
J. Electrical Systems 19-2 (2023): 116-130 

116 

1Snehal A. Patil,  

2Nilesh P1 Sable,  

3Parikshit N. Mahalle,  

4Gitanjali Rahul Shinde 

Intelligent Mechanisms for PdM in 

Automotive Machinery: A 

Comprehensive Analysis using ML/DL 

  

Abstract: - Predictive maintenance (PdM) technique involves analyzing and utilizing data to identify problems before they happen. It can help 

prevent costly repairs and downtime. In the past few years, the use of intelligent tools for PdM in automotive machinery has been increasing. 

These tools can be used to analyze and collect data from various sources, such as cloud computing and sensors. In the prediction of failures, this 

data can be used in combination with machine learning algorithms. With the help of advanced technologies, such as machine learning and 

sensors, PdM has become a viable option to maintain machinery while minimizing costs and downtime. The paper presents a comprehensive 

analysis of the various components of the intelligent tools that are used for PdM. It starts by exploring the different kinds of sensors and their 

functions in monitoring the condition of the equipment. The paper then explores the synergistic relationship between machine learning and data 

analytics, demonstrating how these technologies can help identify potential issues, predict the remaining useful life of the equipment, and detect 

early anomalies. The paper reviews the literature on the use of intelligent tools and sensors for PdM in automotive machinery. It delves into the 

diverse kinds of mechanisms that have been employed for this type of PdM, the pros and cons of using such tools, as well as the possible 

directions in this domain. Despite the various challenges that have been presented, the potential of implementing intelligent tools in automotive 

machinery is still immense. They can help prevent equipment downtime and improve the safety and efficiency of the operations of the machinery. 

As the technology matures, we can expect the adoption of such mechanisms to increase. The report emphasizes the significant contribution of 

intelligent tools and sensors to the optimization of the maintenance schedules and the reduction of unplanned downtime in automotive machinery. 

The findings of this study provide a roadmap for practitioners, researchers, and industrial organizations looking to harness the potential of such 

mechanisms to guarantee the longevity of their assets. 

Keywords: PdM, Intelligent mechanisms, Cloud computing, Data analytics, Failure detection, Proactive maintenance, Cost 

savings. 

I. INTRODUCTION 

In today's fast-paced and technologically driven world, machinery forms the backbone of industries across diverse 

sectors. The seamless operation of these machinery assets is critical for maintaining productivity, ensuring product 

quality, and optimizing resource utilization. However, as the complexity and sophistication of machinery have 

increased, so too have the challenges associated with their maintenance. Unplanned downtime due to machinery 

failures can lead to substantial financial losses, disrupted supply chains, and diminished customer satisfaction. As a 

result, the concept of maintenance has evolved from reactive and preventive approaches to more proactive and data-

driven strategies, such as PdM[1]. 

PdM is a strategic paradigm that leverages advanced technologies to anticipate and prevent machinery failures 

before they occur as shown in fig.1. Unlike traditional maintenance practices that rely on fixed schedules or 

thresholds, PdM harnesses real-time data and analytical techniques to predict impending failures based on the actual 

condition of the machinery. This shift from a time-based to a condition-based maintenance approach holds the 

potential to revolutionize industries by minimizing downtime, optimizing maintenance schedules, and reducing 

overall operational costs[2]. 
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Fig. 1PdM[3] 

One area where PdM has gained significant traction is within the realm of automotive machinery. In an era 

characterized by interconnected systems, sophisticated sensors, and the convergence of mechanical and digital 

domains, the automotive sector has embraced intelligent mechanisms to enhance the performance and reliability of 

vehicles. From traditional automobiles to heavy-duty industrial vehicles, the need to ensure their uninterrupted 

operation is paramount. However, this pursuit of efficiency and reliability is not exclusive to conventional 

automobiles alone; it extends to a wide range of automotive machinery used in agriculture, construction, logistics, 

and more[4], [5]. 

Intelligent PdM (IPdM) is a proactive approach to maintenance that uses data and analytics to predict when 

equipment will fail. This allows for maintenance to be performed before a failure occurs, preventing downtime and 

costly repairs. Intelligent PdM uses a variety of intelligent mechanisms, such as sensors, machine learning 

algorithms, and cloud computing, to collect and analyze data from equipment. This data is then used to identify 

potential problems before they cause a failure[6], [7]. 

IPdM is becoming increasingly important as equipment becomes more complex and expensive. In the past, 

preventive maintenance was the most common approach to maintenance. This involves scheduling maintenance at 

regular intervals, regardless of the condition of the equipment. However, preventive maintenance can be wasteful, 

as it often leads to unnecessary repairs. Intelligent PdM can help to reduce waste by only scheduling maintenance 

when it is actually needed.  

IPdM can also help to improve the reliability of equipment. By identifying potential problems before they cause a 

failure, intelligent PdM can help to prevent unplanned downtime. This can lead to increased productivity and 

profitability for businesses. Intelligent PdM is also important for sustainability. By preventing equipment from 

failing prematurely, intelligent PdM can help to reduce the environmental impact of manufacturing and other 

industries. Some of the key benefits of intelligent PdM[8], [9]: 

• Reduced downtime: Intelligent PdM can help to reduce downtime by predicting when equipment is likely 

to fail and scheduling maintenance accordingly. This can prevent unplanned breakdowns, which can lead 

to lost productivity and revenue. 

• Reduced costs: Intelligent PdM can help to reduce costs by preventing costly repairs. By identifying 

potential problems before they cause a failure, intelligent PdM can help to take corrective action, such as 

replacing worn parts or adjusting settings. This can prevent major failures, which can be very expensive to 

repair. 

• Improved reliability: Intelligent PdM can help to improve the reliability of equipment by predicting 

potential problems before they cause a failure. This can lead to increased productivity and profitability for 

businesses. 

• Increased sustainability: Intelligent PdM can help to increase sustainability by preventing equipment from 

failing prematurely. By extending the lifespan of equipment, intelligent PdM can help to reduce the 

environmental impact of manufacturing and other industries. 

Intelligent PdM is a powerful tool that can help businesses to improve their bottom line, reduce their environmental 

impact, and improve the reliability of their equipment. 
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This comprehensive review paper aims to delve into the landscape of intelligent mechanisms for PdM in automotive 

machinery. It transcends the boundaries of traditional industries, seeking to unearth the underlying principles, 

technologies, and strategies that drive the seamless functioning of machinery. While the focus is on automotive 

machinery, the insights presented herein are transferrable to a broader spectrum of applications, enabling industries 

to embrace these advancements to their advantage. 

II. LITERATURE REVIEW 

The paradigm of PdM has emerged as a transformative approach to address the demands of modern industries. With 

the integration of data analytics, machine learning, and Industry 4.0 principles, organizations are shifting from 

reactive maintenance practices towards proactive strategies that harness the power of data to anticipate equipment 

failures and optimize maintenance interventions. PdM not only enhances operational efficiency but also reduces 

downtime, minimizes costs, and extends the lifespan of machinery. 

This literature review aims to provide a comprehensive overview of the dynamic field of PdM by examining a 

curated selection of pivotal research papers. These papers span various sectors, ranging from automotive to 

manufacturing, energy to maritime, and explore the applications, challenges, and implications of PdM strategies. 

The reviewed studies highlight the efficacy of data-driven techniques, the significance of multi-model approaches, 

and the role of cutting-edge technologies like digital twins and IoT-enabled systems. By delving into these papers, 

we gain insight into the diverse range of industries benefiting from PdM, paving the way for more informed and 

effective maintenance practices. 

Mohapatra et al.[10] presented a case study of an Industry 4.0 implementation for PdM of diesel generators. They 

demonstrated the application of condition monitoring and IoT-enabled sensors to track the health of diesel generators 

in real-time. The authors highlighted the significance of data collection, analysis, and predictive algorithms in 

proactively identifying potential faults and optimizing maintenance schedules. This research showcased how the 

convergence of Industry 4.0 technologies can lead to improved reliability and performance of critical machinery 

like diesel generators. 

Hurtado et al.[11] provided an in-depth exploration of the challenges and opportunities associated with continual 

learning for PdM. They emphasized the dynamic nature of machinery conditions and the need for adaptive learning 

algorithms that can continuously update and adapt to changing operational environments. The paper discussed 

various aspects of continual learning, including data drift, concept drift, and transfer learning, in the context of PdM. 

By addressing these challenges, the authors provided insights into how machine learning models can effectively 

adapt to evolving machinery conditions and enhance PdM accuracy. 

Montero Jimenez et al.[12] conducted a systematic literature survey on multi-model approaches to PdM, focusing 

on diagnostics and prognostics. They discussed how combining multiple models, such as data-driven and physics-

based models, can lead to more accurate predictions and improved maintenance strategies. The authors highlighted 

the advantages of integrating different perspectives and data sources to enhance fault detection, diagnosis, and 

remaining useful life estimation. This survey served as a comprehensive guide for researchers and practitioners 

interested in exploring multi-model approaches for PdM. 

Dalzochio et al.[13] provided a comprehensive overview of the current status and challenges of applying machine 

learning and reasoning to PdM within the Industry 4.0 framework. They discussed the role of Industry 4.0 

technologies, such as IoT, big data, and cloud computing, in enabling PdM solutions. The authors emphasized the 

need for robust data preprocessing, feature selection, and model validation techniques to ensure accurate predictions 

and effective maintenance strategies. By addressing challenges related to data integration, model selection, and 

interpretability, this study contributed to the understanding of how Industry 4.0 can reshape PdM practices. 

Spendla et al.[14] introduced the concept of PdM within the context of Industry 4.0 principles. They discussed how 

Industry 4.0 technologies, such as IoT, cyber-physical systems, and data analytics, can be harnessed to enable 

proactive and data-driven maintenance strategies. The authors emphasized the integration of sensors, real-time data 

analysis, and predictive algorithms to optimize maintenance activities and enhance operational efficiency. By 

highlighting the synergy between Industry 4.0 and PdM, this paper provided insights into the transformative 

potential of advanced technologies in manufacturing. 
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Jimenez et al.[15] developed a PdM model specifically tailored to vessel machinery in maritime operations. They 

addressed the challenges of maintaining machinery in a maritime environment, where factors like harsh conditions 

and remote locations can impact reliability. The authors discussed how PdM techniques, such as data-driven models 

and sensor integration, can enhance vessel machinery's performance, reduce downtime, and improve operational 

efficiency. This study shed light on the applicability of PdM strategies in the maritime industry, contributing to the 

broader understanding of machinery health in challenging environments. 

Ran et al.[16] conducted a survey of PdM systems, purposes, and approaches, providing an encompassing view of 

the landscape. They discussed various strategies and methods adopted across different sectors, highlighting the 

diversity of PdM applications. The authors explored use cases ranging from manufacturing to energy, emphasizing 

the importance of data quality, feature engineering, and model selection in achieving accurate predictions. By 

summarizing the state of the art in PdM, this survey offered valuable insights into the evolving field and the potential 

benefits of data-driven approaches. 

Aivaliotis et al.[17] focused on the use of Digital Twin technology for PdM in manufacturing. They discussed how 

Digital Twin models, which simulate real-world machinery behavior, can be leveraged to predict and prevent 

failures. The authors highlighted the integration of sensor data, real-time monitoring, and simulation-based 

predictions to enhance maintenance practices. By emphasizing the concept of Digital Twin as a tool for PdM, this 

study contributed to the understanding of how virtual models can drive real-world maintenance improvements. 

Liu et al.[18] presented a PdM approach for wind turbines using digital twin technology. They demonstrated how 

digital twin models of wind turbines can facilitate proactive maintenance by simulating operational conditions and 

predicting potential failures. The authors discussed the integration of data from sensors, simulation models, and 

machine learning algorithms to optimize maintenance strategies and minimize downtime. This study showcased the 

application of digital twin technology in the renewable energy sector, offering insights into how PdM can enhance 

wind turbine performance. 

Rihi et al.[19] focused on the mining industry and presented a case study of PdM for grinding mills. They 

demonstrated how machine learning techniques can be applied to predict failures in grinding mills, which play a 

critical role in ore processing. The authors discussed the integration of sensor data, feature extraction, and 

classification algorithms to achieve accurate predictions and optimize maintenance schedules. This study 

highlighted the potential of PdM to enhance machinery reliability in the mining sector. 

Coelho et al.[20] addressed PdM on sensorized stamping presses using a combination of time series segmentation, 

anomaly detection, and classification algorithms. They discussed a comprehensive approach that involves breaking 

down time series data into segments, detecting anomalies, and classifying machinery conditions. The authors 

emphasized the significance of data preprocessing, feature engineering, and model selection in achieving accurate 

predictions and effective maintenance. By showcasing a multi-step approach to PdM, this research provided insights 

into a holistic methodology for machinery health monitoring. 

Nunes et al.[21] discussed PdM on injection molds using generalized fault trees and anomaly detection. They 

focused on injection molds, critical components in manufacturing, and demonstrated how PdM can be applied to 

optimize maintenance activities and reduce unplanned downtime. The authors discussed the construction of fault 

trees, anomaly detection algorithms, and the integration of these techniques to achieve accurate predictions. This 

study highlighted the importance of domain-specific approaches in PdM and provided insights into effective 

strategies for maintaining complex manufacturing systems. 

These research papers collectively contribute to the advancement of PdM by exploring a range of sectors, 

methodologies, and challenges. They highlight the growing significance of data-driven approaches in ensuring 

machinery reliability, performance, and operational efficiency. Each study provides unique insights into the 

applications, benefits, and limitations of PdM techniques within their respective domains, offering valuable 

knowledge for researchers, practitioners, and industries seeking to implement proactive maintenance strategies. 

PdM in Various sector 

Manufacturing: PdM can help to prevent unplanned downtime in manufacturing plants, which can lead to lost 

productivity and revenue. PdM can be used to predict when machines are likely to fail and schedule maintenance 

accordingly. This can prevent machines from breaking down during production, which can lead to lost productivity 
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and revenue. PdM can also help to identify potential problems before they cause a failure, which can prevent costly 

repairs. For example, PdM can be used to monitor the temperature of machines and identify areas where they are 

overheating. This information can be used to take corrective action, such as replacing worn parts or adjusting 

settings. This can prevent major failures, which can be very expensive to repair[22], [23]. 

Energy: PdM can be used to improve the reliability of power plants and other energy infrastructure. This can help 

to ensure a reliable supply of energy and reduce the risk of outages. PdM can be used to monitor the condition of 

power generators and predict when they are likely to fail. This information can be used to schedule maintenance 

before a failure occurs, preventing outages and reducing the risk of blackouts. PdM can also help to identify potential 

problems with energy infrastructure, such as leaks or corrosion. This information can be used to take corrective 

action before a problem causes a major outage[24], [25]. 

Transportation: PdM can be used to improve the reliability of transportation systems, such as aircraft, trains, and 

ships. This can help to ensure the safety of passengers and cargo and reduce the cost of maintenance. PdM can be 

used to monitor the condition of aircraft engines and predict when they are likely to fail. This information can be 

used to schedule maintenance before a failure occurs, preventing accidents and reducing the risk of delays. PdM 

can also help to identify potential problems with transportation systems, such as worn tires or faulty brakes. This 

information can be used to take corrective action before a problem causes an accident[26]–[28]. 

Healthcare: PdM can be used to improve the reliability of medical equipment. This can help to ensure the safety of 

patients and reduce the cost of healthcare. PdM can be used to monitor the condition of heart monitors and predict 

when they are likely to fail. This information can be used to schedule maintenance before a failure occurs, preventing 

patient harm and reducing the risk of equipment downtime. PdM can also help to identify potential problems with 

medical equipment, such as loose connections or malfunctioning sensors. This information can be used to take 

corrective action before a problem causes a patient injury[29], [30]. 

Agriculture: PdM is becoming increasingly important in the agriculture sector. In this sector, PdM can be used to 

improve the reliability and availability of agricultural machinery, such as tractors, harvesters, and irrigation systems. 

This can help to improve productivity, reduce costs, and increase sustainability. PdM can help to prevent unplanned 

downtime, which can lead to lost productivity. For example, PdM can be used to monitor the condition of tractors 

and predict when they are likely to fail. This information can be used to schedule maintenance before a failure 

occurs, preventing downtime and allowing farmers to get back to work. PdM can help to reduce the cost of 

maintenance by preventing costly repairs. PdM can be used to identify potential problems before they cause a failure. 

This information can be used to take corrective action, such as replacing worn parts or adjusting settings. This can 

prevent major failures, which can be very expensive to repair. PdM can help to reduce the environmental impact of 

agriculture by preventing equipment from operating inefficiently. PdM can be used to monitor the fuel consumption 

of tractors and identify areas where it can be improved. This can help to reduce emissions and save farmers money 

on fuel costs[31], [32].  

Few major sectors where PdM shows prominent effects are discussed in table-1 

Table 1 Major sector where PdM shows prominent effect 

Sector Productivity Cost Sustainability Positive Effect 

Agriculture[33]–

[35] 

Timely 

maintenance 

ensures 

uninterrupted 

farming operations, 

maximizing yield 

Efficiently 

functioning 

machinery speeds 

up planting and 

harvesting 

processes 

Minimized 

downtime reduces 

revenue loss. PdM 

minimizes 

emergency repairs 

and associated costs 

Optimal resource 

utilization reduces 

water and fertilizer 

wastage, promoting 

sustainable farming. 

Efficient machinery 

reduces fuel 

consumption and 

emissions 

Enhanced farm 

output positively 

affects food supply 

and security 
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Manufacturing[32], 

[36], [37] 

Reduced machine 

breakdowns result 

in continuous 

production, meeting 

deadlines 

Lower maintenance 

costs compared to 

reactive 

approaches. 

Avoidance of 

unplanned 

downtime prevents 

production losses 

Properly 

maintained 

machinery operates 

at peak efficiency, 

reducing energy 

waste. Proper waste 

disposal and 

recycling practices 

Consistent 

production fosters 

positive customer 

relationships and 

preserves market 

reputation 

Energy[38]–[41] Uninterrupted 

power generation 

enhances energy 

supply for 

industries and 

households 

Lower operational 

and maintenance 

expenses due to 

planned 

interventions 

- Efficient 

equipment usage 

minimizes energy 

waste and carbon 

footprint 

Reliable energy 

supply positively 

impacts businesses, 

industries, and 

consumers 

Transportation[42]–

[45] 

Reduced vehicle 

breakdowns lead to 

uninterrupted 

logistics and 

transportation 

services 

Decreased 

maintenance and 

repair expenses 

through predictive 

interventions 

Efficient fuel usage 

and emission 

reduction through 

well-maintained 

engines 

Reliable 

transportation 

improves supply 

chain efficiency, 

reduces delays, and 

positively impacts 

economy 

Healthcare[30], 

[46]–[48] 

Medical equipment 

uptime ensures 

continuous patient 

care and treatment 

Lower maintenance 

costs for healthcare 

institutions through 

preventive 

measures 

Energy-efficient 

medical equipment 

usage reduces 

operational costs 

and environmental 

impact 

Reliable healthcare 

services positively 

impact patient 

outcomes and 

enhance healthcare 

providers' 

reputation 

Architecture of Intelligent PdM 

IPdM is a proactive approach to maintenance that uses data and analytics to predict when equipment is likely to fail. 

This allows for maintenance to be performed before a failure occurs, preventing downtime and costly repairs. IPdM 

uses a variety of intelligent mechanisms, such as sensors, machine learning algorithms, and cloud computing, to 

collect and analyze data from equipment. This data is then used to identify potential problems before they cause a 

failure. 

 

Fig. 2 Architecture of IPdM 

Sensors: Sensors collect data from equipment. This data can include temperature, vibration, and pressure readings. 

• Data Storage: The data is stored in a database. This data can be used to train machine learning models and 

to identify potential problems. 

• AI Analytics (ML / DL): ML/DL models are trained on the data collected by sensors. These models can be 

used to predict when equipment is likely to fail. 
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• DSS: The decision support system uses the predictions made by the machine learning models to generate 

alerts and recommendations. These alerts and recommendations can be used to schedule maintenance and 

to take corrective action. 

• Alerts and Recommendations The alerts and recommendations are sent to the appropriate stakeholders. 

This can include engineers, maintenance technicians, and operators. 

• Users: The users act based on the alerts and recommendations. This can include scheduling maintenance, 

replacing parts, or adjusting settings. 

Intricate interplay between data analytics and Ml/DL  

Data analytics and machine learning are two essential components of IPdM. Data analytics is used to collect and 

process data from sensors, while machine learning is used to analyze the data and identify potential problems. Data 

analytics can be used to identify potential faults in a number of ways. For example, it can be used to identify patterns 

in sensor data that indicate a problem. It can also be used to compare the current state of equipment to its historical 

state to identify any changes that may indicate a problem. 

ML/ DL can be used to identify potential faults in even more sophisticated ways. For example, it can be used to 

train models that learn to predict when equipment is likely to fail. It can also be used to detect anomalies in sensor 

data, which can be a sign of a potential problem. The interplay between data analytics and machine learning is 

essential for IPdM. Data analytics provides the data that machine learning needs to learn and identify potential 

problems. Machine learning, on the other hand, can identify patterns and anomalies in data that would be difficult 

or impossible to identify with data analytics alone. 

The combination of data analytics and machine learning can be used to identify potential faults, estimate remaining 

useful life, and detect anomalies with a high degree of accuracy. This can help to prevent unplanned downtime, 

reduce costs, and improve the reliability of equipment. 

• Identifying potential faults: Data analytics can be used to identify potential faults in equipment by looking 

for patterns in sensor data. For example, if the temperature of a machine starts to increase, this could be a 

sign of a problem. Data analytics can be used to identify this pattern and alert the maintenance team before 

the machine fails. 

• Estimating remaining useful life: Machine learning can be used to estimate the remaining useful life of 

equipment by analyzing historical data. This information can be used to schedule maintenance before a 

machine fails. 

• Detecting anomalies: Machine learning can be used to detect anomalies in sensor data. This can be a sign 

of a potential problem, such as a loose bearing or a worn belt. Anomaly detection can help to prevent these 

problems from causing a major failure. 

The interplay between data analytics and machine learning is essential for IPdM. By using these two technologies 

together, businesses can improve the reliability of their equipment, prevent unplanned downtime, and reduce costs. 

Few major work related to ML/DL are discussed in table-2. 

Table 2 Major work related to ML/ DL analysis in PdM 

Author et al. Domain Algorithm used PdM output 

G. A. Susto et 

al.[49] 

Industrial machinery Multiple classifier 

approach 

Remaining useful life 

prediction 

T. praveenkumar 

et al.[50] 

Automobile gearbox Machine learning 

techniques 

Fault diagnosis 

W. Luo, et al.[51] CNC machine tools Hybrid PdM approach Remaining useful life 

prediction and fault 

diagnosis 

K. Velmurugan et 

al.[52] 

SMEs Hybrid fuzzy AHP-

TOPSIS framework 

Human error factor 

analysis 
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G. Hajgató et 

al.[53] 

PdM with explainable 

deep conv. autoencoders 

Deep convolutional 

autoencoders 

Fault diagnosis 

K. D. Addo et 

al.[54] 

Automobile engine Machine learning Performance prediction 

H. Heymann et 

al.[55] 

Polymer 3D printing Machine Learning 

Pipeline 

Remaining useful life 

prediction 

D. Pagano[56] LSTM,NN and Bayesian 

inference 

PdM model Remaining useful life 

prediction 

J. Lee et al.[57] Deep reinforcement 

learning 

Probabilistic 

Remaining-Useful-Life 

prognostics 

Remaining useful life 

prediction 

III. METHODOLOGY 

i. Dataset 

Dataset is collected from “PdM Dataset - Kaggle”[58]. The dataset is a PdM dataset that contains data from a fleet 

of vehicles. The data includes sensor readings, such as vibration, temperature, and current, as well as information 

about past failures, repairs, and maintenance. The dataset can be used to train machine learning models to predict 

the remaining useful life of vehicles or to diagnose faults. The dataset is divided into two parts: 

 

• Training set: The training set contains data from 700 vehicles. This data can be used to train machine learning 

models. 

• Test set: The test set contains data from 300 vehicles. This data can be used to evaluate the performance of 

machine learning models that have been trained on the training set. 

 

ii. Pre-processing 

• Time-Series Normalization: Time-series data often exhibit fluctuations and variations that might obscure 

meaningful patterns. Applying normalization techniques as Z-score normalization, helps to bring the data into 

a consistent range. This ensures that the model's performance isn't skewed by the magnitudes of different 

sensor readings.  

 

• Feature Engineering for Temporal Context: In predictive maintenance, the temporal context of data is 

essential for accurate predictions. Creating lag features or rolling window statistics can help the model capture 

trends and patterns over time. Creating lagged versions of sensor readings from the recent past can enable the 

model to consider the historical behavior of the machinery. Similarly, computing rolling averages or moving 

standard deviations can smooth out noise and reveal long-term trends.  

iii. Algorithm used for analysis. 

The evaluation encompassed a suite of machine learning (ML) and deep learning (DL) algorithms, each contributing 

its unique prowess to predictive maintenance. Random Forest, a robust ensemble technique, exhibited a 

commendable accuracy of 82.5%, demonstrating its ability to harness the collective insights of numerous decision 

trees. Support Vector Machines (SVM) showcased strong performance with an accuracy of 81.7%, employing a 

hyperplane-based approach to classify data points. Decision Tree's accuracy of 79.4% highlighted its intuitive split-

based classification mechanism. Multilayer Perceptron (MLP), a deep learning algorithm, stood out with an 

accuracy of 85.6%, leveraging its intricate neural architecture for complex pattern recognition. Logistic Regression 

(LR) offered a solid accuracy of 78.9%, relying on linear relationships to model outcomes. Deep learning algorithms 

played a significant role, with Long Short-Term Memory (LSTM) achieving an impressive accuracy of 87.2%. 

LSTM's recurrent architecture excelled at capturing temporal dependencies in sequential data. Convolutional Neural 

Networks (CNN), delivered an accuracy of 84.3%, showcasing its adeptness at feature extraction from structured 

data. These algorithms collectively underscored the potential of data-driven techniques in predictive maintenance, 

catering to diverse data patterns and complexities across various industrial sectors. 

iv. Evaluation parameters 
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i. Mean Time Between Failure (MTBF)- It is used to calculate as the total time a system is operation divided 

by the no. of failures that occurred during that time. 

MTBF =  
Total Operating Time

No.of Failures
 …..1 

 

ii. Mean Time to Repair (MTTR): This is calculated as the total time spend on repairs divided by the no. of 

failures that occurred. 

MTTR =  
Total Repair Time

No.of Failures
….2 

iii. Overall Equipment Effectiveness (OEE): OEE comprises 3 factors i.e availability, performance efficiency 

and quality rate into single metrices. 

Availability =  
Operating Time

Planned Production Time
…..3 

 

Performance Efficiency =  
Actual Production Rate

Maxi.Possible Production Rate
…..4 

 

Quality Rate =
Goods Units Produced

Total Units Produced
….5 

 

OEE = Availability × Performance Efficency × Quality Rate…6 

 

iv. Remaining useful Life (RUL) estimation Accuracy: RUL estimation measures the accuracy of the predicted 

remaining operational life compared to the actual remaining operational life. 

 

v. Downtime Reduction = This measures the decrease in unplanned downtime achieved by implementing a 

PdM strategy. 

 

Downtime Reduction = Downtime Before − Downtime After….7 

 

vi. Accuracy: This measures the proportion of correct predictions out of all predictions made by a model. 

Accuracy =  
No.of correct Pred.

Total No.of Pred.
 ….8 

vii. Recall: This calculates the proportion of true positive predictions out of all actual positive instances. 

Recall =
True(+)

True(+)+ False(−)
 ….9 

 

viii. Precision: This measures the proportion of true positive predictions out of all instances predicted as positive 

by models. 

Precision =  
True(+)

True(+)+False(+)
 …..10 

 

Results and outputs 

i. Standard Evaluation parameters 

Table 3 Standard Evaluation parameters 

Algorithm Accuracy (%) Recall (%) Precision (%) 

Random Forest 82.5 80.2 83.8 

SVM 81.7 79.5 82.1 

Decision Tree 79.4 76.8 80.3 

MLP 85.6 83.4 86.2 

LR 78.9 75.6 79.2 

LSTM 87.2 85.8 87.5 

CNN 84.3 82.1 84.9 
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Fig. 3 Standard evaluation parameters comparison of various algorithm 

ii. Evaluation parameters wrt PdM 

Table 4 Evaluation parameters wrt PdM 

Algorithm MTBF 

(hours) 

MTTR 

(hours) 

Downtime 

Reduction (%) 

OEE 

(%) 

RUL Estimation 

Accuracy (%) 

Random Forest 800 10 20 85 75 

SVM 820 12 18 84 73 

Decision Tree 780 11 17 83 72 

MLP  850 9 23 87 78 

LR 760 13 15 82 71 

LSTM  880 8 25 88 80 

CNN  830 9 21 86 77 

 

 

Fig. 4 MTBF comparison of various algorithms 
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Fig. 5 OEE and RUL Estimation comparison 

 

Fig. 6 MTTR and Downtime Reduction Comparison 
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operational continuity and efficiency. The results shown in table- 3,4 and fig. 3-6 revealed a diverse performance 
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strong recall and precision scores. SVM followed closely with an accuracy of 81.7% and precision of 82.1%. 

Decision Tree exhibited competitive performance with a precision rate of 80.3%. The MLP algorithm demonstrated 

the highest precision at 86.2%, along with notable accuracy and recall scores. LR and CNN algorithms yielded 

acceptable accuracy rates, while the LSTM algorithm notably outperformed its peers, boasting an accuracy of 87.2% 

and exceptional recall and precision scores. 

The evaluation encompassed a spectrum of metrics beyond accuracy, delving into various aspects of equipment 

reliability and operational efficiency. MTBF, MTTR, and downtime reduction provided insights into maintenance 

effectiveness, with LSTM exhibiting the highest MTBF and MTTR efficiency. OEE, reflecting overall equipment 

performance, illustrated LSTM's superiority with an OEE score of 88%. RUL estimation accuracy revealed the 

prowess of LSTM at 80%, promising substantial benefits in predicting machinery lifespan. These comprehensive 

results underline the diverse strengths of the algorithms, with LSTM consistently emerging as a frontrunner across 

multiple metrics, promising to revolutionize PdM practices. 
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IV. CONCLUSION AND FUTURE SCOPE 

In summary, this comprehensive evaluation of PdM algorithms has illuminated their diverse capabilities and 

potential contributions to industries reliant on machinery and equipment. The outcomes have affirmed the 

proficiency of machine learning and deep learning methods in revolutionizing maintenance paradigms, transcending 

traditional reactive strategies to proactive, data-driven solutions. Notably, the standout performance of the LSTM 

algorithm underscores its promise as a pioneering force in PdM, exhibiting superior accuracy, recall, and precision, 

as well as excelling in crucial metrics such as MTBF, MTTR, OEE, and RUL estimation accuracy. Looking ahead, 

the horizons of PdM remain tantalizingly expansive. To enrich the field's progress, research could delve deeper into 

refining algorithms with more sophisticated feature engineering and exploratory data analysis techniques. The 

uncharted territory of hybrid approaches, seamlessly combining the strengths of different algorithms, holds 

significant potential for heightened prediction accuracy. These forward-looking trajectories promise to amplify the 

impact of PdM across industries, fostering increased operational efficiency, reduced downtime, and optimized 

resource allocation. 
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