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Abstract: - The process of accomplishing strategic objectives by concentrating on effects as opposed to attrition-based destruction is known as 

effects-based operations, or EBO. Finding important nodes in an adversary network is a critical step in the EBO process for a successful 

implementation. In this paper, propose a network-based method to identify the most influential nodes by combining network centrality and 

optimization. To determine the node influence, the adversary's network structure is analyzed using degree and between centralities. Given the 

dynamic nature of the adversary network struct1ure and the centrality results, an optimization model that takes resource constraints into 

account chooses the key nodes. Our findings demonstrate that various network properties, such as between and degree centralities, influence 

the priorities of nodes as targets, and that using an optimization model yields better priorities with decreasing marginal properties. There is a 

discussion of the implications for theory and sensible decision-making. 
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I. INTRODUCTION 

In order to achieve the maximum effects of war at the minimum possible costs, organizations in a military sector 

have introduced new forms of operation. Although there are different forms of new operational concept, one of the 

most remarkable transformations has been an ongoing shift from objective-based warfare to effects-based 

operations (EBO). EBO refers to a process for achieving strategic goals by focusing on effects rather than 

attrition-based destruction [1]. Desired effects in EBO can be accomplished through precise attacks on key targets 

of adversary systems with minimum risk and destruction. 

Since the US forces verified the effectiveness of EBO during the Gulf and Iraq War, scholars and experts on 

military strategy have paid substantial attention to EBO. While they have made a great deal of progress in defining 

and developing the concept of, and investigating the applicable war game models for EBO [2, 3], significant gaps 

still exist in our understanding of EBO. First, previous studies have focused on developing the procedures of and 

identifying the preconditions for implementing EBO. Although these conceptual works contribute to our 

knowledge of factors that may underlie EBO, more research attention is needed toward analyzing an adversary’s 

(enemy’s) complex network systems. Because the strategic elements of the adversary are linked to each other, 

analyzing the network structure through which the adversary operates is important for both maximizing desired 
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effects and minimizing possible costs of war. Second, several studies have attempted to analyze the adversary’s 

network structure, but have failed to consider various types of network characteristics. They have mainly used 

degree centrality which implies the extent to which a node (a strategic element of the adversary) is connected to 

other nodes [4, 5] to analyze the adversary’s network structure. However, there are other types of network 

centralities. Different types of network characteristics provide different bases for assessing the relative importance 

of nodes [6]. Accordingly, suggest that analyzing various types of network structures provides decision makers 

with information that is more relevant, more complete, more neutral, and freer from error, and thus, enhances the 

effectiveness of EBO implementation. Finally, previous research has paid little attention to the dynamic nature of 

network structures. Some researchers have attempted to select key targets based on the network centrality 

analysis, but these efforts have not yet been jointly examined the dynamic nature of network structures. 

To address these gaps, present an analytic method for selecting key targets to achieve desired effects in EBO. 

Specifically, adopt two types of network centralities to analyze the adversary’s network structure. Considering 

each node’s centrality as its influence value in a network, calculate the contribution of a node to higher level 

effects. Here, effects can be achieved from the nodes in a lowest level. The nodes in the lowest level have their 

influence values that affect each other. They also contribute to the effects predefined when organizing unit forces. 

It denotes this by the contribution of a node. Thus, a node has its influence value as well as its contribution for 

achieving the desired effects. In addition, develop an optimization model of the target selection problem in EBO, 

taking the dynamic nature of the adversary network structure into account.  

II. LITERATURE REVIEW ON CONCEPTUAL DEVELOPMENT FOR TARGET SELECTION IN EBO 

In EBO, physical destruction of an adversary is still important, but only to the extent necessary for supporting the 

achievement of desired effects [7]. Successful leaders and decision makers have applied principles of EBO to deal 

with security crises and foreign policy problems throughout history. Recent development of technology has led to 

more effective and efficient implementation of EBO by providing nearly omniscient intelligence systems and 

smart weapons enabling pinpoint destruction. Scholars and experts have contributed to the development of EBO 

by elaborating a detailed process. In general, the process of EBO includes three phases: planning, execution, and 

assessment [7]. In the planning phase, the most important objective is to define desired effects. To do this, it is 

necessary to analyze a PMESII system of an adversary: political, military, economic, social, infrastructure, 

information (see Figure 1). Because nodes which constitute a PMESII system are linked to each other, by 

analyzing their consecutiveness and network structure, it is possible to identify key nodes. Based on the results of 

network analyses, actions on key nodes for achieving desired effects are taken by the instruments of national 

power such as diplomacy, information, military, and economy in the execution phase. After actions on key targets 

of adversary, it is necessary to conduct a battle damage assessment. In this assessment phase, the focus of 

assessment should be on the desired effects. 

It argues that there are optimal priorities of nodes that maximize desired effects in EBO. It can identify key nodes 

and estimate each node’s contribution to higher level effects based on the two types of network centralities and the 

influence values. However, this information is insufficient to select key targets and predict the likelihood and the 

extent of desired effects.  

 

Figure 1. Enemy systems of systems [8] 
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This is because nodes in an adversary network interact with each other through their links, and thus, changes of 

the influence values of nodes due to actions or direct attacks lead to the changes of the adversary network, links 

among nodes, and each node’s contribution to higher level effects. These changes will also increase the possibility 

of the changes in the priority of key targets. Thus, it is important to consider the dynamic nature of network 

structures resulting from attacks on some nodes as well as network centralities and influence values when 

selecting key targets in EBO. 

 

Figure 2: Enemy network example 

III. PROPOSED METHODOLOGY 

3.1 Concept of analyzing network centrality 

Researchers on network view the characteristics of nodes as arising from links and the network structure made up 

of all links within a network [11]. From a network perspective, network structures and network positions that 

nodes occupy provide both opportunities and constraints on nodes [12, 13]. Network position can be explained by 

the concept of network centralities [6, 14]. In this study, adopt degree centrality and betweenness centrality. 

Degree centrality refers to the extent of direct links of a node to other nodes [4, 5]. Nodes with high degree 

centrality have more opportunities to access important resources, which, in turn, provide chances to acquire 

valuable resources, information, status, and power [15]. Betweenness centrality refers to the extent to which a 

node lies between the paths connecting other nodes of a network together. Nodes with high betweenness centrality 

are in a good position to play roles as brokers [4]. The focal nodes in central betweenness positions are likely to 

have greater power and influence because brokerage positions provide nodes with opportunities to access diverse 

resources and information, and to control the flow of resources and information [12]. Accordingly, nodes with 

high network centrality (degree centrality and betweenness centrality) have opportunities to get diverse resources 

and information from other nodes and to exercise power, and thus, can be regarded as highly influential nodes. 

3.2 Data 

In this study, use the EBO network data of Yaman & Polat [10] to identify the node influence values for selecting 

key nodes as targets. They construct an EBO network for the operation of NATO (the North Atlantic Treaty 

Organization) to stabilize a country, and they measure the influence values of nodes in this EBO network via a 

fuzzy cognitive map (FCM) approach. An FCM is a methodology used to model complex systems under the idea 

on fuzzy logic and neural networks [12]. As shown in Figure 3, the structure of the network consists of three 

layers. The highest-level layer represents a strategic objective.  Nodes in the second-level layer are three main 

effects (A, B, and C) to achieve the strategic objective. In the bottom-level layer, there are 12 nodes. These nodes 

play a crucial role in achieving the strategic objective successfully by utilizing the three main effects. As indicated 

by links in the figure, each node in the bottom-level layer not only contributes to one of the three main effects, but 

is connected to other bottom-level nodes.  

Yaman & Polat [10] provide a good causal network structure related to EBO, and their approach for obtaining 

node values and link weights through FCM should be of special interest. Our study basically employs their 

network structure and dataset. However, it performs additional analyses through several centrality concepts, and 

further, selects the targets that maximize desired effects using an optimization model. 
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Figure 3. An EBO network for the operation of NATO [10] 

3.3 Measure 

Degree centrality captures the number of links a focal node has in a network. In order to compare the results of 

degree centrality analysis and betweenness centrality analysis, it normalizes degree centrality by dividing degree 

centrality scores by the maximum possible degree. According to data representation, a network can be classified 

into binary or valued network. A link weight in a binary network only takes 0 or 1, depending on whether the link 

exists. On the other hand, a valued network can take continuous link weights to represent the degree of link. In the 

case of valued networks, degree centrality depends on the group size and maximum link strength as well as the 

number of links [4, 5]. Thus, degree centrality is calculated according to the following formula: 

Degree centrality of node 𝑗 = ∑
𝑤𝑖𝑗

𝑤𝑚𝑎𝑥(𝑛−1)
× 100𝑛

𝑗=1   (1) 

Where w_ij is the weight of the link between node i and j, w_max is a maximum link value, n is a network size 

(the total number of nodes), and the possible maximum network centrality is 100. 

Betweenness centrality captures the sum of the fraction of shortest paths between two nodes that pass through a 

focal node. As with degree centrality, normalize betweenness centrality by dividing betweenness centrality scores 

by the maximum possible betweenness. Of the several measures of betweenness centrality, take flow betweenness 

centrality because our network data comprise valued types of links [11]. compute betweenness centrality using 

Ucinet program [12]. 

For non-symmetric network data, the in-directed link is the link received by a focal node and the out-directed link 

is the link initiated by a focal node. Because network data in this study is non-symmetric, it analyzes an in-

directed network and an out-directed network separately, and then aggregates them. 

Table 1. Link weights (w_ij) of the Network represented by node-node adjacency matrix 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0.2517 0.0465 0.3372 0.1869 0.7766 0.0853 0.2070 0.8321 0.8321 0.1026 0.0220 

2 0.1392 0 0 0.4065 0.2189 0.0092 0.4483 0.0103 0.8276 0.8210 0.3735 0.0355 

3 0.1175 0.0547 0 0 0 0.1956 0.1168 0.0485 0.0064 0 0 0 

4 0 0.0003 0.0107 0 0.0659 0 0 0 0 0.1346 0 0 

5 0 0 0 0.0064 0 0 0 0 0 0 0 0 

6 0.0037 0 0.0037 0 0 0 0.7072 0.1528 0.0119 0.0057 0.4480 0 

7 0.0004 0.0659 0.0011 0 0 0.5445 0 0.0034 0.1391 0.0733 0.1577 0 

8 0 0 0 0 0 0.0614 0.1414 0 0.0024 0 0.0570 0 

9 0 0.0725 0 0 0 0.0003 0.1491 0 0 0.0296 0.0414 0.0181 

10 0 0.0048 0.0179 0 0 0 0.0519 0 0.2706 0 0.0630 0.0945 

11 0 0 0 0 0 0 0.0623 0 0 0.0017 0 0 

12 0 0 0 0 0 0 7 8 9 10 11 12 
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IV. OPTIMIZING TARGET SELECTION 

In order to choose which node(s) to target when considering EBO, it can give ranks to nodes simply prioritizing 

them according to these values. For instance, node 2, 7, and 4 based on the betweenness centrality results are not 

necessarily the best three targets choose, because destroying the highest betweenness centrality positions does not 

always guarantee the most desired effects. This yields the need of further evaluating the influence values of nodes 

under the dynamic nature of network structure. 

4.1 Node influence values 

Let v_i be the initial influence value of node i. An initial value is taken from one of the centrality results. As seen 

in Table 2, there are three types of initial influence values: degree centrality, betweenness centrality, and their 

aggregated centrality. It independently uses each as our initial value, in turn. Now, introduce our decision 

variables as follows: 

𝑥𝑖 = {
1,   if node 𝑖 is selected as a target,
0,   otherwise.                                      

                (2) 

Suppose that attacking node i results in p_i (where 0≤p_i≤1, for all i) amount of damage to node i, i.e., compared 

to the initial influence value of node i, its remaining value becomes v_i (1-p_i) after damaged. For simplicity, may 

set damage to be identical to all nodes, e.g., p_i=p for all i. Now, involve our decision variable to this form. Due to 

its characteristic that it takes 0 or 1, v_i (1-p_i x_i) leads to an appropriate resulting value. Thus, when x_i=1, the 

corresponding node value becomes v_i (1-p_i ). Otherwise, it maintains its initial value v_i. 

To take interaction between nodes into account, employ the notion of an FCM approach. Originally, Kosko [13] 

has introduced to explain the relationships between the elements of complex systems or networks, and it has been 

widely used to a variety of fields (e.g., engineering applications, strategic planning, information technology, 

decision-making, etc.). The main idea is on that a certain node’s effect is based on its neighboring nodes that are 

incoming to that node, and its influence value can be calculated via the sum of all incoming node with the 

proportion of the corresponding link’s weight. Mathematically, this can be expressed as: 

𝑣𝑖 = 𝑓(∑ 𝑤𝑗𝑖𝑣𝑗
𝑛
𝑗=1 )                          (3) 

where function f can vary depending on the problems but usually sets to be bivalent, trivalent, logistic, or sigmoid 

[10]. Here, w_ji indicates the weight of link (j,i). As a variant, Yaman & Polat [10] propose the following way by 

involving its own value into calculation: 

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 + (1 − 𝑣𝑖
𝑜𝑙𝑑) ∑ 𝑤𝑗𝑖𝑣𝑗

𝑜𝑙𝑑𝑛
𝑗=1,𝑗≠𝑖                 (4) 

This implies that initial node value plus incoming node values with the corresponding link’s weight can create a 

new value of the node. Note that in their approach all node values range from 0 to 1, and the sum of incoming 

node values are only reflected by the amount of complementary value of itself (1-v_i^old) in order to ensure the 

resulting value is still in [0, 1]. Prior to this approach, Koulouriotis et al. [22] suggest a simpler version of node 

influence evaluation as: 

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 + ∑ 𝑤𝑗𝑖𝑣𝑗
𝑜𝑙𝑑𝑛

𝑗=1,𝑗≠𝑖                          (5) 

in which incoming node values are no more rescaled by (1-v_i^old ), and thus, the new influence value can be 

obtained by adding incoming node values with weights to its own initial value. Based on these approaches, 

employ Equation (1) as our influence value evaluation. Then, an initial influence value of node i can be achieved 

via 

𝑣𝑖 + ∑ 𝑤𝑗𝑖𝑣𝑗
𝑛
𝑗=1,𝑗≠𝑖                                (6) 

Now, include our decision variables on whether to attack node i to this value calculation. Then, the final value of 

node i is 

𝑉𝑖(𝑥) = 𝑣𝑖(1 − 𝑝𝑖𝑥𝑖) + ∑ 𝑤𝑗𝑖𝑣𝑗(1 − 𝑝𝑗𝑥𝑗)𝑛
𝑗=1,𝑗≠𝑖        (7) 
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It define this as V_i (x), whose value depends on decision variable x=(x_1,x_2,⋯,x_n) and accordingly depends 

on its neighbour’s damages. Let J be the set of all nodes, and i and j be an element of set J, i.e., i,j∈J. There are 12 

nodes in our EBO network on the lowest-level as in Figure 1. In addition, it define J_i as the subset of J whose 

elements are the incoming nodes to i. Using these sets and indices, Equation (2) can be rewritten: 

𝑉𝑖(𝑥) = 𝑣𝑖(1 − 𝑝𝑖𝑥𝑖) + ∑ 𝑤𝑗𝑖𝑣𝑗(1 − 𝑝𝑗𝑥𝑗)𝑗∈𝐽𝑖
            (8) 

4.2 Optimization models for selecting nodes 

The final influence value of node i, V_i (x), contributes to three main effects in the network, and this value 

changes as its neighbors’ functionality. To deal with this, now attempt to select which nodes to be our targets 

based on an optimization model expressed as a mathematical form. As mentioned earlier, use x_i as our decision 

variables defining whether or not node i is selected as a target. 

As in our EBO network, there is a single highest-level node representing a strategic objective that an adversary 

pursues. To achieve the strategic objective, there are three main effects on the second highest-level. It denote these 

effects by node A, B, and C. Since these three nodes are also affected by 12 lowest-level nodes, their post-values 

can be expressed as V_A (x),V_B (x), and V_C (x), respectively. As an attacker, wish to minimize their effects by 

targeting some of the lowest-level nodes in order to lessen their strategic objective achievement. Based on this 

underlying idea, attempt to minimize the sum of these three post-values after take action through decision 

variables x=(x_1,x_2,⋯,x_n ). This yields the following objective function: 

Minimize: 𝑉𝐴(𝑥) + 𝑉𝐵(𝑥) + 𝑉𝐶(𝑥)                     (9) 

In our EBO network, node A is influenced by node 1 through 5, node B by node 6 through 8, and node C by the 

others. Taking this into account, 

𝑉𝐴(𝑥) = ∑ 𝑟𝑖𝑉𝑖(𝑥)5
𝑖=1                             (10) 

𝑉𝐵(𝑥) = ∑ 𝑟𝑖𝑉𝑖(𝑥)8
𝑖=6                             (11) 

𝑉𝐶(𝑥) = ∑ 𝑟𝑖𝑉𝑖(𝑥)12
𝑖=9                             (12) 

where r_i is a contribution rate of node i. Contribution rates from each node to effect are provided by Yaman & 

Polat [10] as in Table 3. 

Table 2. Results of network centrality analyses 

Node 
Degree 

Centrality 

Betweenness 

centrality 

Aggregated 

centrality 

1 21.53 11.90 33.43 

2 20.43 16.16 36.59 

3 3.38 8.12 11.50 

4 5.25 12.33 17.58 

5 2.61 2.36 4.97 

6 15.95 9.77 25.73 

7 15.01 14.62 29.63 

8 3.74 4.10 7.83 

9 13.12 7.44 20.55 

10 13.12 10.96 24.07 

11 7.14 3.16 10.31 

12 0.93 0.86 1.79 
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Table 3. Contribution rate (r_i) from the lowest-level nodes to effects A, B, and C 

node A node B node C 

1 0.90 6 0.50 9 0.95 

2 0.80 7 0.65 10 0.70 

3 0.80 8 0.75 11 0.15 

4 0.35   12 0.15 

5 0.30     

Now, consider the situation under which are not able to attack all of adversary’s nodes, but to do some of them, 

and thus, should make a decision on which nodes to select for attack in order to minimize the adversary’s effects 

subject to the following cardinality constraint: 

∑ 𝑥𝑖
12
𝑖=1 ≤ 𝑘                              (13) 

where k is an integer value can set that depends on our available weapon resources (e.g., guns or missiles). This 

constraint implies that the number of attacks is limited by k. The underlying assumptions of this model are 1) 

there is a single type of means of attack, and 2) it is not allowed to attack multiple times for a single target. It 

provides a final version of our optimization model formulated as an integer program in the following: 

z∗ = min ∑ 𝑟𝑖𝑉𝑖(𝑥)12
𝑖=1                          (3a) 

s.t.𝑉𝑖(𝑥) = 𝑣𝑖(1 − 𝑝𝑖𝑥𝑖) + ∑ 𝑤𝑗𝑖𝑣𝑗(1 − 𝑝𝑗𝑥𝑗)𝑗∈𝐽𝑖
, ∀𝑖(3b) 

∑ 𝑥𝑖
12
𝑖=1 ≤ 𝑘                       (3c) 

𝑥𝑖 ∈ {0,1}, ∀𝑖                  0020(3d) 

In sum, Equation (3a) minimizes the sum of main effects of the adversary, Constraint (3b) refers to the influence 

value evaluation for each node in a recursive way by considering all other nodes, and Constraints (3c) – (3d) 

clarify disallowance of attacking more than availability and multiple time attacks under a single type of means. 

4.3 Computational results 

It shows the performance of our optimization model through computational experiments, using the EBO network 

as in Figure 1 with the link weights (w_ij) in Table 1. Our optimization model (3) requires several experimental 

settings. First, an initial influence value of node i, v_i, is adopted from degree centrality and betweenness 

centrality obtained in Section 3. It set up three different values for v_i: 1) degree centrality, 2) betweenness 

centrality, and 3) aggregate centrality (degree centrality plus betweenness centrality), so that it can compare the 

node priorities and effects with the ones determined via optimization model. Finally, decreasing proportion 

compared to its initial node value (p_i) is set to be 0.8 for all nodes identically. In Constraint (3c), use the value of 

k from 1 to 12, in turn. This enables to see the node priorities (or, rankings) to minimize the adversary’s effects.  

  It show the resulting node priorities by solving the optimization model and compare these with the priorities 

simply obtained from centrality measure in Table 4. 

Table 4. Optimal priorities of nodes compared to centrality measures. Here, Opt. indicates optimal priorities and 

Cen. Indicates centrality-based priorities 

 Degree-based Betweenness-based Aggregate-based 

 
Selected 

node 

Remaining 

value 

Selected 

node 

Remaining 

value 

Selected 

node 

Remaining 

value 

Prior

-ity 
Opt. Cen. Opt. Cen. Opt. Cen. Opt. Cen. Opt. Cen. Opt. Cen. 

1st 1 1 149.4 149.4 2 2 117.4 117.4 1 2 272.3 
277.

0 

2nd 2 2 103.6 103.6 1 7 85.9 103.5 2 1 188.6 
188.

6 
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3rd 6 6 87.9 87.9 7 4 72.1 98.8 7 7 160.5 
160.

5 

4th 7 7 73.6 73.6 6 1 63.0 67.4 6 6 136.6 
136.

6 

5th 9 9 61.7 61.7 10 10 53.9 58.3 10 10 116.7 
116.

7 

6th 10 10 50.9 50.9 3 6 46.3 49.2 9 9 98.0 98.0 

7th 3 11 47.7 49.8 9 3 39.6 41.7 3 4 87.3 91.4 

8th 8 4 45.1 47.8 4 9 34.9 34.9 4 3 80.7 80.7 

9th 4 8 43.1 45.2 8 8 32.0 32.0 8 11 75.1 79.1 

10th 11 3 42.0 42.0 5 11 31.5 31.5 11 8 73.6 73.6 

11th 5 5 41.4 41.4 11 5 31.0 31.0 5 5 72.3 72.3 

12th 12 12 41.3 41.3 12 12 30.9 30.9 12 12 72.1 72.1 

These results imply that depending on the notion of centrality considered, selected targets can vary. In particular, 

degree centrality and betweenness centrality provide more distinguishable results. However, the goal to disconnect 

the nodes, which play a crucial role in connecting other high value nodes, may make one choose betweenness 

centrality based results. 

In addition, under a certain centrality, optimal node priorities can be achieved by solving the optimization model, 

and this definitely outperforms simple centrality-based rankings in terms of the entire network value decrease. 

Figure 4 shows the remaining values as the number of nodes for target grows large. If the influence value is based 

on degree centrality, the solution qualities are not so remarkable although achieve optimality for the best target 

selection. However, when focusing on a betweenness centrality-based influence value, an optimal target selection 

provides a relatively promising result.  

 

 

Figure 4. Remaining values of the adversary network as the number of nodes selected as targets grows large: (a) 

under degree centrality based value (left). (b) Under betweenness centrality based value (right). Here, Opt. 

indicates optimal priorities and Cen. indicates centrality-based priorities. 

V. CONCLUSION 

Contextual uncertainty, which arises when there is uncertainty about the available options, their likelihood of 

occurring, and the possible outcomes associated with each option, should be taken into account when making 

decisions. The key to managing uncertainty in decision making is to pinpoint, quantify, and examine the variables 
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that are most likely to have an impact on the final result. As a result, since decisions about the implementation of 

EBO are made in the face of uncertainty, it is essential to arm decision makers with accurate information to 

support their choices. By adopting two types of network centralities and creating an optimization model that takes 

into account the dynamic nature of network structures, our study provides an advanced analytical method for 

identifying key targets to achieve desired effects in EBO. It makes no claims about the comprehensiveness of our 

method. Having said that, it offers a novel perspective on a topic that has long caught EBO's attention. 
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