low-fidelity model is what is known as an EUI prototype. For

a software system, it is also referred to as a “UI prototype”, and it displays the broad concepts rather than the

precise elements of the UI [9][10]. Similar to how EUC models describe behavioural requirements, an EUI

prototype represents user interface requirements in a way that is independent of technology. When designing a

system's user interface in its early stages, an EUI prototype is especially useful. It simulates the user interface

requirements that develop into the system's ultimate user interface through analysis and design [10]. It also enables

some investigation into a system's usability features. An example of an EUI prototype created from an EUC model

is shown in Figure 2. The user intention/system responsibility dialogues are used to capture the potential high-

level UI functionality.

 Figure 2: Example of EUI Prototype Iterates from EUC Model

4 AUTOMATED TOOL: SECIOT_MEREQ

The purpose of this study was to develop an approach and an automated tool to assist requirements engineers to

automatically capture and elicit the security-related requirements of IoT application. We developed an automated

tool, SecIoT_MEReq, that automatically elicit the security requirements of IoT application. Our approach for

requirements elicitation employs the Model-Driven Development (MDD) using semi-formalised models,

Essential Use Cases (EUCs) and Essential User Interface (EUI). MDD emphasizes the use of models at a higher

abstraction level in the software development process and argues in favour of automation via model execution,

transformation, and code generation [17]MDD promotes reuse at the domain level, improves quality through

incremental model enhancements, lowers costs through the use of an automated process, and lengthens the useful

life of software solutions.

Therefore, this research proposes a new model-based approach to support requirements engineer in

eliciting security requirements for secure IoT applications development. Figure 3 below shows the new approach

of this research.

Figure 3: An overview of Model-based Approach for Eliciting Security Requirements

J. Electrical Systems 20-11s (2024): 148-171

154

In Step 1, textual requirements will be collected from user and requirement engineers. To begin, they

choose an IoT domain: (1) industrial domain, (2) smart city domain, and (3) health well-being domain. Second,

they select an IoT application. The industrial domain, for example, is divided into three domains: I logistic and

product lifetime management, ii) agriculture and breeding, and iii) industrial processing. Smart cities are divided

into four domains: I smart mobility and smart tourism, ii) smart grid, iii) smart homes/buildings, and iv) public

safety and environment monitoring. Finally, the domain of health and well-being is subdivided into two domains:

I medical and healthcare, and ii) independent living and inserted textual requirements. Lastly, they included a

textual requirement as a scenario from the IoT application. In Step 2, to generate an EUC model, the requirements

are analysed and extracted using the Essential Use Case (EUC) pattern library. Using keyword matching, the

searching process from the EUC pattern library is to find the associated EUI pattern based on the UI and SR

inserted to find the associated security requirements and IoT technologies. In Step 3, an EUC model then generated

using EUC pattern library. In this stage, EUC model also generated by extraction of IoT security requirement

from SecReq pattern library and IoT Technologies from IoTTech pattern library label as SubEUC model. The

SecREq pattern in the library (derived from SecIoTA model) was associated with EUC model and the collection

of textual requirements. Meanwhile, the IoTTech pattern library (derived from SecIoTA model) was associated

with SubEUC model. The attributes from IoT technologies are assigned by keyword from EUC Model and textual

requirements. In Step 4, an EUI prototype model is the derived from EUC model using EUI pattern library. Here,

the associated from user interaction (UI) and system responsibility (SR) from EUC model will derived EUI

prototype model form EUI pattern library to generate workable prototype. In Step 5, a workable prototype will be

generated to visualize the security requirements of IoT application. In Step 6, the user and requirements engineer

as well as the client stakeholders can visualise the security requirements in a form of workable prototype model

of a targeted IoT app to be developed. We develop SecIoT_MEReq to realise this approach to elicit security

requirements and Iot technologies that must be used by user to develop more secure IoT application.

4.1 EUC and EUI Pattern Libraries

We developed a set of EUI patterns in EUI Pattern Library from a collection of such patterns previously

identified by [9] together with the patterns that were developed by [18], which are all applicable across various

domains.

 Table 1: Example of EUC and EUI Pattern Libraries

EUC Pattern

EUI Pattern
EUI Pattern

Category

Related Security

Requirement
User Interaction

(UI)

System

Responsibility (SR)

Identify self

Request identity

Request

identification

Access system

Input ID

Input

Authentication

Access control

Request status

Select status

Provide status

Input status
Authorization

Availability

Select option

Enter option

Input option

Integrity

Confidentiality

Enter detail

Input detail

Input detail Authentication

Enter location

Select location

Submit location Integrity

 Verify user

Verify identity

Verify ID

Display ID

Display

Authorization

 Update status

Update option
Display status

Availability

Confidentiality

J. Electrical Systems 20-11s (2024): 148-171

155

 Display status

Display detail

Receive status

Receive detail

Access control

Availability

 Show information

Show location

Display

information

Availability

 Show item

Display item
View item Availability

 Validate payment

Show payment

Show code

Display payment

Integrity

Access control

Availability

Choose payment

Select amount

Choose transaction

List payment

List

Integrity

Access control

Choose option

Choose item

Choose event

List option
Confidentiality

Availability

 Offer choice

Offer solution
List of choice Availability

4.2 SecReq Pattern Library

We developed a security requirements pattern library (SecReq) to support the elicitation of the security

related properties from the related security requirements. The purpose of security requirements pattern library is

to help RE to increase correctness issues, especially to elicit security requirements before proceed for application

development. The generic nature of the security pattern library contributes to its usefulness as it can be utilized

and applied in any domain of IoT application. Further, the usage of pattern library can minimize human time effort

for eliciting correct security requirements.

Table 2: Example of SecReq Pattern Library

Example Keyword

from EUI Model

Examples Attributes

for Security

Requirements

Related

Security

Requirements

Examples of IoT Domain Related

Input ID

Enter detail

Register

Input code and ID

Username

Password

PIN

ID card

Fingerprint

Retinal pattern

Biometric identifier

Authentication

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

Verify ID

Check details

Provide information

Permission

Verify

Gain access

Authorization

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

J. Electrical Systems 20-11s (2024): 148-171

156

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

List options

View detail

Display status

Show coordinate

Provide code

Accessible

Obtainable

Software patching

Availability

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

Sends data

Submit location

Request information

Choose options

Get information

Detect signal

Process information

Limits access

Unreadable data

Restricted access

Confidentiality

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

Submit billing

Validate data

Notify location

Confirm transaction

Process information

Record details

Protect data

Unmodified data

Unaltered data

Integrity

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

Receive information

Transmit data

Select amount

Generate code

Limited access

Control the access

Access control

Smart City Domain (Smart Parking

System, Warehouse Management,

Smart Farming)

Health Well-being Domain

(Healthcare Monitoring, Children

Protection, Home Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Animal Tracking)

J. Electrical Systems 20-11s (2024): 148-171

157

4.3 IoTTech Pattern Library

We developed a IoT technologies pattern library (IoTTech) to support the elicitation of the IoT

technologies from the related technologies used in IoT applications. The purpose of IoTTech pattern library is to

help RE to increase correctness issues, especially to elicit IoT technologies before proceed for application

development.

Table 3: Example of IoTTech Pattern Library

Example Keyword from

EUI Model

Example Attributes /

Devices of IoT

technologies

IoT Technologies Examples of IoT Domain

Related

Check status

Detect motion

Detect vibration

Temperature

Vibration

Motion

Current detection

Sensor

Health Well-being Domain

(Children Protection, Home

Security)

Industrial Domain (Animal

Tracking)

Provide location

Display location

Make payment

Send code

Provide notification

Search location

North coordinate

East coordinate

Altitude

Signals

Locator

Identifier

Tracker

Mobility

Connection density

Spectral efficiency

Latency

Peak data rate

Mobile networks

(GPS, QR Code,

4G/5G)

Smart City Domain (Smart

Parking System, Home

Security, Smart Farming))

Health Well-Being Domain

(Healthcare Monitoring,

Children Protection, Home

Security)

Industrial Domain (Mobile

Ticketing, Smart Shopping,

Identify code

Verify code

Verify item

Check status

Scan tags

RFID tags/transponder

RFID readers
RFID system

Smart City Domain (Smart

Parking System, Warehouse

Management)

Health Well-Being Domain

(Children Protection)

Industrial Domain (Smart

Shopping, Animal Tracking)

Detect signal

Check signal

Verify item

Access point

Scalability

Diversity

Hotspot

Wi-Fi (WLAN,

IEEE 802)

Smart City Domain (Smart

Farming, Smart Parking

System)

Health Well-Being Domain

(Healthcare Monitoring,

Children Protection, Home

Security)

Industrial Domain (Smart

Farming)

Detect signal

Check signal

Confirm status

Packet-based

Access point-centered
Bluetooth

Health Well-Being Domain

(Healthcare Monitoring,

Home Security)

Industrial Domain (Mobile

Ticketing, Animal Tracking)

Based on Table 2 and Table 3, SecReq and IoTTech pattern library were develop using keyword

matching, The system will identify the keyword inserted by user in the textual requirement for various of IoT

J. Electrical Systems 20-11s (2024): 148-171

158

application scenario that collected from published literature and verified by experts. When using SecIoT_MEReq,

a requirement engineer key in the requirements in the form of user story in the textual requirements text area.

Then, EUC models are extracted from textual requirements. This is done by using EUC pattern library. We then

map the EUC model into EUI model uisng EUC pattern library. Then the security requiremens and iot

technologies are generated and sugeested from the support of SecReq and IoTTech pattern library.

5 EXAMPLE OF USAGE

Daniyal, a requirements engineer would like to elicit the security requirements provided by the client-

stakeholder using SecIoT_MEReq. He sits with Sofea, who is the IoT Developer to elicit the requirements, which

she had captured earlier. First, he need to login to access to SecIoT_MEReq. Besides, he also can clicks the Home

tab which give an information about SecIoT_MEReq. Also, the Definition tab helps them to understand the terms

for IoT Domain, Security Requirements and IoT Technologies. To use the tool, he then clicks the Tool tab and

the choose IoT domain and the application that listed from the tool. From there, he inserted the textual

requirements in the form of business scenario and clicks “Update Model” (Figure 4).

Figure 4: Tool page for SecIoT_MEReq

Figure 5: EUI and EUC generated for tool

As show in Figure 5, after Sofea click button, “Update Model”, SecIoT_MEReq will generate EUC and

EUI from EUC pattern library and EUI pattern library. Here, she then uses the tool to elicit the attributes for the

particular EUC and EUI model that can be viewed. As shown in Figure 6, Sofea click on the EUC of “Identify

Self” to its user interaction. In this example the EUI model for the EUC model of “Identify Self” is “Input ID”.

For this case, the attributes display are “username”, “password”, “PIN”, “fingerprint”, and “retinal pattern” for

suitable security requirement “Authentication”. The tool help them to identify the security requirement that they

needed to develop an IoT application based on the requirements attributes.

J. Electrical Systems 20-11s (2024): 148-171

159

Figure 6: Security Requirements Elicitation in SecIoT_MEReq (1)

As shown in Figure 7, to get better understanding, Sofea that click another user interaction for EUC

model “Check item detail” and “Check item detail” also display for EUI model. Here, for this case, tool generate

“permission”, “verify”, and “gain access” for attributes for security requirement “authorization”.

Figure 7: Security Requirements Elicitation in SecIoT_MEReq (2)

Next, as shown in Figure 8, Sofea clicks user interaction “Check GPS coordinate” from update GPS for

EUC model and “Check coordinate” for EUI model. Attributes that generated from tool are “fingerprint”, “PIN”,

“password”, “username”, “retinal pattern”. Security requirement suggested by tool is “authentication” and “GPS”

for IoT technologies.

Figure 8: IoT Technologies Elicitation in SecIoT_MEReq (1)

J. Electrical Systems 20-11s (2024): 148-171

160

Then, Sofea decide to click system responsibility “Show coordinate” from update GPS for EUC model

and “Show coordinate” for EUI model. Attributes that generated from tool are “permission”, “gain access”, and

“veirfy”. Security requirement suggested by tool is “authorization” and “GPS” for IoT technologies. She also can

click any of the EUC model to generate the security requirement and IoT technologies suggested by tool for the

IoT domain.

Figure 9: IoT Technologies Elicitation in SecIoT_MEReq (2)

6 ARCHITECTURE AND IMPLEMENTATION

We have developed a prototype tool, called SecIoT_MEReq based on the approach in the previous

section. The objective is to assist requirements engineers in eliciting security requirements during requirements

elicitation with client-stakeholders. Our tool provides the (1) extraction of EUC and EUI model (2) extraction of

security requirement from SecReq; and (3) extraction IoT technologies from IoTTech pattern library.

SecIoT_MEreq has been developed using PHP programming language and adopts Model-View-Controller

(MVC) design pattern and three-tier architecture. MVC design pattern was implemented to develop a platform-

independence software application that supports different platforms, such as mobile devices, tablets, and different

browsers on different operating system. As shown in, Figure 10, MVC pattern divides an interactive application

into three components: Model, View and Controller.

Controller

View Model

User Action Update

Update Notify

Figure 10: The MVC Design Pattern

The Model manages the application's data and business logic, the View is in charge of presenting the data

or model to the user via the browser, and the Controller manages the communication between the model and the

view. SecIoT MEReq's development was inspired by the works of [19] [20], and the identification of the

associated security elements are based on the definitions from the basic security services.

Figure 11 illustrates the high-level architecture of the SecIoT_MEReq tool that comprises three tiers;

presentation, application processing, and data management layer. The layout is three-tier architecture, where each

layer is separated from each other. This independency allows for better performance, easier maintenance and more

scalable architecture [21].

J. Electrical Systems 20-11s (2024): 148-171

161

View Controller

Model

Generate EUC and EUI model

Extract EUC Extract EUI

Generate Workable Prototype

Extract

SecReq

EUC EUI IoTTech

Extract

IoTTech

SecReq

Presentation

Layer

Application

Processing

Layer

Data

Management

Layer

Web Browser

Apache Server

MySQL Server

Figure 11: SecIoT_MEReq High Level Architecture

The presentation layer handles the interaction between the users and the system. The View and Controller

exist in the presentation layer. Here, a web client from any platform such as an iPad, mobile phone or desktop can

request to access the SecIoT_MEReq tool. The user interacts with the SecIoT_MEReq tool through the Controller

component. The Controller that contains the client-side scripting, handles the http request processing and business

logic of the tool. It receives user input as events and translates them into service request for the Model or the View.

When a user accesses the SecIoT_MEReq, the scripts in the Controller will determine the type of browser and

device used by the user. Then, it will request the correct view from the View component. Each view has associated

controller component. Next, the View component will make requests from the Model to fetch the data from

business and data layer and display the information to the user.

At the business processing layer, the Apache server hosted the PHP implementation for the main event

handlers of SecIoT_MEReq. This contains the key elements for the extraction of security requirements and IoT

technologies components from the textual requirements, extraction of application scenario components at the

SecIoT_MEReq template editor, analysis and evaluation of the model-based component and business scenario

syntax from pattern library.

At the data management layer, MySQL database server contains the EUC, EUI, security requirements

and IoT technologies libraries. A Java module supports the extraction of the security requirements and IoT

technologies from the generated EUC and EUI models. This process extract both the security requirements and

IoT technologies from the SecReq and IoTTech Pattern Libraries. A sequence of SecReq and IoTTech are

extracted and visualised together with the workable prototype.

J. Electrical Systems 20-11s (2024): 148-171

162

7 EVALUATION AND RESULTS

7.1 Usability Study

We ran two usability tests to assess the usability of our approach and tool for eliciting security requirements

for the correctness test. In the first usability test, respondents were required to use our tool and complete a series

of questionnaires in order to provide feedback on the usability of our tool. A total of 56 undergraduate students

participated in this usability test. The participants are all majoring in Software Engineering and taking the Software

Requirement course. During the second usability test, respondents were required to use our tool and respond to

semi-structured interview questions about its usability. The interview questions are described in detail. Semi-

structured interviews with 12 industrial experts were conducted via Google Meet for this usability test. The

purpose of these interviews was to gather their thoughts and perceptions on the usability of SecIoT MEReq, which

aids in eliciting security requirements from an IoT industrial standpoint.

This usability study required the participants to perform two main tasks: (1) to explore the tool to

accomplish the required tasks and (2) to complete a survey questionnaire upon completion of the tasks. The survey

questionnaire was designed to elicit the users’ perception regarding the usefulness, ease of use, ease of learning,

and satisfaction of the tool based on a five-level Likert scale. The questionnaire also include the Cognitive

Dimension (CD) and open-ended questions. We considered Cronbach’s Alpha test to measure the reliability of

our questionnaire. The alpha coefficient for this group is 0.872, suggesting that the items have relatively high

internal consistency. It is proven that the questionnaire has high reliability. This result is based on [22] who claims

that a reliability coefficient of 0.70 or higher is considered “acceptable” in most social science research situations.

We conducted the evaluation of our SecIoT_MEReq tool with two group (Group A and Group B) which

is focusing on the automatic generation of security requirements and key-textual structures with completeness

checking from our two pattern libraries, SecReq and IoTTech. In this evaluation, the participants were requested

to perform two tasks:

Evaluation : Elicitation of Security Requirement for IoT Application using SecIoT_MEReq Tool. The tasks

for the evaluation are:

a) Task 1 : Exploring the SecIoT_MEReq tool capabilities to automatically generate the analysis of

security requirements and IoT technologies from our pattern library, SecReq and IoTTech. Here, the

participant were explained with the step using the tool.

b) Task 2 : Demonstration using video demonstration and the observation of the functionality of the tool.

Here, the participants are requested to insert the IoT domain, application and textual requirements into

the tool to generate the suggestion of attributes, security requirements and IoT technologies.

7.1.1 Video Demonstration and Observation Result for Task 1 and Task 2

In this evaluation, the participants communicated through video conferencing using Zoom application, with the

researcher/observer to gain understanding of using the tool. Overall, we found that most of the participants were

interested using the tool as it is able to automatically generate the security requirements and IoT technologies

from our pattern libraries, EUC, EUI, SecReq and IoTTech. The tool also helps them to see the analysis for textual

requirement by highlighting the related components. However, we got a few feedbacks from the participants

indicated that they were uncomfortable with the the font size display in the tool where the font is to small that

make them difficult to read the content. These comments were noted for future work.

Participants were asked about their proficiency in using the SecIoT_MEReq tool and their experience in

using any tools similar to our SecIoT_MEReq, before they moved to usability and CD notation study. The results

are shown in Figure 12 and Figure 13.

J. Electrical Systems 20-11s (2024): 148-171

163

Figure 12: Proficiency level of Using the SecIoT_MEReq Tool

Figure 13: Experience with any tool on checking security requirement correctness similar to SecIoT_MEReq

Based on the background results provided, from Group A and Group B, all of the participants were

identified as novice and intermediate in using the SecIoT_MEReq tool and the web design tool used to construct

SecIoT_MEReq. This indicates that they have some background in using web-based tool design. Most of them

were thus unfamiliar with tool design. Less than 30% of the participant have experience in using familiar tool.

But, based on the result, we concluded that these groups of users were unfamiliar with RE tools like

SecIoT_MEReq. The same group of participants was also used in our next phase of evaluation. The results of the

usability criteria and CD study based on the questionnaire are shown in Figure 14, Figure 15, Figure 16, Figure

17, Table 4 and Table 5. Figure 14 presents the results of each usability criterion. For each criterion, the results

of each corresponding three-question block were averaged to produce the results shown. There is a strong

agreement among the participants in terms of the usefulness of the tool, where 90% (Group A) and 98.7% (Group

B) of the participants strongly agreed or agreed that the tool was useful to assist them in eliciting security

requirements because it automate the process and makes the eliciting process of security requirements easier. We

have also found that 87.8% (Group A) and 94.9% (Group B) of the participants felt that the tool was easy to use

because the interface design of the tool is user-friendly and they found less inconsistencies in the tool. In terms of

ease of learning, 88.9% (Group A) and 97.4% (Group B) of the participants claimed that it was very easy to learn

since the flow and the interface design of tool is simple and user-friendly. Additionally, 80% (Group A) and 97.5%

(Group B) of the participants were satisfied with the tool as there were no special technical skills required to write

complete security requirements. There were only a small number of participants form both group (less 10%) who

were undecided or disagree on the usefulness aspect of the tool. For Ease of Use, there was a slight disagreement

Novice Intermediate Proficient/skilled

Group A 50.0 46.7 3.3

Group B 42.3 57.7 0.0

0.0
20.0
40.0
60.0
80.0

P
er

ce
n

ta
ge

Proficiency Level

Proficiency Level of Using the SecIoT_MEReq
Tool

Group A Group B

Yes No

Group A 26.7 73.3

Group B 15.4 84.6

0

50

100

P
er

ce
n

ta
ge

Experience with any other tool

Experience with any tool on checking
security requirement correctness similar to

SecIoT_MEReq

Group A Group B

J. Electrical Systems 20-11s (2024): 148-171

164

(2.2% from Group A and 1.3% from Group B) where the participants feel uncomfortable with certain

terms/keywords while dealing with the security requirements components. Overall, the usability results show that

our prototype tool is useful, easy to use and learn. Users also expressed their high level of satisfaction when using

the tool.

Figure 14: Usability Study of SecIoT_MEReq from Group A

 Figure 15: Usability Study of SecIoT_MEReq from Group B

Figure 16, Figure 17, Table 4 and Table 5 shows the result of the CD study. The CD study allows us to

explore in more detail the reasons for users’ perceptions as well as further discussion on the strengths and

weaknesses of the tool. The results are based on percentage depending on the number of participants’ answers for

each scale.

Table 4: CD Study Result of SecIoT_MEReq from Group A

Cognitive

Dimension

Strongly

Disagree (%)

Disagree

(%)

Undecided

(%)

Agree

(%)

Strongly

Agree (%)

Visibility 0.00 0.00 13.33 70.00 16.67

Viscosity 0.00 0.00 13.33 66.67 20.00

Diffuseness 0.00 0.00 23.33 56.67 20.00

Hard Mental Effort 10.00 53.33 10.00 20.00 6.67

Error-proneness 10.00 40.00 20.00 26.67 3.33

Closeness of

mapping 0.00 0.00 16.67 66.67 16.67

Consistency 0.00 0.00 13.33 70.00 16.67

Hidden

dependencies 0.00 0.00 10.00 80.00 10.00

Strongly
Disagree

Disagree
Undecide

d
Agree

Strongly
Agree

Usefulness 0.0 0.0 10.0 57.8 32.2

Ease of Use 0.0 2.2 10.0 60.0 27.8

Ease of Learning 0.0 4.4 6.7 50.0 38.9

Satisfaction 0.0 7.8 12.2 57.8 22.2

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0

P
e

rc
e

n
ta

ge
SecIoT_MEReq Usability Result from Group A

Strongly
Disagree

Disagree
Undecide

d
Agree

Strongly
Agree

Usefulness 0.0 0.0 1.3 28.2 70.5

Ease of Use 0.0 1.3 3.8 37.2 57.7

Ease of Learning 0.0 0.0 2.6 25.6 71.8

Satisfaction 0.0 0.0 2.6 38.5 59.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

P
e

rc
e

n
ta

ge

SecIoT_MEReq Usability Result for Group B

J. Electrical Systems 20-11s (2024): 148-171

165

Cognitive

Dimension

Strongly

Disagree (%)

Disagree

(%)

Undecided

(%)

Agree

(%)

Strongly

Agree (%)

Progressive

Evaluation 0.00 0.00 16.67 66.67 16.67

Premature

Commitment 0.00 0.00 16.67 60.00 23.33

Figure 16: Positive Result of CD Study of SecIoT_MEReq from Group A

Table 5: CD Study Result of SecIoT_MEReq from Group B

Cognitive

Dimension

Strongly

Disagree (%)

Disagree

(%)

Undecided

(%)

Agree

(%)

Strongly

Agree (%)

Visibility 0.00 7.69 7.69 38.46 46.15

Viscosity 0.00 3.85 11.54 46.15 42.31

Diffuseness 0.00 3.85 0.00 61.54 34.62

Hard Mental Effort 3.85 65.38 11.54 11.54 7.69

Error-proneness 3.85 57.69 11.54 7.69 19.23

Closeness of

mapping
0.00 0.00 3.85 57.69 38.46

Consistency 0.00 0.00 3.85 57.69 38.46

Hidden

dependencies
0.00 3.85 3.85 73.08 19.23

Progressive

Evaluation
0.00 0.00 7.69 50.00 42.31

Premature

Commitment
0.00 0.00 15.38 50.00 34.62

Figure 17: Positive Result of CD Study of SecIoT_MEReq from Group B

86.67 86.67
76.67

63.33
50.00

83.33 86.67 90.00 83.33 83.33

0.00

20.00

40.00

60.00

80.00

100.00

P
e

rc
e

n
ta

ge
 (

%
)

Positive Result of CD Study from Group A

84.62 88.46 96.15

69.23 61.54

96.15 96.15 92.31 92.31 84.62

0.00
20.00
40.00
60.00
80.00

100.00
120.00

P
e

rc
e

n
ta

ge
 (

%
)

Positive Result of CD Study from Group B

J. Electrical Systems 20-11s (2024): 148-171

166

We summarize the results for each dimension as follows.

Visibility : About 86.67% (Group A) and 84.62% (Group B) of the participants either strongly agreed or

agreed that they can see the various part of the tool that show clearly the five components requirements: textual

natural language requirements in the textual editor, EUC model, EUI model, test requirements and test cases. They

could also easily see the dependencies of each component as a visual link and highlights are provided. The

remaining 13.33% (Group A) and 7.69% (Group B) of the participants are undecided and 7.69% participants from

Group B are in disagreement.

Viscosity: 86.67% (Group A) and 88.46% (Group B) of the participants either strongly agreed or agreed

that the tool allowed them to make changes easily to the textual requirements. Strong result of both visibility and

viscosity show that the participants from both group were comfortable with the tool.

Diffuseness : 76.67% (Group A) and 96.15% (Group B) of the participants were strongly agree or agree

that the notation used by the tool is succinct and not long-winded and 13.33% of the participants from Group A

were undecided. However, 3.85% of the participants from Group B were disagree and thought it was hard to

understand the notation when using it for the first time. They were confused the different between security

requirements and the attributes.

Hard Mental Effort: About 63.33% (Group A) and 69.23% (Group B) of the participants either strongly

disagreed or disagreed that this tool needs a lot of effort to solve the tasks. They were quite contented as this tool

is able to extract the security requirement automatically, which minimises a lot of their time and effort. However,

there was still some dissatisfaction from 26.67% (Group A) and 19.23% (Group B) of the participants who thought

this tool still required effort to understand the notation and the layout when using it for the first time.

Error-proneness: 50% (Group A) and 61.54% (Group B) of the participants either strongly disagreed or

disagreed that the tool leads the user to make errors. This is because the extracted security requirement is believed

to be accurate as all the security attributes and IoT technologies patterns are already pre-defined in the library.

However, 21.54% of the participants from both Group A and B were undecided: they may have believed that the

tool could be constrained by the size of the library.

Close of Mapping: Most participants (83.33% from Group A and 96.15% from Group B) either strongly

agreed or agreed that the notation used was closely related to the results. They understood the labels used to

describe the requirement components. Only 10% of the participants from Group A and 3.85% from Group B were

undecided with the notation used.

Consistency: 86.67% (Gorup A) and 96.15% (Group B) of the participants were either strongly agreed

or agreed that they could easily identify the requirements components: textual natural language, EUC model, EUI

model, test requirements and test cases throughout the task. Only 13.33% (Group A) and 3.85% (Group B) of the

participants were undecided: they were unsure about the different between security requirements and security

attributes but believed that the notations used were consistent and straight-forward.

Hidden Dependencies: 90% (Group A) and 92.31% (Group B) of the participants either strongly agreed

or agreed that the dependencies among the three requirements components were visible. Visual links are provided

to show the dependencies between all requirements components (textual requirements, EUC model, EUI model,

test requirements and test cases) when trace-back is performed. Highlights with yellow color help to visualise the

dependencies among components. Only 10% of the participants from Group A and 3.85% from Group B were

undecided with this.

Progressive Evaluation: 83.33% (Group A) and 92.31% (Group B) of the participants also either

strongly agreed or agreed that SecIoT_MEReq allows users to evaluate their work at any time and to verify the

security requirement produced by the library. Here, participants could make changes to the textual requirements

if they did not agree with the tool‘s decision. Only 16.67 % and 7.69% from both Group A and B were undecided

with this dimension.

Premature Commitment : This dimension reflects the sequence of using this tool in order to achieve the

results. 83.33% (Group A) and 84.62% (Group B) of the participants strongly agreed or agreed that the tool allows

a user to perform the task from any direction. Another 16.67% (Group A) and 15.38% (Group B) were undecided.

The questionnaire also contains open-ended questions to obtain the participants’ feedbacks about the

positive points of the tool. Based on our analysis of the keywords provided by the participants, there were two

main themes identified: ‘useful’ and ‘ease of use’. Table 6 shows the result of the open-ended question related to

the positive points of the tool given by the participants.

J. Electrical Systems 20-11s (2024): 148-171

167

Table 6: Frequency Table for the Result of Open-ended Question

 Group A Group B

Keywords Frequency Percentage (%) Frequency Percentage (%)

Useful 11 36.67 12 46.15

Ease of Use 9 30 11 42.31

Based on Table 7, almost 82.82% (Group A and B) of the participants felt the tool was useful to assist

them in eliciting complete security requirements because the tool automate the process of eliciting security

requirements. Among the similar responses stated from Group A were “It is good as it can help me to elicit the

requirement correctly”, “The function works well and can help a lot in elicit the requirements” and “The tool is

efficient and it does not consume too much time comparing to eliciting manually”. Another response from group

B were stated as “The tool is very straightforward and very helpful in eliciting the security requirements”, “Help

to elicit more quickly” and “Because SecloT_MEReq can help user to protect data”. These responses show that

the tool was useful and helpful for them to automatically elicit the correct security requirements from the pattern

libraries.

Table 7: Frequency Table for the Result of Open-ended Question

Keywords
Group A Group B

Frequency Percentage (%) Frequency Percentage (%)

Nothing to be improved 25 83.33 21 87.77

Better interface design 4 13.33 3 11.54

Provide user manual - - 2 7.69

Others 1 1.33 - -

Based on Table 7, the top suggestion is nothing to be improved, the top suggestion is nothing to improved,

which received about 83.33% from Group A and 87.77% from Group B. Among the similar comments were

“none”. Another 13.33% from Group A and 11.54% from Group B suggest for better interface design. Among the

similar comments by the participants were “the UI can be upgraded from time to time”, “make user interface more

interesting”, “improve the interface” and “improve the interface of the system”. Another 7.69% from Group B

suggest to provide user manual based on the suggestion “make user manual” and “put user manual to ease the

user”. Only 1.33% participant from Group A give feedback to make “Mobile version”. In summary, the results

from this usability study showed a positive feedback from the participants. This indicates that our tool is useful

and easy to use to assist in eliciting security requirements. The ultimately can help to decrease the development

cost.

Figure 18 shows the result of comparison of positive result of CD study for Group A and Group B. Based

on the result, the were a similarity result for Group A and B. The result shows that both group have a same thought

of the CD study for the SecIoT_MEReq for visibility (Group A – 86.67%, Group B – 84.62%), viscosity (Group

A – 86.67%, Group B – 88.46%), hard mental effort (Group A – 63.33%, Group B – 69.23%), error-proneness

(Group A – 50.00%, Group B – 61.54%), closeness of mapping (Group A – 83.33%, Group B – 96.15%),

consistency (Group A – 86.67%, Group B – 96.15%), hidden dependencies (Group A – 90.00%, Group B –

92.31%), progressive evaluation (Group A – 83.33%, Group B – 92.31%) and premature commitment (Group A

– 83.33%, Group B – 84.62%). Both of the group agreed that our tool have high positive result of cognitive

dimension. While the result for diffuseness have a little bit differences (Group A – 76.67%, Group B – 96.15%)

because of the confusion between security requirements and attributes. It was hard to them to understand the

notification because they were using it for the first time.

J. Electrical Systems 20-11s (2024): 148-171

168

Figure 18: Comparison of Positive Result of CD Study of SecIoT_MEReq from Group A and Group B

As shown in Figure 19, the result of the opinion of useful and ease of use of SecIoT_MEReq for Group

A and Group B have a similarity. Both of the student agreed that our tool, SecIoT_MEReq is useful (Group A –

55%, Group B – 52.17%) and ease of use (Group A – 45%, Group B – 47.12%). They agreed that our tool was

useful to help and assist the user in eliciting complete security requirements because the tool automate the process

of eliciting security requirements. They also felt that out tool can ultimately can help to decrease the development

cost.

Figure 19: Opinion of Useful and Ease of Use of SecIoT_MEReq from Group A and Group B

Visibilit
y

Viscosit
y

Diffuse
ness

Hard
Mental
Effort

Error-
pronen

ess

Closene
ss of

mappin
g

Consist
ency

Hidden
depend
encies

Progres
sive

Evaluati
on

Premat
ure

Commit
ment

Group A 86.67 86.67 76.67 63.33 50.00 83.33 86.67 90.00 83.33 83.33

Group B 84.62 88.46 96.15 69.23 61.54 96.15 96.15 92.31 92.31 84.62

0.00

20.00

40.00

60.00

80.00

100.00

120.00

P
er

ce
n

ta
ge

CD Study Result

Comparison of Positive Result of CD Study of
SecIoT_MEREq for Group A and Group B

Group A Group B

Group A Group B

Useful 55 52.17

Ease of Use 45 47.82

0
10
20
30
40
50
60

P
er

ce
n

ta
ge

Keywords

Opinion of Useful and Ease of Use of
SecIoT_MEReq for Group A and Group B

Useful Ease of Use

J. Electrical Systems 20-11s (2024): 148-171

169

7.2 Use of SecIoT_MEReq by requirements engineering professionals

The second usability test was conducted to gain the feedbacks from the experts in the field of software

development and testing regarding the usability of SecIoT_MEReq. This usability test was conducted with 12

industrial experts where all participant’s opinion regarding SecIoT_MEReq is analysed. Semi-structured

interviews were carried out and demonstration of SecIoT_MEReq was conducted using Google Meet application.

The demographic of participants are specifically in the field of software engineer, system analyst, programmer,

IT analyst and IT application. They have between two and fifteen years working experience in the IoT industry.

Prior to the interview, we informed them the purpose of the interview and defined the different terminologies and

definitions used in our interview questions to ensure the consistency of responses. We provided a brief description

of our tool and show them the video demonstration and gave them the access to a link that provides them the

overview the tool using samples of textual requirements from their recent projects.

Based on the interview results and comments, it indicates that they agreed that SecIoT_MEReq tool is

simpler and easier to be understood and learnt. It also helps to reduce the time and effort in eliciting security

requirements of IoT applications. We concluded that our automated tool approach is useful and helpful to

requirements engineer to elicit security requirements for Internet of Things (IoT) applications based on their

feedback that indicates the words “helpful, very helpful, really helps” etc. Most of the participants also agreed

that our tool can help them to visualize elicitation security attributes and then conduct early elicitation of the

security requirements of IoT application. This result is similar with the finding that we have found from the open-

ended questions in our survey. From the interview, all of the experts agreed that our SecIoT_MEREeq tool is

useful and helpful in eliciting correct security requirements. They found that the auto-elicitation of the

requirements really helps for better understanding for security requirements correctness. They agreed that this tool

automates the eliciting process, provides guidance on how to elicit security requirements. This tool provides early

elicited and helps to reduce mistakes at the early stage. These could avoid repeatable tasks and reduce cost in

eliciting security requirements. Besides, it will avoid the increase of timeframe because of required task to redo

by the system analyst and IoT developer. This tool also helps for elicit IoT technologies suitable used for develop

secure IoT application that will lead to good/quality application. All of the experts also expressed their satisfaction

that this tool could help in assisting the process of eliciting security requirements. All of them have never used

any tools that are similar to SecIoT_MEREeq.

Based on the two usability tests conducted, we concluded that our automated tool approach is useful and

helpful to requirements engineers to elicit security requirements. Most of the participants also agreed that our tool

can help them to elicit the correctness of security requirements and IoT technologies before proceeding to the

development stage.

8 CONCLUSION

Requirement engineers need to elicit security requirements for IoT application at an early stage of

development. We have developed an automated tool called SecIoT_MEReq for security requirements of mobile

apps by employs the idea of Model-Driven Development (MDD) using semi formalised EUCs and EUIs prototype

model. Evaluation of our prototype tool with real security examples and end users shows positive results.

However, we faced several limitations, but they can be ameliorated in future works. First, the size of the security

requirement (SecReq) and IoT technologies (IoTTech) library. This research focuses on developing security

requirement pattern library drawn from a collection of literature review and requirements from industries. Hence,

it is limited to the functional security requirements. In this case, eliciting non-functional requirements is beyond

the scope of this approach. Secondly, our tool can only extract the prototypes that were predefined in our libraries.

Here, the libraries were designed and developed based on our case studies and sample requirements/scenarios

collected from various sources of IoT domain. Therefore, a wider collection of keywords was required to enhance

the scalability of the library. We believe, this research arises from the need to have an automated approach for

eliciting security requirements and correctness checking to support requirements engineers and client-stakeholders

in the process to ensure the correctness of the security requirements named SecIoT_MEReq. This tool is still at

the prototype stage. Although this approach has a strong potential in assisting the requirements engineer

community and IoT developers in eliciting security requirements, there are some future works that need to be

done. We hope to extend the tool capabilities by embedding AI technique for the keyword searching to allow the

J. Electrical Systems 20-11s (2024): 148-171

170

tool to be trained to automatically extract the newly found components for other domains in our libraries. And

also, the enhancement of the visualization view and layout of SecIoT_MEReq tool with embedded user manual

for novice user or beginner user. This improvement is helpful in guiding the novice users to use the tool easily.

ACKNOWLEDGEMENT

The authors would like to gratefully acknowledge the assistance and funding made available by the Universiti

Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education, Malaysia under the Fundamental

Research Grant Scheme (FRGS), grant no.: FRGS/1/2022/ICT03/UTEM/01/1. Also, thanks to Politeknik Sultan

Azlan Shah (PSAS) for its support and all those who participate in the study and helped to facilitate the research

process.

REFERENCES

[1] E. Alsaadi and A. Tubaishat, “Internet of Things : Features, Challenges, and Vulnerabilities,”

International Journal of Advanced Computer Science and Information Technology, vol. 4, no. 1, pp. 1–

13, 2015.

[2] B. Russell, C. Garlati, and D. Lingenfelter, “Security Guidance for Early Adopters of the Internet of

Things (IoT),” Mobile Working Group Peer Reviewed Document, no. April, 2015.

[3] K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things: An Overview Undertanding the Issues of a

More Connected World,” 2015.

[4] C. Atkinson and T. Kühne, “Model-Driven Development: A Metamodeling Foundation,” IEEE Software,

vol. 20, no. 5, pp. 36–41, 2003, doi: 10.1109/MS.2003.1231149.

[5] S. Winkler and J. von Pilgrim, “A Survey of Traceability in Requirements Engineering and Model-Driven

Development,” Software and Systems Modeling, vol. 9, no. 4, pp. 529–565, 2010, doi: 10.1007/s10270-

009-0145-0.

[6] J. David and G. Whittam, “Model-Driven Development,” IEEE Software, 2008.

[7] R. France and B. Rumpe, “Model-Driven Development of Complex Software: A Research Roadmap,”

FoSE 2007: Future of Software Engineering, pp. 37–54, 2007, doi: 10.1109/FOSE.2007.14.

[8] R. Biddle, J. Noble, and E. Tempero, “From Essential Use Cases to Objects,” in forUSE 2002

Proceedings, 2002, vol. 1, no. 978.

[9] L. L. Constantine and L. A. D. Lockwood, “Structure and Style in Use Cases for User Interface Design,”

vol. 1, no. 978. Addison-Wesley Longman Publishing Co., Boston, MA, 2001.

[10] S. W. Ambler, “Essential (Low Fidelity) User Interface Prototypes,” 2003.

[11] R.-M. Abraham, P. J. Escamilla-Ambrosio, J. Happa, and E. Ahuirre-Anaya, “GARMDROID : IoT

Potential Security Threats Analysis Through the Inference of Android Applications Hardware Features

Requirements,” Applications for Future Internet, vol. 2, pp. 63–74, 2017, doi: 10.1007/978-3-319-49622-

1.

[12] P. K. Dhillon and S. Kalra, “A Lightweight Biometrics Based Remote User Authentication Scheme for

IoT Services,” Journal of Information Security and Applications, vol. 0, pp. 1–16, 2017, doi:

10.1016/j.jisa.2017.01.003.

[13] H. A. B. Taiseera, P. R. F. Sampaio, and P. Laucopoulos, “Eliciting and Prioritizing Quality Requirements

Supported by Ontologies: A Case Study using ElicitO Framework and Tool,” Expert System, vol. 00, no.

00, 2012, doi: 10.1111/j.1468-0394.2012.00625.x.

[14] S. Hilde, H. Shareeful, and K. Schneider, “Eliciting Security Requirements and Tracing Them to Design:

An Integration of Common Criteria, Heuristics, and UMLsec,” Security Requirements Engineering, vol.

15, no. Special Issues, pp. 63–93, 2010, doi: 10.1007/s00766-009-0093-9.

[15] P. Gope and T. Hwang, “BSN-Care: A Secure IoT-Based Modern Healthcare using Body Sensor

Network,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1368–1376, 2016.

[16] J. Wurm, K. Hoang, O. Arias, A. R. Sadeghi, and Y. Jin, “Security analysis on consumer and industrial

IoT devices,” Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, vol.

25, pp. 519–524, 2016, doi: 10.1109/ASPDAC.2016.7428064.

J. Electrical Systems 20-11s (2024): 148-171

171

[17] G. Loniewski, E. Insfran, and S. Abrahão, “A Systematic Review of The Use of Requirements

Engineering Techniques in Model-Driven Development,” Lecture Notes in Computer Science, vol. 6395

LNCS, no. PART 2, pp. 213–227, 2010, doi: 10.1007/978-3-642-16129-2_16.

[18] M. Kamalrudin, J. Hosking, and J. Grundy, “MaramaAIC: Tool Support for Consistency Management

and Validation of Requirements,” Automated Software Engineering, pp. 1–45, 2016. doi:

10.1007/s10515-016-0192-z.

[19] M. Kamalrudin, J. Grundy, and J. Hosking, “Tool Support For Essential Use Cases To Better Capture

Software Requirements,” in ACM The International Conference on Automated Software Engineering,

ASE 2010, 2010, pp. 255–264. doi: 10.1145/1858996.1859047.

[20] M. Kamalrudin, J. Grundy, and J. Hosking, “Automated Support for Consistency Management and

Validation of Requirements,” The University of Auckland, 2011.

[21] Ian Sommerville, Software Engineering, 7th Edition. 2004.

[22] G. UCLA: Statistical Consulting, “What does Cronbach’s alpha mean.docx.” 2016.

