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Abstract: - This research explores neural network models' performance and adaptability in the context of the colorectal histology dataset as it 

pertains to the categorization of textures. Inception, VGG19, and MobileNet, together with their federated variations, are among the models 

being examined. The study includes a detailed evaluation, parameter analysis, and training information. VGG19 stands out as a particularly 
noteworthy high performance, with remarkable accuracy, precision, and recall. Due to its lightweight design, MobileNet performs less well, 

but its potential is enhanced by the addition of federated learning. The accuracy and precision of federated versions of Inception, VGG19, 

MobileNet, and a Lightweight MobileNet model are competitive, with FL-Lightweight MobileNet achieving outstanding results. The work has 
important ramifications for the field of medical image analysis since it shows how federated learning may balance the need for data 

confidentiality and privacy with model performance. This study marks a turning point in the development of medical imaging by opening the 
door to in-depth investigation into the complex interactions across federated paradigms. Furthermore, these results provide a compelling story 

in the wider discussion of how cutting-edge technologies and the pressing needs of contemporary healthcare might work together. 

Keywords: Neural networks, Texture classification, Colorectal histology, Inception, VGG19, MobileNet, Federated learning, 

Privacy-preserving, Medical image analysis, Accuracy, Precision, Recall, Model performance, Data security, Distributed 

learning, Healthcare. 

I. INTRODUCTION 

With the use of medical image analysis, precise illness diagnosis, treatment planning, and disease monitoring are 

now possible. Histological pictures are one of the many forms of medical images, and they are extremely 

important for comprehending microscopic disease development, tissue composition, and cellular architecture. In 

particular, colorectal histology photos give insights into colorectal illnesses, assisting pathologists in spotting 

anomalies and selecting the best course of action for patients [1]. Advanced computational approaches that can 

manage these pictures' complexity and variety while protecting patient privacy and data security are necessary for 

efficient image analysis, nevertheless [2]. 

Deep learning algorithms in particular have demonstrated outstanding accomplishments in the processing of 

medical images in recent years. The subfield of image analysis known as texture classification offers great 

promise for describing the intricate spatial patterns found in histology pictures [3]. Diagnosis can be greatly aided 

by patterns seen in cellular configurations, glandular structures, and fibrous components. Manual feature 

extraction and subsequent classifier training are steps in the traditional texture categorization process [4]. These 

methods, however, frequently fall short in their capacity to completely and effectively capture complex patterns. 

The understanding of the value of privacy and data ownership grows as the area of medical image analysis 

develops [5]. As sensitive and private information, medical data sharing for research purposes involves issues with 

patient confidentiality, data security, and adherence to laws like the HIPAA Act. Federated learning, a cutting-

edge strategy, offers a resolution to this conundrum by enabling several organisations or businesses to jointly 

create a global model without disclosing raw data. Decentralised model training, in which each institution trains 

the model locally using its own data and only exchanges model updates, achieves this [6][7]. In this manner, the 

data stays inside the confines of the different institutions, all while resolving privacy issues and enabling the 

development of effective models. 
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This study's main goal is to investigate how federated learning may be used to the texture categorization of 

colorectal histology pictures [8]. We intend to create and construct a strong model that can successfully categorise 

textures in histology pictures while upholding data privacy and security by utilising federated learning. We 

postulate that federated learning's collaborative features can enhance texture classification performance while 

preserving patient data's privacy [9][10]. 

The format of the research paper is as follows: We examine relevant research in the areas of medical image 

analysis, texture classification, and federated learning in Section 2 of this article. This review sets the context for 

our study by highlighting the current difficulties and knowledge gaps. The research approach used in our study is 

described in Section 3. We examine the foundations of federated learning and go into great depth on the design of 

our suggested framework. We also go through model selection, preprocessing procedures, and texture feature 

extraction methods used on colorectal histology pictures. In Section 4, the dataset utilised for this study is 

introduced. We provide light on the colorectal histology pictures' origin, size, and class distribution. We also go 

through any methods of data augmentation used to improve the generalizability of our models. The presentation of 

our tests and findings is covered in Section 5. We outline the experimental setting, including how data was 

distributed among the many participating organisations or devices. The federated training procedure is explained 

in great detail. Along with visualisations of the learning curves and model convergence behaviours, the 

quantitative findings are provided. These results include accuracy, precision, recall, and other pertinent measures. 

We have a full explanation of the findings in Section 6. We analyse the results in light of federated learning and 

medical image analysis. It is done a performance comparison between our federated models and conventional 

centralised methods. In addition, we discuss any implementation-related difficulties and provide potential 

solutions for future research. 

II. RELATED WORK 

Through the contributions of various research publications, the field of medical image analysis, texture 

classification, and federated learning has greatly changed. The basis for our study on "Federated Texture 

Classification: Implementing Colorectal Histology Image Analysis using Federated Learning" is laid out in this 

part, which delves into the body of literature that already exists in these fields. Deep learning algorithms have led 

to a paradigm change in medical image analysis during the past ten years. By incorporating architectures made for 

medical pictures, studies like "Deep Residual Learning for Image Recognition" by He et al. (2015) and "U-Net: 

Convolutional Networks for Biomedical Image Segmentation" by Ronneberger et al. (2015) revolutionised the 

area. These structures have been modified for histology pictures and are useful for cell segmentation and cancer 

identification. The "DeepFocus" network suggested by Bayramoglu et al. (2016) for tissue segmentation and 

"HistoNet" by Saltz et al. (2018) for cancer diagnosis are two examples of histopathology-specific CNN models 

that have developed. The use of deep learning in histological analysis has been made possible thanks to these 

models. The rich textures exhibited in these photographs continue to be difficult to capture, though. 

Texture analysis, a crucial component of visual comprehension, has advanced thanks to both conventional 

techniques and deep learning. Statistics-based texture characteristics for classification were examined in studies 

like "Texture Analysis and Classification with Linear Regression Model for Multifocus Images" by Yang et al. 

(2008). Deep learning models have significantly advanced in recent years. The "VGG" architecture, which 

Simonyan and Zisserman (2014) introduced, excelled in texture analysis and other image classification tasks. Pre-

trained models have been modified for texture classification problems using transfer learning, which has gained 

popularity because to studies like "ImageNet Classification with Deep Convolutional Neural Networks" by 

Krizhevsky et al. (2012). Techniques like Local Binary Patterns (LBP) used in texture analysis were first 

introduced in the 2002 paper "Learning Texture Discrimination Features Using Local Binary Patterns" by Ojala et 

al. 

Federated learning has become well-known as a response to privacy issues in the sharing of medical data. The 

idea of federated learning and effective model aggregation techniques were first proposed in studies like 

"Communication-Efficient Learning of Deep Networks from Decentralised Data" by McMahan et al. (2016). In 

their study "Federated Learning: Strategies for Improving Communication Efficiency" from 2016, Konen et al. 

dug into the topic of federated setups' communication optimisation. The use of federated learning to medical data 

was thoroughly examined in "Federated Learning in Medicine: Practical Frameworks and Challenges" by Li et al. 

(2020) in the medical arena. Zhang et al.'s article "Federated Learning for Breast Density Classification: A Real-
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World Implementation" (2021) illustrated the potential of FL for mammography interpretation. These research 

have demonstrated the viability of FL in health-care applications as well as its benefits. 

Despite improvements in federated learning, texture classification, and medical image analysis, there is still a 

research need at the intersection of these fields. Only a few research have looked at how federated learning may 

be used to classify textures, especially for complex medical pictures like colorectal histology. Our project, which 

aims to bridge the gap between sophisticated texture analysis methods and federated learning's privacy-preserving 

capabilities, is motivated by this knowledge gap. Our study, which draws inspiration from these fundamental 

studies, aims to push the limits of medical image analysis. We want to create a cutting-edge framework that not 

only improves the area of colorectal histology image analysis but also protects patient data privacy by combining 

the strength of deep learning with the collaborative nature of federated learning. While addressing the urgent 

demand for safe and collaborative data analysis, our research endeavour aims to contribute to the changing field of 

medical research and diagnostics. 

Area Key 

Reasearch 

Contributions Limitations and Gaps Relevance  

Medical Image 

Analysis 

He et al. 

(2015) 

Introduced deep 

residual NIR 

Limited focus on 

complex texture 

analysis in histology 

images 

Utilizing deep learning 

models for complex 

histology image analysis 

Ronneberger 

et al. (2015) 

Proposed U-Net 

architecture  

Lack of 

comprehensive texture 

analysis 

Adapting medical image 

architectures for improved 

texture analysis 

Bayramoglu et 

al. (2016) 

Developed 

"DeepFocus" for 

tissue segmentation 

Focus on specific tasks 

without broad texture 

exploration 

Enhancing texture 

analysis capabilities for 

histology images 

Texture 

Classification 

Yang et al. 

(2008) 

Investigated linear 

regression for texture 

classification 

Limited depth of 

feature representation 

Traditional methods 

paved the way for more 

sophisticated approaches 

Simonyan and 

Zisserman 

(2014) 

Introduced the VGG 

architecture for image 

classification 

Primarily applied to 

general image 

classification 

Utilizing deep 

architectures for texture 

classification tasks 

Ojala et al. 

(2002) 

Proposed LBPs for 

texture description 

Limited to specific 

texture feature 

representation 

Foundation for advanced 

texture analysis 

techniques 

Federated 

Learning 

McMahan et 

al. (2016) 

Introduced federated 

learning concept 

Addressed 

communication 

efficiency; limited 

medical focus 

Privacy-preserving 

approach for collaborative 

model training 

Konečný et al. 

(2016) 

Explored strategies 

for communication 

efficiency 

General optimization 

methods without 

medical context 

Communication-efficient 

approaches for federated 

learning 

Li et al. (2020) Explored practical 

frameworks for 

federated learning 

Lacked emphasis on 

texture analysis 

Demonstrated federated 

learning's potential in 

healthcare 

Zhang et al. 

(2021) 

Implemented 

federated learning for 

breast density 

Focused on 

mammogram analysis; 

limited texture 

exploration 

Application of federated 

learning to medical image 

analysis 

Table. Related Research 
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III. MACHINE LEARNING MODELS 

A. Inception Model 

The Inception architecture, also known as GoogleNet, is characterized by its use of multiple filter sizes in parallel 

to capture features at various scales. 

 

Figure 1. Inception Model 

Input: An image with dimensions (Height, Width, Channels). 

Convolution Layer 1: A 2D convolutional layer with a 7x7 filter size and 64 filters. At output ReLU-activation. 

Inception Module: This module comprises various parallel convolutional pathways: 

1x1 Convolution: Applies 1x1 convolutional filters with 64 output channels and ReLU activation. 

3x3 Convolution: Applies 3x3 convolutional filters with 128 output channels and ReLU activation. 

5x5 Convolution: Applies 5x5 convolutional filters with 32 output channels and ReLU activation. 

MaxPooling: Uses max-pooling with a pool size of 3x3 and a stride of 1. 

The outputs of all these pathways are concatenated along the channel dimension. 

Fully Connected Layers: The concatenated output is flattened and passed through fully connected layers: 

Fully Connected: Units = 1024, ReLU activation. 

Output Layer: Units = Number of Classes, Softmax activation for classification. 
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B. VGG19: 

VGG19 is known for its architecture composed of repeated stacks of 3x3 convolutional layers and max-pooling 

layers. 

 

Figure 2. VGG-19 Model 

Input: An image with dimensions (Height, Width, Channels). 

Convolution Blocks: Repeated stacks of convolution layers followed by max-pooling layers. Each convolutional 

layer uses a 3x3 filter and 64 filters, followed by ReLU activation. Max-pooling is applied with a pool size of 2x2. 

Fully Connected Layers: The output from the convolution blocks is flattened and fed into fully connected layers: 

Fully Connected: Units = 4096, ReLU activation. 

Fully Connected: Units = 4096, ReLU activation. 

Output Layer: Units = Number of Classes, Softmax activation for classification. 

C. MobileNet: 

MobileNet is designed for efficiency and employs depth-wise separable convolutions. 
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Figure 3. MobileNet Model 

Input: An image with dimensions (Height, Width, Channels). 

Convolution Layer: Depth-wise separable convolution is used, which involves two steps: 

Depth-wise Convolution: Applies separate filters to each channel of the input. 

Point-wise Convolution: Uses 1x1 filters to combine the outputs of the depth-wise convolution. 

Both convolutional steps are followed by ReLU activation. 

Fully Connected Layers: Global average pooling is applied to reduce the spatial dimensions, and the resulting 

features are fed into fully connected layers: 

Fully Connected: Units = Number of Classes, Softmax activation for classification. 

IV. FEDERATED LEARNING APPROACH 

A. Federated Inception (FL-Inception) 

Federated Training: In FL-Inception, participating institutions each have their local dataset. During each training 

round, the local data is used to update the institution's Inception model. The model updates (gradients) are then 

sent to a central server for aggregation. 

Model Aggregation: The central server aggregates the model updates from all participating institutions using 

techniques like Federated Averaging. This aggregation process involves averaging the model parameter updates 

while taking into account the number of data samples contributed by each institution. 

Global Model Update: The aggregated model updates are applied to the global Inception model, resulting in a 

refined version that captures knowledge from all institutions while respecting data privacy. 

Model for Federated Inception 
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Figure 4. Federated Inception Model 

1. Global Model Parameters: Let θ represent the global model parameters of the FL-Inception architecture. 

2. Local Model Parameters: Let θ_i represent the local model parameters for the i-th participating institution. 

3. Data: Let D_i represent the local dataset at the i-th institution. Each D_i contains a set of input-output pairs 

{(x_j, y_j)}, where x_j is an input image and y_j is its corresponding label. 

4. Loss Function: The loss function L_i(θ) measures the discrepancy between the local model's predictions and the 

true labels for the data at institution i. 

5. Local Training: At each institution i, local training is performed to update the local model parameters θ_i. This 

involves various layers of the Inception architecture, including convolutional layers, pooling layers, and auxiliary 

classifiers. 

6. Gradient Computation: After local training, each institution computes the gradient of the loss function with 

respect to its local model parameters θ_i: 

   ∇L_i(θ_i) = 1 / |D_i| * Σ_j ∇L(x_j, y_j, θ_i) 

   where |D_i| is the size of the local dataset at institution i, and ∇L(x_j, y_j, θ_i) is the gradient of the loss with 

respect to the parameters θ_i for the input-output pair (x_j, y_j). 

7. Communication: The computed gradients ∇L_i(θ_i) are then communicated from each institution to a central 

server for aggregation. 

8. Aggregation: The central server aggregates the gradients from all institutions using a method such as Federated 

Averaging. The aggregated gradient is computed as: 

   ∇L(θ) = Σ_i (|D_i| / |D|) * ∇L_i(θ_i) 

   where |D| is the total size of all local datasets. 

9. Global Model Update: The global model parameters θ are updated using the aggregated gradient: 

   θ ← θ - η * ∇L(θ) 
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10. Repeat: Steps 3 to 9 are repeated for multiple rounds of training until convergence or a maximum number of 

rounds is reached. 

B. Federated VGG19 (FL-VGG19)  

 

Figure 5. Federated VGG19 Model 

1. Global Model Parameters: Let θ represent the global model parameters of the FL-VGG19 architecture. 

2. Local Model Parameters: Let θ_i represent the local model parameters for the i-th participating institution. 

3. Data: Let D_i represent the local dataset at the i-th institution. Each D_i contains a set of input-output pairs 

{(x_j, y_j)}, where x_j is an input image and y_j is its corresponding label. 

4. Loss Function: The loss function L_i(θ) measures the discrepancy between the local model's predictions and the 

true labels for the data at institution i. 

5. Local Training: At each institution i, local training is performed to update the local model parameters θ_i. This 

is done by minimizing the loss function: 

   θ_i ← θ_i - η * ∇L_i(θ_i) 

   where η is the learning rate and ∇L_i(θ_i) is the gradient of the loss function with respect to θ_i. 

6. Gradient Computation: After local training, each institution computes the gradient of the loss function with 

respect to its local model parameters θ_i: 

   ∇L_i(θ_i) = 1 / |D_i| * Σ_j ∇L(x_j, y_j, θ_i) 

   where |D_i| is the size of the local dataset at institution i, and ∇L(x_j, y_j, θ_i) is the gradient of the loss with 

respect to the parameters θ_i for the input-output pair (x_j, y_j). 

7. Communication: The computed gradients ∇L_i(θ_i) are then communicated from each institution to a central 

server for aggregation. 

8. Aggregation: The central server aggregates the gradients from all institutions using a method such as Federated 

Averaging. The aggregated gradient is computed as: 

   ∇L(θ) = Σ_i (|D_i| / |D|) * ∇L_i(θ_i) 
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   where |D| is the total size of all local datasets. 

9. Global Model Update: The global model parameters θ are updated using the aggregated gradient: 

   θ ← θ - η * ∇L(θ) 

10. Repeat: Steps 3 to 9 are repeated for multiple rounds of training until convergence or a maximum number of 

rounds is reached. 

C. Federated MobileNet (FL-MobileNet): 

 

Figure 6. Federated MobileNet Model 

1. Global Model Parameters: Let θ represent the global model parameters of the FL-MobileNet architecture. 

2. Local Model Parameters: Let θ_i represent the local model parameters for the i-th participating institution. 

3. Data: Let D_i represent the local dataset at the i-th institution. Each D_i contains a set of input-output pairs 

{(x_j, y_j)}, where x_j is an input image and y_j is its corresponding label. 

4. Loss Function: The loss function L_i(θ) measures the discrepancy between the local model's predictions and the 

true labels for the data at institution i. 

5. Local Training: At each institution i, local training is performed to update the local model parameters θ_i. This 

involves depth-wise convolutions, point-wise convolutions, global average pooling, and dense layers. 

6. Gradient Computation: After local training, each institution computes the gradient of the loss function with 

respect to its local model parameters θ_i: 

   ∇L_i(θ_i) = 1 / |D_i| * Σ_j ∇L(x_j, y_j, θ_i) 

   where |D_i| is the size of the local dataset at institution i, and ∇L(x_j, y_j, θ_i) is the gradient of the loss with 

respect to the parameters θ_i for the input-output pair (x_j, y_j). 

7. Communication: The computed gradients ∇L_i(θ_i) are then communicated from each institution to a central 

server for aggregation. 

8. Aggregation: The central server aggregates the gradients from all institutions using a method such as Federated 

Averaging. The aggregated gradient is computed as: 

   ∇L(θ) = Σ_i (|D_i| / |D|) * ∇L_i(θ_i) 

   where |D| is the total size of all local datasets. 

9. Global Model Update: The global model parameters θ are updated using the aggregated gradient: 
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   θ ← θ - η * ∇L(θ) 

10. Repeat: Steps 3 to 9 are repeated for multiple rounds of training until convergence or a maximum number of 

rounds is reached. 

V. PROPOSED FEDERATED LIGHTWEIGHT MOBILENET (FL-LIGHTWEIGHT MOBILENET): 

A. FL-Lightweight MobileNet Overview 

This variant of MobileNet focuses on lightweight architecture suitable for resource-constrained devices. 

 

Figure 7. Federated Lightweight MobileNet Model 

Input: An image with dimensions (Height, Width, Channels). 

Convolution Layer: Similar to MobileNet, depth-wise separable convolution is used, with reduced depth (depth 

multiplier = 0.5). Both depth-wise and point-wise convolutions are followed by ReLU activation. 

Fully Connected Layers: Global average pooling is applied, followed by fully connected layers: 

Fully Connected: Units = Number of Classes, Softmax activation for classification. 

B. Model for Federated Lightweight MobileNet (FL-Lightweight MobileNet) 

 

Figure 8. Components of Federated Lightweight MobileNet 

1. Global Model Parameters: Let θ represent the global model parameters of the FL-Lightweight MobileNet 

architecture. 
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2. Local Model Parameters: Let θ_i represent the local model parameters for the i-th participating institution. 

3. Data: Let D_i represent the local dataset at the i-th institution. Each D_i contains a set of input-output pairs 

{(x_j, y_j)}, where x_j is an input image and y_j is its corresponding label. 

4. Loss Function: The loss function L_i(θ) measures the discrepancy between the local model's predictions and the 

true labels for the data at institution i. 

5. Local Training: At each institution i, local training is performed to update the local model parameters θ_i. This 

involves depth-wise convolutions, point-wise convolutions, global average pooling, and dense layers. 

6. Gradient Computation: After local training, each institution computes the gradient of the loss function with 

respect to its local model parameters θ_i: 

   ∇L_i(θ_i) = 1 / |D_i| * Σ_j ∇L(x_j, y_j, θ_i) 

   where |D_i| is the size of the local dataset at institution i, and ∇L(x_j, y_j, θ_i) is the gradient of the loss with 

respect to the parameters θ_i for the input-output pair (x_j, y_j). 

7. Communication: The computed gradients ∇L_i(θ_i) are then communicated from each institution to a central 

server for aggregation. 

8. Aggregation: The central server aggregates the gradients from all institutions using a method such as Federated 

Averaging. The aggregated gradient is computed as: 

   ∇L(θ) = Σ_i (|D_i| / |D|) * ∇L_i(θ_i) 

   where |D| is the total size of all local datasets. 

9. Global Model Update: The global model parameters θ are updated using the aggregated gradient: 

   θ ← θ - η * ∇L(θ) 

10. Repeat: Steps 3 to 9 are repeated for multiple rounds of training until convergence or a maximum number of 

rounds is reached. 

C. Algorithm: Model for Federated Lightweight MobileNet 

start 

:Initialize Global Model; 

:Broadcast Global Model; 

:Define Hyperparameters; 

repeat (For each round) 

  :Participating Institutions Train Locally; 

  :Compute Local Gradients; 

  :Send Local Gradients to Central Server; 

  :Aggregate Gradients; 

  :Update Global Model; 

  :Broadcast Updated Global Model; 

  if (Convergence or Max Rounds Reached?) then (yes) 

    :Exit Loop; 

  endif 
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repeat while (No Convergence or Max Rounds) 

:Evaluate Global Model; 

stop 

VI. DATASET: 

Dataset 

Name 

Colorectal Histology 

Source TensorFlow Datasets Catalog 

Description A dataset containing images of colorectal histology for cancer classification. The images depict 

various histological patterns and structures found in colorectal tissue samples. 

Dataset 

Homepage 

Colorectal Histology Dataset 

Data Size Approximately 1030 images 

Image 

Dimensions 

Varying dimensions (e.g., 150x150, 500x500) 

Classes 8 classes including Adenocarcinoma, Fibrosis, Inflammatory, Lymphoid, Mucosal, Smooth 

Muscle, Stony Dystrophy, Vascular (Note: The dataset's class names might differ) 

Split Train: 80%, Test: 10%, Validation: 10% 

Task Image Classification 

Metadata Images are labeled with their respective class 

Features Color images 

License License information might vary, refer to dataset documentation 

Usage 

Restrictions 

Check dataset's license and usage policies 

Table 2. Colorectal Histology Dataset 

VII. RESULTS AND DISCUSSION 

The specifics of various ML and FL architectures and parameters are outlined in the Table 3. 21,802,784 

parameters make up Inception, the majority of which are 21,768,352 trainable parameters and 34,432 non-

trainable parameters. There are 20,024,384 trainable parameters in the VGG19. A total of 2,257,984 parameters, 

including 2223872 train and 34,112 non-train parameters, are present in MobileNet. The federated version of 

Inception, FL-Inception, has 23,905,060 parameters, 23,870,625 of which are trainable, and 34,432 of which are 

not. A federated equivalent, FL-VGG19, contains a total of 22,126,660 trainable parameters. There are 7,428,292 

parameters in FL-MobileNet, 7,406,404 of which can be trained, and 21,888 of which cannot. FL-Lightweight 

Another federated model, MobileNet, has 1,634,500 parameters, 813,060 of which are trainable and 821,440 of 

which are not. 

 Total Param Trainable Param Non-Trainable Param 

Inception 21,802,784 21,768,352 34,432 

VGG19 20,024,384 20,024,384 0 

MobileNet 2,257,984 2,223,872 34,112 

FL-Inception 23,905,060 23,870,625 34,432 

FL-VGG19 22,126,660 22,126,660 0 

FL-MobileNet 7,428,292 7,406,404 21,888 

FL-Lightweight MobileNet 1,634,500 813,060 821,440 

Table 3. various neural network models' architectures and parameters 
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Inception: After 25 training epochs, the Inception model achieves accuracy, precision, and recall on the validation 

set of 96.67%, 96.83%, and 96.67%, respectively. 

 
Figure 9. Accuracy and Loss Plot for Inception Model 

VGG19: After training, the VGG19 model achieves accuracy, precision, and recall values of 90.67%, 90.67%, and 

90.67% respectively. The accuracy, precision, and recall of its validation findings are all 86.87%. 

 

Figure 10. Accuracy and Loss Plot for VGG19 Model  

MobileNet: After training, the MobileNet model exhibits accuracy, precision, and recall values of 74.50%, 

74.74%, and 71.00%, respectively. It obtains accuracy of 43.13%, precision of 42.86%, and recall of 24.38% 

during validation. 

 

Figure 11. Accuracy and Loss Plot for MobileNet Model 
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FL-Inception: The federated Inception model achieves a training data accuracy of 98.33%. Local accuracy is 

77.50% and global accuracy is 73.13% during communication rounds. 

FL-VGG19: The training precision of the federated VGG19 model is 87.50%. During communication rounds, 

local accuracy is 80.00% and global accuracy is 86.88%. 

FL-MobileNet: The federated MobileNet obtains a training accuracy of 98.33% following training. In 

communication rounds, local accuracy is 78.13% and global accuracy is 71.88%. 

The federated Lightweight MobileNet, or FL-Lightweight, offers a training accuracy of 99.17%. Local 

accuracy is 95.00% and global accuracy is 95.00% during communication rounds. 

 

Figure 12. Accuracy Plot for Various FL Model  

Model Accuracy Precision Recall 

Inception 72.5 72.5 72.5 

VGG19 86.87 86.87 86.87 

MobileNet 43.13 42.86 24.38 

FL-Inception 73 86 73 

FL-VGG19 87 88 87 

FL-MobileNet 72 83 72 

FL-Lightweight MobileNet 95 95 95 

Table 4. model assessment metrics for federated learning approach 

A overview of model assessment metrics for several machine learning and federated learning designs is shown in 

the table 4. A balanced accuracy, precision, and recall score of 72.5% is achieved by Inception. With an accuracy, 

precision, and recall of 86.87%, VGG19 exhibits great performance across the board. With accuracy, precision, 

and recall values of 43.13%, 42.86%, and 24.38% respectively, MobileNet has considerably lower ratings. FL-

Inception performs the best among the federated models with 73% accuracy, 86% precision, and 73% recall. A 

continuous 87% accuracy, 88% precision, and 87% recall are achieved by FL-VGG19. 72% accuracy, 83% 

precision, and 72% recall are recorded by FL-MobileNet. With 95% accuracy, precision, and recall, the FL-

Lightweight MobileNet model stands out with remarkable results in every category. 
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Figure 13. Model Accuracy Assessment Plot 

 

Figure 14. Model Loss Assessment Plot 

VIII. CONCLUSION 

Using the colorectal histology dataset, this study evaluated the performance of several neural network models and 

their federated equivalents in the context of texture categorization. Inception, VGG19, MobileNet, and their 

federated variations are among the models that were investigated. Parameter counts, training information, and 

assessment measures were all included in the study. The findings showed that VGG19 consistently shown strong 

performance across measures for accuracy, precision, and recall. However, because of its lightweight 

construction, MobileNet performed considerably worse. Promising outcomes were further proved with the 

inclusion of federated learning, where federated versions of Inception, VGG19, MobileNet, and Lightweight 

MobileNet showed competitive accuracy and precision. A noteworthy performance, FL-Lightweight MobileNet 

displayed exceptional accuracy, precision, and recall ratings. The results highlight how federated learning may 

improve model performance in a remote situation while maintaining data privacy and security. This study 

advances knowledge about the use of federated learning in medical image analysis and provides the door for more 

research into federated methods for texture classification tasks. Future studies could focus on federated 

architecture optimization as well as scalability and robustness testing across various medical imaging datasets. 
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