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Abstract: - The charging of Plug-in Electric Vehicles (PEVs) that is not properly coordinated leads to a significant decrease in voltage
levels across the power grid, which affects the overall system performance, resulting in higher operational costs for both the grid and
PEV users. An optimal charging schedule of PEVs is designed to maximize utilization in a car park. A fuzzy inference system is
implemented to model the energy requirements of the PEVs. Particle Swarm Optimization (PSO) is then utilized to devise the optimal
charging schedule for the PEVs within the car park. The charging and discharging schedule are based on maximizing PEV penetration,
utilizing a combination of fuzzy logic and PSO algorithms, in the different laterals of a 33-bus distribution system. The devised strategy
offers several advantages, including minimizing the total daily cost for the parking operator, reducing the network's peak load,
maintaining voltage stability, and accurately calculating associated costs.

Keywords: plug in electric vehicles, optimal charging schedule, particle swarm optimization, fuzzy logic, peak to
average ratio.

. INTRODUCTION

Due to global warming and other rising environmental concerns, many nations are transitioning from
conventional fuel-based transportation systems to more eco-friendly alternatives like plug-in electric vehicles
(PEVs). These zero-emission vehicles serve as viable replacements for internal combustion engines. In recent
years, significant advancements have been made in the design and performance of electric vehicles (EVs). EVs are
gaining widespread attention for their lower emissions and improved energy efficiency, driven by the shift in global
energy structures and technological progress in the automotive industry [1].

Electric Vehicle Charging Stations (EVCS) are essential infrastructure for electric vehicles (EVs), providing
points for both charging and discharging. Charging stations deliver the electricity required to power EV batteries,
ensuring vehicles remain functional. Discharging stations, in contrast, allow EVs to send stored energy back to the
grid, a process known as Vehicle-to-Grid (V2G). This two-way energy exchange enables EVs to function as mobile
energy storage units, aiding in grid stabilization during high demand and enhancing energy efficiency. Optimizing
the location and scheduling of EVCS is crucial for supporting the expanding EV market while reducing the impact
on the power grid. PEV owners may opt to discharge their vehicles when electricity prices are high [2].

Fuzzy logic is a useful decision-making tool for dealing with uncertain or unclear information. When it comes
to charging and discharging electric vehicles (EVS), fuzzy logic helps figure out how many hours are needed based
on the vehicle’s state of charge (SOC) and STD for charging or discharging times. Using a fuzzy inference system,
it handles uncertain inputs, like SOC levels or STD changes in energy demand, to make the best decisions about
charging and discharging durations[1]. The PEV charging set up assumes that the SOC of PEVs while leaving the
parking lot is always more than the SOC of PEVs when arrived [3], [4].

After the fuzzy logic system determines the required number of hours for charging and discharging electric
vehicles (EVs), Particle Swarm Optimization (PSO) is employed to select how many vehicles will be assigned for
the charging and discharging lot. The PSO algorithm enhances this selection process by considering various factors,
including the available charging capacity and constraints. By combining fuzzy logic with PSO, the system can
effectively manage the charging and discharging process[5], ensuring the number of vehicles used for charging and
discharging efficiently[6]. This integration allows for a balanced approach to energy demand and grid stability,
helping to optimize the use of resources while minimizing the overloading on the charging station. this approach
not only improves the overall efficiency of EV charging operations but also contributes to a more reliable and
sustainable energy management system, accommodating the growing number of electric vehicles.

In [4], the effects of plug-in hybrid electric vehicles (PHEVS) on voltage variations and power losses in the
distribution system are studied. Local grid problems may arise from uncoordinated charging, in which cars are
charged instantly after plugging in or after a certain amount of time. The coordinated charging is proposed as a
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solution to reduce power losses and maximize the primary grid load factor. S. Deilami et al. [7] have studied a
method for managing the charging of several PEVs simultaneously within a smart grid system termed real-time
smart load management, or RT-SLM. The strains, performance deterioration, and overloads that can occur from
unmanaged PEV charging are all addressed by the recommended solution.

Q. Kejun et al. [8] have studied a process for modelling and evaluating the load demand that EV battery
charging causes in a distribution system. A methodology is developed to determine the EV battery charging load
in a distribution system include domestic charging, uncontrolled public charging, uncontrolled domestic charging,
and uncontrolled off-peak domestic charging. Using time-series data from lead-acid and lithium-ion batteries. S.
Shafiee et al. [3] have presented a thorough model for analyzing how PHEVs affect home distribution systems.
By doing this, the basic attributes of PHEVS, such as their battery capacity, state of charge (SOC), and energy
usage during daily travels, are accurately estimated.

E. Sortomme et al. [9] have studied power system may be impacted by a rise in plug-in hybrid electric vehicles
(PHEVs). One potential fix for these overloading, decreased efficiency, power quality, and voltage control in
distribution system is coordinated PHEV charging. In the context of coordinated PHEV charging, the relationship
between feeder losses, load factor, and load variance is studied. Three ideal charging algorithms that reduce the
effects of PHEV charging on the linked distribution system are proposed. W. Chenye et al. [10] have studied then
interactions among EVs help in providing frequency regulation service to the grid and designed a pricing
methodology for doing so.

W. Kempton et al. [11] have studied many functions of virtual private networking (V2G) within current energy
systems, highlighting how it can improve overall grid resilience, balance supply and demand, and lessen volatility
from intermittent renewable sources. By serving as a distributed energy resource that absorbs excess generation
during peak hours and supplies electricity during shortages, V2G integration can enable the more effective use of
renewable energy. T. Junand et al. [5] have studied A random system based on fuzzy logic to precisely simulate
the effect of PHEVS, taking into consideration the correlation between daily mileage, vehicle arrival and departure
times. To integrate these driving patterns with vehicle data for load profile prediction, suggests the Load Profile
Modelling Framework (LPMF).

M. Huber et al. [12] have studied the effect of integrating EV and designed a smart charging method using
linear programming. K. N. Kumar et al. [13] have studied charging of EVs in building and developed smart energy
storage (SES) in buildings. This platform can be used for leveling the intermittent outputs of renewable energy
sources (RESs) and during periods of high electricity prices.

The uncoordinated charging of electric vehicles (EVs) leads to a significant decrease in voltage levels across
the power grid, which affects the overall system performance and also effects the (Peak to Average Ratio) PAR
and reduces the efficiency, resulting in higher operational costs for both the grid and EV users. When PEVs arrive
at the parking lot, they provide their energy requirements and are assumed to stay in the parking lot for a period of
8 hours. The PEV owners may decide to charge or discharge their vehicles, or may choose to remain idle depending
on what SOC they require by the time they leave the parking lot. This process of energy requirement determination
is done using fuzzy inference system for initial SOC and STD. The parking operator then uses Particle Swarm
Optimization (PSO) selects number of vehicles optimally, accommodating the PEVs that arrive within each hour.
The operator performs this scheduling once every hour. PSO is used to determine the optimal charging schedule
for parking facilities during different times of the day within the industrial and commercial laterals of the system.
This scheduling results in reduced cost of operation of the parking lots and lower value of Peak to Average ratio.

II.  MODELLING OF PLUG-IN ELECTRIC VEHICLES

PEV arrival driving patterns must be modelled in order to accurately calculate and efficiently manage total
energy demand in a parking lot. Modelling of the Initial SOC, STD and the distance traveled each trip [14] form
the major constituents. The percentage of electrical energy left in the battery of a PEV is referred to as its "state of
charge" (SOC)[15]. The minimum SOC in this study is set at 20% in order to improve battery life. The distance
travelled on the first journey and the driving range of the vehicle that is, its all-electric range (AER) determine the
initial SOC upon arrival at the parking lot. The initial SOC for a PEV with a first trip distance of d and an AER of
dr is as follows:

Initial SOC is calculated as:

23),0 < d < 0.8dp
dr
0.2,d > 0.8dy

1 —
initial SOC={ ( Q)
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The SOC necessary for future journeys is a determining factor in estimating the SOC needed at departure time.
On the other hand, calculating the overall distance to be driven before eventually pulling into your parking lot is a
more feasible duty for any PEV driver. Therefore, the total mileage of all subsequent journeys made by a PEV can
be considered the Subsequent Trip Distance (STD).

The below represents the energy needed by PEVs that travel a distance per day, larger than their AER:

SOC’=(STDId)+0.2 2

1 — initialSOC, soc' > 1

50Creq = {(SOC’ — initialSOC), initialSOC < SOC' < 1 ©)

In Plug-in Electric Vehicles (PEVs), the required state of charge at the time of departure is indicated by SOC
and the net state of charge needed by the PEV is denoted by SOC,..,. The PEV owner's chosen state of charge at
the time of departure affects this estimate. The energy need will increase in the event that the departure SOC is
raised:

If the departure SOC is to decreased,

SOC' = (STD/dg) + 0.2 (4)

50C,eq = SOC' — initialSOC (5)

2.1 Problem Formulation using PSO

Particle Swarm Optimization (PSO) is a well-known optimization technique inspired by the social behavior
observed in bird flocking and fish schooling. A swarm is made up of multiple "particles™ (potential solutions) that
navigate the problem space. Each particle represents a candidate solution to the optimization problem. Each particle
has a position in the solution space and a velocity that determines its movement direction and speed. Particles
update their positions based on their current velocity and the best positions they have discovered so far.

Obijective is to minimize the Peak-to-Average Ratio (PAR) of the distribution system so that the load curve is
flat enough. To minimize the PAR, this is the ratio of the maximum load (peak demand) to the average load over
a period. High PAR indicates large spikes in demand that can stress the grid and necessitate costly infrastructure
upgrades.

PSO optimizes the charging schedule to distribute the load more evenly over time, reducing peak demand while
maintaining the same total energy consumption. By flattening the demand curve, the grid experiences less strain
during peak periods, reducing the need for additional capacity and ensuring more consistent energy delivery. PAR
is calculated by comparing the peak load to the average load. The PSO algorithm works to minimize peak loads by
spreading charging sessions across low-demand periods.

In this optimization problem, the PSO algorithm operates under multiple constraints to ensure optimal
performance:

The entire amount charged by the parking operator is divided into two categories: Charging cost (COSTpqrge )
and the Discharging cost (COSTyischarge)-

COST;narge = N * cost in kKWH (6)

where N, represents number of vehicles charging. The following equation determines the cost for discharge
[16]

COSTgischarge = Nac * costin KWH )

where N, represents number of vehicles charging and cost in KWH represents cost calculated for charge or
discharge the battery.

COSTrorar, = COSTcharge - COSTdischarge (8)
To prevent voltage instability, PSO ensures that the bus voltages Vuus, remain within a specified range:
Vmin =< Vbus =< Vmax (9)

If a violation occurs, PSO adjusts the charging power to maintain voltages within acceptable limits.

The Peak-to-Average Ratio (PAR) is defined as:
PAR = Peak Load (10)
Average Load
max _;

PAR = (¢ € 1Sioea (11)

1
/(;217;:1 Sttotal)
PSO minimizes this value by smoothing the load profile over time, reducing peak demand and ensuring a more
uniform load distribution.
ma

X .
te HSttaml represents maximum load out of total load.
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%ZLl St +a1 represents average of the total load on the system at particular duration.

2.2 PSO Algorithm Workflow

Initialization: A population of particles is initialized, each representing a possible charging schedule. Each
particle has a position (charging time, energy consumption, etc.) and velocity.

Fitness Evaluation: For each particle, the cost, bus voltage stability, and PAR are evaluated. The particle's
fitness is calculated based on the weighted sum of these objectives.

Update Positions and Velocities: Particles update their positions and velocities based on both their own best
experience and the global best solution found by the swarm. This allows the particles to explore different schedules
and converge on the optimal solution.

Constraint Handling: Voltage and PAR constraints are checked at each iteration, and if a particle violates any
of these constraints, its position is adjusted to remain within feasible limits.

Convergence: The algorithm continues to iterate until the particles converge on an optimal charging schedule
that minimizes cost, maintains stable bus voltages, and reduces PAR.

IIl.  EFFICIENT CHARGING SCHEDULING USING FuzzyY LoGIC AND PSO

The IEEE 33 bus standard test distribution system is considered for the purpose of illustrating the effectiveness
of the proposed scheduling strategy. Figure 1 represents the IEEE 33 radial distribution system [18, 19]. It consists
of 33 buses; 32 feeder sections (industrial and commercial) [8] feeders and total load of 3715 kW and 2300 kVAR
and the system operates at 11 kV.
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Figure 1. IEEE 33 Test Distribution System

The voltage profile, current in feeder sections and power loss are calculated using backward-forward load flow
analysis [18]. This analysis enables the decision of the maximum load of PEVs that can be placed at the charging
stations subject to the condition of maintaining voltage within defined limits.

Efficient Charging Scheduling focuses on optimizing the timing and distribution of EV charging to lower costs.
As the number of EVs grows, it becomes essential to manage charging times and methods effectively to prevent
grid overload and ensure energy is used efficiently. PSO is applied to identify optimal charging schedules by
considering minimizing PAR, in turn the operating cost of the parking lot reduces. These methods help create a
more sustainable and reliable EV charging system.
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The industrial laterals 1 and 2 and the commercial lateral, as shown in the figure, are considered as the non-
residential car parking lots, where the PEVs are considered to be charging or discharging during the day time. For
industrial laterals, the working time is considered to start in two shifts from 8am or 9am and 1pm or 2pm. Each
charging station (each load point) is assumed to have a capacity of 2kW and the maximum capacity of all the
laterals considered for study are presented in Table 1. This indicates the maximum load after which the voltage
deviation (10% deviation from 1 pu) exceeds the stipulated limit and the distribution system goes into voltage
instability region.

Table 1: Maximum Capacity of charging stations

SI. No. | Lateral Max. Number of charging | Number of PEVs charging
Capacity | stations per lateral slots per station / load bus
Industrial lateral 1 65 kW 4 8
Industrial lateral 1 65 kw 8 4
Commercial Lateral | 60 kW 3 10

3.1 Design of Fuzzy Inference System

PEV owners can choose from three different battery conditions for their departure time when they arrive at the
parking lot:

1) An increase in SOC (departure SOC > arrival SOC).

2) A decrease in SOC (departure SOC < arrival SOC).

3) No change in SOC (departure SOC = arrival SOC).

The PEVS' energy needs are established based on this decision. The SOC of PEV during arrival and the STD
have an impact on the choice, although these scenarios frequently involve incorrect calculations or analysis to
arrive at a decision using fuzzy inference system (FIS).

The energy needs of PEVs whose daily mileage (d) is smaller than their corresponding All-Electric Range
(AER) is only determined by applying the fuzzy decision-making procedure.

The inputs given to the FIS are modelled as follows.

Input 1: initial SOC - The membership functions for the initial State of Charge (SOC) is defined by three terms:
Low, Medium, and High.

Input 2: STD - Similarly, the membership function for Subsequent Trip Distance (STD) is defined by three
terms: Short, Medium, and Long.

The outputs of the FIS are modelled as follows.

Output 1: Charging - The output variables are represented by seven membership functions: Very Low (VL),
Low (L), Medium Low (ML), Medium (M), Medium High (MH), High (H), and Very High (VH).

Output 2: Discharging - The output variables are described by three membership functions: Low (L), Medium
(M) and High (H).

Figure 2 represents initial SOC for input 1 which ranges from 20 to 80%. Figure 3 represents STD for input 2
which ranges from 0 to 50 km. Figure 4 represents charging for output 1 which ranges from 0 to 1. Figure 5
represents discharging for output 2 which ranges from 0 to 1.

Membership function plots
Membership function plots
[ Short Average Long
|Low Medium High

input variable "input1” input variable "inpul2”

Figure 2. Initial SOC for Input 1 Figure 3. STD for Input 2
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Membership function plots - | e e
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Figure 4. Charging for Output 1 Figure 5. Discharging for Output 2

Using initial SOC and STD, an FIS is developed to represent the number of hours charging and discharging
which is mentioned in Tables 2 and 3.

Table 2: Rule Base Design of FIS for charging EVs

STD
Initial SOC Short Average Long
Charging | Charging | Charging
Low L MH H
Medium VL ML MH
High L MH H
Table 3: Rule Base Design of FIS for discharging EVs
STD
Initial SOC Short Average Long
Discharging Discharging | Discharging
Low L L L
Medium L L L
High M L L

Table 4 illustrates the number of vehicles incoming and number of charging and discharging points considered
for Industrial lateral-1 and Industrial lateral-2 at various charging points in the morning at 8 am. The charging
schedules are presented for cases without and with PSO. The case without PSO considers the maximum possible
loading capacity as given in Table 1.

For Industrial lateral-1 number of vehicles incoming is 50 and number of charging points are 32 out of 32.
These charging points include 30 charging points for charging out of these 10 are charging for 3 hours, 10 are
charging for 2 hours and 10 are charging for 1 hour and 2 charging points are discharging for 1 hour. Number of
vehicles waiting are 18.

Cost calculation:

Number of vehicles charging = 30

Number of vehicles discharging = 2

Cost per kWH is Rs. 20/-

Out of each charging slot is 2kW

Total cost = (humber of vehicles charging — number of vehicles discharging) *20*2 = (30-2) * 40=1120/-

Table 4: Industrial Lateral Charging Station Schedule at 8 am

. . Without PSO With PSO
Charging Incoming = Cost = Cost
Station Vehicles | Schedule nergy 08 Schedule | — o' 9Y 08
Requirement | (Rs.) Requirement | (Rs.)
Industrial 1822: 10c-3n
30 chargi - 25 chargi
lateral 1 32 | 45 10c-1h cnarging 1 1199 10c-2h cnarging 1 1000
2 discharging 5c-1h 0 discharging
max.) 2d-1h
20v-w
18v-w
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. . Without PSO With PSO
Charging Incoming = Cost £ Cost
Station Vehicles | Schedule nergy 08 Schedule | - o' 9Y oS
Requirement | (Rs.) Requirement | (Rs.)

Industrial 10c-2h 10c-3

15c-1h 25 charging 9c-1h 19 charging
lateral 2 (32 40 720 520
ateral 2 ( 7d-1h 7 discharging 6d-1h 6 discharging
max.)

11v-w 15v-w

Similarly, for Industrial lateral-2 number of vehicles incoming is 43 and number of charging points are 32 out
of 32. These charging points include 25 charging points for charging out of these 10 are charging for 2 hours and
15 are charging for 1 hour and 7 charging points are discharging for 1 hour. Number of vehicles waiting are 11.
The cost calculations are done as indicated above.

Table 5 illustrates the number of vehicles incoming and number of charging and discharging points considered
for Industrial lateral-1 and Industrial lateral-2 at various charging points in the morning at 9 am. The charging
schedules are presented for cases without and with PSO. The case without PSO considers the maximum possible
loading capacity as given in Table 1.

Table 5: Industrial Lateral Charging Station Schedule at 9 am

. . Without PSO With PSO
Charging Incoming = Cost = Cost
Station Vehicles | Schedule | =o' %Y Ot 1 Schedule | ="' 05
Requirement | (Rs.) Requirement | (Rs.)
o
i X 28 chargin - 27 chargin
Industrial lateral 46 8c-3h _ gi g 960 10c-1h _ gi g 1080
1 (32 max.) Ad-1h 4 discharging 7c-1h 0 discharging
59v-w
47v-w
10c-1h 10c-2h
Industrial lateral 81 15¢-3h 25 charging 720 8c-1h 18 charging 280
2 (32 max.) 7d-1h 2 discharging 11d-1h 11 discharging
67v-w T7v-w

Table 6 illustrates the number of vehicles incoming and number of charging and discharging points considered
for Industrial lateral-1 and Industrial lateral-2 at various charging points at 1 pm. The charging schedules are
presented for cases without and with PSO. The case without PSO considers the maximum possible loading capacity
as given in Table 1.

Table 6: Industrial Lateral Charging Station Schedule at 1 pm

. . Without PSO With PSO
Charging Incoming
Station Vehicles hedule | ENEray Cost hedule | EMET9Y Cost
Schedule Requirement | (Rs.) Schedule Requirement (Rs.)
iéﬁgﬂ 10c-3h
i 31 chargi - 31 chargi
Industrial lateral | ;5 10c-1h harging 1 1pg9 | 12N T 1240
1 (32 max.) 1d-1h 1 discharging 10c-1h 0 discharging
69v-w
68v-w
ot
i ) 24 chargi - 23 chargi
Industrial lateral 120 4c-1h c argmg 640 9c-2h c arglng 680
2 (32 max.) 8d-1h 8 discharging 6d-1h 6 discharging
91v-w
88v-w

Table 7 illustrates the number of vehicles incoming and number of charging and discharging points considered
for Industrial lateral-1 and Industrial lateral-2 at various charging points at 2 pm. The charging schedules are
presented for cases without and with PSO. The case without PSO considers the maximum possible loading capacity
as given in Table 1.
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Table 7: Industrial Lateral Charging Station Schedule at 2 pm

] ] Without PSO With PSO
Charging | Incoming
Station Vehicles Energy Cost Energy Cost
Schedule Requirement | (Rs.) Schedule Requirement | (Rs.)
11c-2h 10c-2h
Industrial 10c-1h . 11c-1h .
27 chargin 24 chargin
lateral 1 93 6¢-3h 5 di hgl g 880 3c-1h 1 di hgl g 920
(32 max.) 5d-1h ischarging 1d-1h ischarging
150v-w 158v-w
. 10c-2h 14¢-2h
Industrial 10c-1h 25 charging 9c-1h 23 charging
lateral 2 127 5c-3h 7 discharai 720 6d-1h 6 discharai 680
(32 max)) 7d-1h ischarging ischarging
212v-w
203v-w

Table 8 illustrates the number of vehicles incoming and number of charging and discharging points considered
for commercial lateral at various charging points throughout the day. The charging schedules are presented for
cases without and with PSO. The case without PSO considers the maximum possible loading capacity as given in
Table 1.

Table 8: Commercial Lateral Charging Station Schedule for the whole day

. . Without PSO With PSO
Commercial Incoming
lateral (30 max.) | Vehicles | g.poqje | ENErOY Cost | onedule | EMETYY Cost
Requirement | (Rs.) Requirement | (Rs.)
15¢-2h iiclrl‘h
Time (at 11 am) 8 14c-1h 30 1200 30 1200
Ov-w 10c-1h
22v-w
11c-1h
Time (at 12 pm) 15c-1h 30 1200 | 1lc-1h 22 880
Ov-w
Ov-w
10c-2h 10c-2h
Time (at 1 pm) 30 20c-1h 30 1200 | 18c-1h 28 1120
Ov-w 2v-w
-
Time (at 2 pm) 45 30 1200 | 19c-1h 29 1160
10c-1h 28v-W
25v-w
10c-1h 5¢-2h
Time (at 3 pm) 35 20c-1h 30 1200 | 25c-1h 30 1200
40v-w 33v-w
10c-2h 5¢-1h
Time (at 4 pm) 35 20c-1h 30 1200 | 25c-1h 30 1200
45v-w 43v-w
10c-1h 10c-2h
Time (at 5 pm) 20 20c-1h 30 1200 | 20c-1h 30 1200
45v-w 33v-w
20c-1h 10c-1h
Time (at 6 pm) 27 10c-2h 30 1200 | 20c-1h 30 1200
42v-w 40v-w
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. . Without PSO With PSO
Commercial Incoming
lateral (30 max.) | Vehicles Energy Cost Energy Cost
Schedule Requirement | (Rs.) Schedule Requirement | (Rs.)
10c-1h 20c-2h
Time (at 7 pm) 26 20c-1h 30 1200 | 10c-1h 30 1200
48v-w 36v-w

Table 9 shows the difference in Peak to Average Ratio (PAR) and costs with and without PSO optimization
across different times of the day. The total cost with PSO optimization shows a significant reduction, amounting
to Rs. 41,040/- compared to Rs. 45,480/- without PSO.

Table 9: Different time durations considered for PAR and COST without and with PSO

Time PAR without | PAR with COST without | COST with
PSO PSO PSO PSO
8 AM 4.59 4.48 3040 2720
9 AM 4.68 4.57 2720 2320
10 AM 472 4.60 2480 2360
11 AM 4.67 4.57 3280 3240
12 PM 4.79 4.68 2800 2440
1PM 5.00 4.86 3040 3040
2PM 4.94 4.80 2800 2760
3PM 5.07 4.95 2800 2720
4 PM 4.95 4.81 3040 2600
5PM 477 4.63 3120 3120
6 PM 4.71 4.58 2960 2800
7PM 4.67 4.58 3040 2960
8 PM 4.67 4.56 2880 2080
9PM 4.59 4.49 3440 2960
10 PM 4.59 4.47 4040 2920
TOTAL COST 45480 41040

IV. CONCLUSION

An efficient charging schedule strategy for best utilization of the PEV car parking lot has been developed.
Depending on the charge of battery of PEVs during arrival and the required charge at the time of leaving the parking
lot, a fuzzy based decision system is designed to address the energy consumption of PEVs in the industrial and
commercial laterals of a 33-bus distribution system.

Optimal charging schedule for the car park is implemented using PSO algorithm. This scheduling approach
reduces the cost of parking lot and EVs and optimize the Peak to Average Ratio (PAR). This strategy results in
advantages such as reducing the operating costs of the parking lot, decreasing the peak load of the system and
upholding the voltage levels of the distribution network.

The maximum capacity of a charging station is assessed using load flow study considering the maximum
possible deviation on voltage allowed. Optimal scheduling using PSO aids this loading of charging stations so that
the peak to average ratio is minimum while adhering to the maximum capacity constraint. Thus efficiently
scheduling is done that also results in reduction of operating cost of the car parking operator.
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