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Abstract: - The charging of Plug-in Electric Vehicles (PEVs) that is not properly coordinated leads to a significant decrease in voltage 

levels across the power grid, which affects the overall system performance, resulting in higher operational costs for both the grid and 

PEV users. An optimal charging schedule of PEVs is designed to maximize utilization in a car park. A fuzzy inference system is 

implemented to model the energy requirements of the PEVs. Particle Swarm Optimization (PSO) is then utilized to devise the optimal 

charging schedule for the PEVs within the car park. The charging and discharging schedule are based on maximizing PEV penetration, 

utilizing a combination of fuzzy logic and PSO algorithms, in the different laterals of a 33-bus distribution system. The devised strategy 

offers several advantages, including minimizing the total daily cost for the parking operator, reducing the network's peak load, 

maintaining voltage stability, and accurately calculating associated costs. 

Keywords: plug in electric vehicles, optimal charging schedule, particle swarm optimization, fuzzy logic, peak to 

average ratio. 

 

 

I.  INTRODUCTION 

Due to global warming and other rising environmental concerns, many nations are transitioning from 

conventional fuel-based transportation systems to more eco-friendly alternatives like plug-in electric vehicles 

(PEVs). These zero-emission vehicles serve as viable replacements for internal combustion engines. In recent 

years, significant advancements have been made in the design and performance of electric vehicles (EVs). EVs are 

gaining widespread attention for their lower emissions and improved energy efficiency, driven by the shift in global 

energy structures and technological progress in the automotive industry [1]. 

Electric Vehicle Charging Stations (EVCS) are essential infrastructure for electric vehicles (EVs), providing 

points for both charging and discharging. Charging stations deliver the electricity required to power EV batteries, 

ensuring vehicles remain functional. Discharging stations, in contrast, allow EVs to send stored energy back to the 

grid, a process known as Vehicle-to-Grid (V2G). This two-way energy exchange enables EVs to function as mobile 

energy storage units, aiding in grid stabilization during high demand and enhancing energy efficiency. Optimizing 

the location and scheduling of EVCS is crucial for supporting the expanding EV market while reducing the impact 

on the power grid. PEV owners may opt to discharge their vehicles when electricity prices are high [2]. 

Fuzzy logic is a useful decision-making tool for dealing with uncertain or unclear information. When it comes 

to charging and discharging electric vehicles (EVs), fuzzy logic helps figure out how many hours are needed based 

on the vehicle’s state of charge (SOC) and STD for charging or discharging times. Using a fuzzy inference system, 

it handles uncertain inputs, like SOC levels or STD changes in energy demand, to make the best decisions about 

charging and discharging durations[1]. The PEV charging set up assumes that the SOC of PEVs while leaving the 

parking lot is always more than the SOC of PEVs when arrived [3], [4]. 

After the fuzzy logic system determines the required number of hours for charging and discharging electric 

vehicles (EVs), Particle Swarm Optimization (PSO) is employed to select how many vehicles will be assigned for 

the charging and discharging lot. The PSO algorithm enhances this selection process by considering various factors, 

including the available charging capacity and constraints. By combining fuzzy logic with PSO, the system can 

effectively manage the charging and discharging process[5], ensuring the number of vehicles used for charging and 

discharging efficiently[6]. This integration allows for a balanced approach to energy demand and grid stability, 

helping to optimize the use of resources while minimizing the overloading on the charging station. this approach 

not only improves the overall efficiency of EV charging operations but also contributes to a more reliable and 

sustainable energy management system, accommodating the growing number of electric vehicles. 

In [4], the effects of plug-in hybrid electric vehicles (PHEVs) on voltage variations and power losses in the 

distribution system are studied. Local grid problems may arise from uncoordinated charging, in which cars are 

charged instantly after plugging in or after a certain amount of time. The coordinated charging is proposed as a 
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solution to reduce power losses and maximize the primary grid load factor. S. Deilami et al. [7] have studied a 

method for managing the charging of several PEVs simultaneously within a smart grid system termed real-time 

smart load management, or RT-SLM. The strains, performance deterioration, and overloads that can occur from 

unmanaged PEV charging are all addressed by the recommended solution. 

Q. Kejun et al. [8] have studied a process for modelling and evaluating the load demand that EV battery 

charging causes in a distribution system. A methodology is developed to determine the EV battery charging load 

in a distribution system include domestic charging, uncontrolled public charging, uncontrolled domestic charging, 

and uncontrolled off-peak domestic charging. Using time-series data from lead-acid and lithium-ion batteries. S. 

Shafiee et al. [3] have presented a thorough model for analyzing how PHEVs affect home distribution systems. 

By doing this, the basic attributes of PHEVs, such as their battery capacity, state of charge (SOC), and energy 

usage during daily travels, are accurately estimated. 

E. Sortomme et al. [9] have studied power system may be impacted by a rise in plug-in hybrid electric vehicles 

(PHEVs). One potential fix for these overloading, decreased efficiency, power quality, and voltage control in 

distribution system is coordinated PHEV charging. In the context of coordinated PHEV charging, the relationship 

between feeder losses, load factor, and load variance is studied. Three ideal charging algorithms that reduce the 

effects of PHEV charging on the linked distribution system are proposed. W. Chenye et al. [10] have studied then 

interactions among EVs help in providing frequency regulation service to the grid and designed a pricing 

methodology for doing so. 

W. Kempton et al. [11] have studied many functions of virtual private networking (V2G) within current energy 

systems, highlighting how it can improve overall grid resilience, balance supply and demand, and lessen volatility 

from intermittent renewable sources. By serving as a distributed energy resource that absorbs excess generation 

during peak hours and supplies electricity during shortages, V2G integration can enable the more effective use of 

renewable energy. T. Junand et al. [5] have studied A random system based on fuzzy logic to precisely simulate 

the effect of PHEVs, taking into consideration the correlation between daily mileage, vehicle arrival and departure 

times. To integrate these driving patterns with vehicle data for load profile prediction, suggests the Load Profile 

Modelling Framework (LPMF).  

M. Huber et al. [12] have studied the effect of integrating EV and designed a smart charging method using 

linear programming. K. N. Kumar et al. [13] have studied charging of EVs in building and developed smart energy 

storage (SES) in buildings. This platform can be used for leveling the intermittent outputs of renewable energy 

sources (RESs) and during periods of high electricity prices.  

The uncoordinated charging of electric vehicles (EVs) leads to a significant decrease in voltage levels across 

the power grid, which affects the overall system performance and also effects the (Peak to Average Ratio) PAR 

and reduces the efficiency, resulting in higher operational costs for both the grid and EV users. When PEVs arrive 

at the parking lot, they provide their energy requirements and are assumed to stay in the parking lot for a period of 

8 hours. The PEV owners may decide to charge or discharge their vehicles, or may choose to remain idle depending 

on what SOC they require by the time they leave the parking lot. This process of energy requirement determination 

is done using fuzzy inference system for initial SOC and STD. The parking operator then uses Particle Swarm 

Optimization (PSO) selects number of vehicles optimally, accommodating the PEVs that arrive within each hour. 

The operator performs this scheduling once every hour. PSO is used to determine the optimal charging schedule 

for parking facilities during different times of the day within the industrial and commercial laterals of the system. 

This scheduling results in reduced cost of operation of the parking lots and lower value of Peak to Average ratio. 

II. MODELLING OF PLUG-IN ELECTRIC VEHICLES 

PEV arrival driving patterns must be modelled in order to accurately calculate and efficiently manage total 

energy demand in a parking lot. Modelling of the Initial SOC, STD and the distance traveled each trip [14] form 

the major constituents. The percentage of electrical energy left in the battery of a PEV is referred to as its "state of 

charge" (SOC)[15]. The minimum SOC in this study is set at 20% in order to improve battery life. The distance 

travelled on the first journey and the driving range of the vehicle that is, its all-electric range (AER) determine the 

initial SOC upon arrival at the parking lot. The initial SOC for a PEV with a first trip distance of 𝑑 and an AER of 

𝑑𝑅 is as follows: 

Initial SOC is calculated as: 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑂𝐶= {
1 − (

𝑑

𝑑𝑅
)), 0 < 𝑑 < 0.8𝑑𝑅

0.2, 𝑑 ≥ 0.8𝑑𝑅

      (1) 
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The SOC necessary for future journeys is a determining factor in estimating the SOC needed at departure time. 

On the other hand, calculating the overall distance to be driven before eventually pulling into your parking lot is a 

more feasible duty for any PEV driver. Therefore, the total mileage of all subsequent journeys made by a PEV can 

be considered the Subsequent Trip Distance (STD). 

The below represents the energy needed by PEVs that travel a distance per day, larger than their AER: 

𝑆𝑂𝐶’=(𝑆T𝐷/𝑑𝑅)+0.2        (2) 

𝑆𝑂𝐶𝑟𝑒𝑞 = {
1 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑂𝐶,          𝑆𝑂𝐶′ > 1

(𝑆𝑂𝐶′ − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑂𝐶),    𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑂𝐶 < 𝑆𝑂𝐶′ < 1
    (3) 

In Plug-in Electric Vehicles (PEVs), the required state of charge at the time of departure is indicated by SOC 

and the net state of charge needed by the PEV is denoted by 𝑆𝑂𝐶𝑟𝑒𝑞 . The PEV owner's chosen state of charge at 

the time of departure affects this estimate. The energy need will increase in the event that the departure SOC is 

raised: 

If the departure SOC is to decreased, 

𝑆𝑂𝐶′ = (STD/𝑑𝑅) + 0.2        (4) 

𝑆𝑂𝐶𝑟𝑒𝑞 = 𝑆𝑂𝐶′ − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑂𝐶       (5) 

2.1 Problem Formulation using PSO  

Particle Swarm Optimization (PSO) is a well-known optimization technique inspired by the social behavior 

observed in bird flocking and fish schooling. A swarm is made up of multiple "particles" (potential solutions) that 

navigate the problem space. Each particle represents a candidate solution to the optimization problem. Each particle 

has a position in the solution space and a velocity that determines its movement direction and speed. Particles 

update their positions based on their current velocity and the best positions they have discovered so far. 

Objective is to minimize the Peak-to-Average Ratio (PAR) of the distribution system so that the load curve is 

flat enough. To minimize the PAR, this is the ratio of the maximum load (peak demand) to the average load over 

a period. High PAR indicates large spikes in demand that can stress the grid and necessitate costly infrastructure 

upgrades. 

PSO optimizes the charging schedule to distribute the load more evenly over time, reducing peak demand while 

maintaining the same total energy consumption. By flattening the demand curve, the grid experiences less strain 

during peak periods, reducing the need for additional capacity and ensuring more consistent energy delivery. PAR 

is calculated by comparing the peak load to the average load. The PSO algorithm works to minimize peak loads by 

spreading charging sessions across low-demand periods. 

In this optimization problem, the PSO algorithm operates under multiple constraints to ensure optimal 

performance: 

The entire amount charged by the parking operator is divided into two categories: Charging cost (𝐶𝑂𝑆𝑇𝑐ℎ𝑎𝑟𝑔𝑒), 

and the Discharging cost (𝐶𝑂𝑆𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒). 

𝐶𝑂𝑆𝑇𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑁𝑐 ∗ cost in kWH       (6) 

where 𝑁𝑐 represents number of vehicles charging. The following equation determines the cost for discharge 

[16] 

𝐶𝑂𝑆𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑁𝑑𝑐 ∗ cost in kWH      (7) 

where 𝑁𝑑𝑐 represents number of vehicles charging and cost in kWH represents cost calculated for charge or 

discharge the battery. 

𝐶𝑂𝑆𝑇𝑇𝑂𝑇𝐴𝐿 = 𝐶𝑂𝑆𝑇𝑐ℎ𝑎𝑟𝑔𝑒 − 𝐶𝑂𝑆𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒       (8) 

To prevent voltage instability, PSO ensures that the bus voltages Vbus, remain within a specified range: 

Vmin ≤ Vbus ≤ Vmax        (9) 

If a violation occurs, PSO adjusts the charging power to maintain voltages within acceptable limits. 

The Peak-to-Average Ratio (PAR) is defined as: 

𝑃𝐴𝑅 =
𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑
        (10)  

𝑃𝐴𝑅 =
(

𝑚𝑎𝑥
𝑡 ∈ 𝐻

𝑆𝑡𝑜𝑡𝑎𝑙
𝑡 )

(
1

𝑇
∑ 𝑆𝑡𝑜𝑡𝑎𝑙

𝑡𝑇
𝑡=1 )

⁄       (11) 

PSO minimizes this value by smoothing the load profile over time, reducing peak demand and ensuring a more 

uniform load distribution. 
𝑚𝑎𝑥
𝑡 ∈ 𝐻

𝑆𝑡𝑜𝑡𝑎𝑙
𝑡  represents maximum load out of total load. 
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1

𝑇
∑ 𝑆𝑡𝑜𝑡𝑎𝑙

𝑡𝑇
𝑡=1  represents average of the total load on the system at particular duration. 

2.2 PSO Algorithm Workflow 

Initialization: A population of particles is initialized, each representing a possible charging schedule. Each 

particle has a position (charging time, energy consumption, etc.) and velocity. 

Fitness Evaluation: For each particle, the cost, bus voltage stability, and PAR are evaluated. The particle's 

fitness is calculated based on the weighted sum of these objectives. 

Update Positions and Velocities: Particles update their positions and velocities based on both their own best 

experience and the global best solution found by the swarm. This allows the particles to explore different schedules 

and converge on the optimal solution. 

Constraint Handling: Voltage and PAR constraints are checked at each iteration, and if a particle violates any 

of these constraints, its position is adjusted to remain within feasible limits. 

Convergence: The algorithm continues to iterate until the particles converge on an optimal charging schedule 

that minimizes cost, maintains stable bus voltages, and reduces PAR. 

III. EFFICIENT CHARGING SCHEDULING USING FUZZY LOGIC AND PSO 

The IEEE 33 bus standard test distribution system is considered for the purpose of illustrating the effectiveness 

of the proposed scheduling strategy. Figure 1 represents the IEEE 33 radial distribution system [18, 19]. It consists 

of 33 buses; 32 feeder sections (industrial and commercial) [8] feeders and total load of 3715 kW and 2300 kVAR 

and the system operates at 11 kV.  

 
Figure 1. IEEE 33 Test Distribution System 

The voltage profile, current in feeder sections and power loss are calculated using backward-forward load flow 

analysis [18]. This analysis enables the decision of the maximum load of PEVs that can be placed at the charging 

stations subject to the condition of maintaining voltage within defined limits. 

Efficient Charging Scheduling focuses on optimizing the timing and distribution of EV charging to lower costs. 

As the number of EVs grows, it becomes essential to manage charging times and methods effectively to prevent 

grid overload and ensure energy is used efficiently. PSO is applied to identify optimal charging schedules by 

considering minimizing PAR, in turn the operating cost of the parking lot reduces. These methods help create a 

more sustainable and reliable EV charging system. 

Industrial Lateral 1 

Commercial 

Lateral 

Industrial Lateral 2 
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The industrial laterals 1 and 2 and the commercial lateral, as shown in the figure, are considered as the non-

residential car parking lots, where the PEVs are considered to be charging or discharging during the day time. For 

industrial laterals, the working time is considered to start in two shifts from 8am or 9am and 1pm or 2pm. Each 

charging station (each load point) is assumed to have a capacity of 2kW and the maximum capacity of all the 

laterals considered for study are presented in Table 1. This indicates the maximum load after which the voltage 

deviation (10% deviation from 1 pu) exceeds the stipulated limit and the distribution system goes into voltage 

instability region. 

Table 1: Maximum Capacity of charging stations 

Sl. No. Lateral Max. 

Capacity 

Number of charging 

stations per lateral 

Number of PEVs charging 

slots per station / load bus 

1 Industrial lateral 1 65 kW 4 8 

2 Industrial lateral 1 65 kW 8 4 

3 Commercial Lateral 60 kW 3 10 

3.1 Design of Fuzzy Inference System 

PEV owners can choose from three different battery conditions for their departure time when they arrive at the 

parking lot: 

1) An increase in SOC (departure SOC > arrival SOC). 

2) A decrease in SOC (departure SOC < arrival SOC).  

3) No change in SOC (departure SOC = arrival SOC). 

The PEVs' energy needs are established based on this decision. The SOC of PEV during arrival and the STD 

have an impact on the choice, although these scenarios frequently involve incorrect calculations or analysis to 

arrive at a decision using fuzzy inference system (FIS). 

The energy needs of PEVs whose daily mileage (d) is smaller than their corresponding All-Electric Range 

(AER) is only determined by applying the fuzzy decision-making procedure. 

The inputs given to the FIS are modelled as follows.  

Input 1: initial SOC - The membership functions for the initial State of Charge (SOC) is defined by three terms: 

Low, Medium, and High. 

Input 2: STD - Similarly, the membership function for Subsequent Trip Distance (STD) is defined by three 

terms: Short, Medium, and Long. 

The outputs of the FIS are modelled as follows.  

Output 1: Charging - The output variables are represented by seven membership functions: Very Low (VL), 

Low (L), Medium Low (ML), Medium (M), Medium High (MH), High (H), and Very High (VH). 

Output 2: Discharging - The output variables are described by three membership functions: Low (L), Medium 

(M) and High (H). 

Figure 2 represents initial SOC for input 1 which ranges from 20 to 80%. Figure 3 represents STD for input 2 

which ranges from 0 to 50 km. Figure 4 represents charging for output 1 which ranges from 0 to 1. Figure 5 

represents discharging for output 2 which ranges from 0 to 1. 

    
Figure 2. Initial SOC for Input 1    Figure 3. STD for Input 2 
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Figure 4. Charging for Output 1        Figure 5. Discharging for Output 2 

Using initial SOC and STD, an FIS is developed to represent the number of hours charging and discharging 

which is mentioned in Tables 2 and 3. 

Table 2: Rule Base Design of FIS for charging EVs 

Initial SOC 

STD 

Short Average Long 

Charging Charging Charging 

Low L MH H 

Medium VL ML MH 

High L MH H 

Table 3: Rule Base Design of FIS for discharging EVs 

Initial SOC 

STD 

Short Average Long 

Discharging Discharging Discharging 

Low L L L 

Medium L L L 

High M L L 

Table 4 illustrates the number of vehicles incoming and number of charging and discharging points considered 

for Industrial lateral-1 and Industrial lateral-2 at various charging points in the morning at 8 am. The charging 

schedules are presented for cases without and with PSO. The case without PSO considers the maximum possible 

loading capacity as given in Table 1. 

For Industrial lateral-1 number of vehicles incoming is 50 and number of charging points are 32 out of 32. 

These charging points include 30 charging points for charging out of these 10 are charging for 3 hours, 10 are 

charging for 2 hours and 10 are charging for 1 hour and 2 charging points are discharging for 1 hour. Number of 

vehicles waiting are 18. 

Cost calculation: 

Number of vehicles charging = 30 

Number of vehicles discharging = 2 

Cost per kWH is Rs. 20/-  

Out of each charging slot is 2kW 

Total cost = (number of vehicles charging – number of vehicles discharging) *20*2 = (30-2) * 40=1120/- 

Table 4: Industrial Lateral Charging Station Schedule at 8 am 

Charging 

Station 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Industrial 

lateral 1 (32 

max.) 

45 

10c-3h 

10c-2h 

10c-1h 

2d-1h 

18v-w 

30 charging 

2 discharging 
1120 

10c-3h 

10c-2h 

5c-1h 

20v-w 

25 charging 

0 discharging 
1000 
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Charging 

Station 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Industrial 

lateral 2 (32 

max.) 

40 

10c-2h 

15c-1h 

7d-1h 

11v-w 

25 charging 

7 discharging 
720 

10c-3h 

9c-1h 

6d-1h 

15v-w 

19 charging 

6 discharging 
520 

Similarly, for Industrial lateral-2 number of vehicles incoming is 43 and number of charging points are 32 out 

of 32. These charging points include 25 charging points for charging out of these 10 are charging for 2 hours and 

15 are charging for 1 hour and 7 charging points are discharging for 1 hour. Number of vehicles waiting are 11. 

The cost calculations are done as indicated above. 

Table 5 illustrates the number of vehicles incoming and number of charging and discharging points considered 

for Industrial lateral-1 and Industrial lateral-2 at various charging points in the morning at 9 am. The charging 

schedules are presented for cases without and with PSO. The case without PSO considers the maximum possible 

loading capacity as given in Table 1. 

Table 5: Industrial Lateral Charging Station Schedule at 9 am 

Charging 

Station 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Industrial lateral 

1 (32 max.) 
46 

10c-2h 

10c-1h 

8c-3h 

4d-1h 

47v-w 

28 charging 

4 discharging 
960 

10c-2h 

10c-1h 

7c-1h 

59v-w 

27 charging 

0 discharging 
1080 

Industrial lateral 

2 (32 max.) 
81 

10c-1h 

15c-3h 

7d-1h 

67v-w 

25 charging 

2 discharging 
720 

10c-2h 

8c-1h 

11d-1h 

77v-w 

18 charging 

11 discharging 
280 

Table 6 illustrates the number of vehicles incoming and number of charging and discharging points considered 

for Industrial lateral-1 and Industrial lateral-2 at various charging points at 1 pm. The charging schedules are 

presented for cases without and with PSO. The case without PSO considers the maximum possible loading capacity 

as given in Table 1. 

Table 6: Industrial Lateral Charging Station Schedule at 1 pm 

Charging 

Station 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Industrial lateral 

1 (32 max.) 
100 

11c-3h 

10c-2h 

10c-1h 

1d-1h 

68v-w 

31 charging 

1 discharging 
1200 

10c-3h 

11c-2h 

10c-1h 

69v-w 

31 charging 

0 discharging 
1240 

Industrial lateral 

2 (32 max.) 
120 

10c-3h 

10c-2h 

4c-1h 

8d-1h 

88v-w 

24 charging 

8 discharging 
640 

14c-3h 

9c-2h 

6d-1h 

91v-w 

23 charging 

6 discharging 
680 

Table 7 illustrates the number of vehicles incoming and number of charging and discharging points considered 

for Industrial lateral-1 and Industrial lateral-2 at various charging points at 2 pm. The charging schedules are 

presented for cases without and with PSO. The case without PSO considers the maximum possible loading capacity 

as given in Table 1. 
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Table 7: Industrial Lateral Charging Station Schedule at 2 pm 

Charging 

Station 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Industrial 

lateral 1 

(32 max.) 

93 

11c-2h 

10c-1h 

6c-3h 

5d-1h 

150v-w 

27 charging 

5 discharging 
880 

10c-2h 

11c-1h 

3c-1h 

1d-1h 

158v-w 

24 charging 

1 discharging 
920 

Industrial 

lateral 2 

(32 max.) 

127 

10c-2h 

10c-1h 

5c-3h 

7d-1h 

203v-w 

25 charging 

7 discharging 
720 

14c-2h 

9c-1h 

6d-1h 

212v-w 

23 charging 

6 discharging 
680 

Table 8 illustrates the number of vehicles incoming and number of charging and discharging points considered 

for commercial lateral at various charging points throughout the day. The charging schedules are presented for 

cases without and with PSO. The case without PSO considers the maximum possible loading capacity as given in 

Table 1. 

Table 8: Commercial Lateral Charging Station Schedule for the whole day 

Commercial 

lateral (30 max.) 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Time (at 11 am) 8 

15c-2h 

14c-1h 

0v-w 

30 1200 

9c-1h 

11c-1h 

10c-1h 

22v-w 

30 1200 

Time (at 12 pm)   
15c-1h 

0v-w 
30 1200 

11c-1h 

11c-1h 

0v-w 

22 880 

Time (at 1 pm) 30 

10c-2h 

20c-1h 

0v-w 

30 1200 

10c-2h 

18c-1h 

2v-w 

28 1120 

Time (at 2 pm) 45 

10c-1h 

10c-2h 

10c-1h 

25v-w 

30 1200 

10c-1h 

19c-1h 

28v-w 

29 1160 

Time (at 3 pm) 35 

10c-1h 

20c-1h 

40v-w 

30 1200 

5c-2h 

25c-1h 

33v-w 

30 1200 

Time (at 4 pm) 35 

10c-2h 

20c-1h 

45v-w 

30 1200 

5c-1h 

25c-1h 

43v-w 

30 1200 

Time (at 5 pm) 20 

10c-1h 

20c-1h 

45v-w 

30 1200 

10c-2h 

20c-1h 

33v-w 

30 1200 

Time (at 6 pm) 27 

20c-1h 

10c-2h 

42v-w 

30 1200 

10c-1h 

20c-1h 

40v-w 

30 1200 
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Commercial 

lateral (30 max.) 

Incoming 

Vehicles 

Without PSO With PSO 

Schedule 
Energy 

Requirement 

Cost 

(Rs.) 
Schedule 

Energy 

Requirement 

Cost 

(Rs.) 

Time (at 7 pm) 26 

10c-1h 

20c-1h 

48v-w 

30 1200 

20c-2h 

10c-1h 

36v-w 

30 1200 

Table 9 shows the difference in Peak to Average Ratio (PAR) and costs with and without PSO optimization 

across different times of the day. The total cost with PSO optimization shows a significant reduction, amounting 

to Rs. 41,040/- compared to Rs. 45,480/- without PSO. 

Table 9: Different time durations considered for PAR and COST without and with PSO  

Time 
PAR without 

PSO 

PAR with 

PSO 

COST without 

PSO 

COST with 

PSO 

8 AM 4.59 4.48 3040 2720 

9 AM 4.68 4.57 2720 2320 

10 AM 4.72 4.60 2480 2360 

11 AM 4.67 4.57 3280 3240 

12 PM 4.79 4.68 2800 2440 

1 PM 5.00 4.86 3040 3040 

2 PM 4.94 4.80 2800 2760 

3 PM 5.07 4.95 2800 2720 

4 PM 4.95 4.81 3040 2600 

5 PM 4.77 4.63 3120 3120 

6 PM 4.71 4.58 2960 2800 

7 PM 4.67 4.58 3040 2960 

8 PM 4.67 4.56 2880 2080 

9 PM 4.59 4.49 3440 2960 

10 PM 4.59 4.47 4040 2920 

TOTAL COST 45480 41040 

IV. CONCLUSION 

An efficient charging schedule strategy for best utilization of the PEV car parking lot has been developed. 

Depending on the charge of battery of PEVs during arrival and the required charge at the time of leaving the parking 

lot, a fuzzy based decision system is designed to address the energy consumption of PEVs in the industrial and 

commercial laterals of a 33-bus distribution system.  

Optimal charging schedule for the car park is implemented using PSO algorithm. This scheduling approach 

reduces the cost of parking lot and EVs and optimize the Peak to Average Ratio (PAR). This strategy results in 

advantages such as reducing the operating costs of the parking lot, decreasing the peak load of the system and 

upholding the voltage levels of the distribution network. 

The maximum capacity of a charging station is assessed using load flow study considering the maximum 

possible deviation on voltage allowed. Optimal scheduling using PSO aids this loading of charging stations so that 

the peak to average ratio is minimum while adhering to the maximum capacity constraint. Thus efficiently 

scheduling is done that also results in reduction of operating cost of the car parking operator. 
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