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Abstract: - Accurate traffic flow prediction is essential for effective transportation management and urban planning. 

However, existing methods often struggle to simultaneously capture short-term fluctuations and long-term trends. To 

address this challenge, we propose a hybrid approach that combines Bidirectional Long Short-Term Memory (BiLSTM) 

and Temporal Convolutional Network (TCN) architectures. Our method involves meticulous data preprocessing and 

integrates BiLSTM to capture long-term dependencies and TCN to model short-term dynamics. Experimental results on 

the Kaggle’s traffic prediction dataset demonstrate that BiLSTM-TCN outperforms existing methods in terms of both 

training and validation loss. Compared to the current best-performing algorithm, BiLSTM-TCN achieves a reduction in 

mean training loss of 0.02 and a reduction in mean validation loss of 0.02. This corresponds to a percentage reduction of 

19.05% in mean training loss and 16.00% in mean validation loss, underscoring the superior performance of BiLSTM-

TCN. Additionally, BiLSTM-TCN shows significant improvements inRMSE, MAPE, and MAE, making it a valuable 

tool for transportation management and urban planning initiatives. 
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INTRODUCTION 

Accurately predicting network traffic is crucial for optimizing resource allocation, ensuring performance 

requirements are met, and detecting potential security threats [1], [2]. Traditionally, statistical linear methods 

have been employed to tackle network traffic prediction, treating it as a time series prediction problem [3], [4]. 

However, such methods often fail to capture the nonlinear characteristics inherent in large-scale network data. 

 In recent years, deep learning approaches, particularly Recurrent Neural Networks (RNNs) such as 

Bidirectional Long Short-Term Memory (BiLSTM) networks, have gained popularity for their ability to capture 

both past and future context, effectively capturing long-term dependencies, despite nonlinear models showing 

better prediction accuracy than traditional methods. BiLSTM models can consider both past and future time 

steps, which helps them analyze temporal features thoroughly and improve time series prediction. However, 

these models face issues such as losing information and reduction in accuracy. To address these issues, recent 

studies have proposed various strategies. 

 Temporal Convolutional Networks (TCNs) integrate neural network, employing causal convolutions to 

manage long-effective history sizes and achieve accurate time series prediction [5-7]. Conversely, TCNs are 

well-suited for time series prediction due to their capability to capture temporal dependencies and mitigate 

gradient disappearance [8], [9]. An AC-BiLSTM model was proposed, incorporating convolutional layers and 

attention layers for selective information utilization to improve accuracy prediction [10]. In [11], an Attention-

BiLSTM model is introduced, which integrates attention mechanisms to highlight crucial features, thereby 

improving short-term prediction performance. The CNN-LSTM-BiLSTM model, tailored for energy system 

load forecasting, synergizes convolutional neural networks (CNNs) and attention mechanisms to extract 

pertinent local features. Meanwhile, LSTM and BiLSTM components handle the temporal characteristics of the 

load data [12]. Lu et al., introduces a CNN-BiLSTM-AM model, employing a CNN for feature extraction and 

integrating a BiLSTM for predicting outcomes accurately [13] [14]. Huang et al., introduced a model that 

combines TCN with a Bidirectional Gated Recurrent Unit (BiGRU) for extracting temporal features, alongside 
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the Dynamic Self-Attention (DSA) mechanism to assess each node's influence on prediction outcomes. By 

leveraging Bayesian optimization of hyper parameters, this method attains peak performance and accuracy. 

 By combining the strengths of both architectures, a hybrid BiLSTM-TCN model can enhance 

performance in time series prediction tasks. It leverages BiLSTM's contextual understanding and TCN's 

efficient modeling of temporal patterns. This approach aims to improve generalization across diverse datasets 

and enhance robustness to noise, rendering it a powerful solution for accurate time series forecasting. 

 To address the questions raised earlier, this study proposes a hybrid approach that combines 

Bidirectional Long Short-Term Memory (BiLSTM) and Temporal Convolutional Network (TCN). This 

approach aims to overcome challenges in traffic flow prediction by leveraging the strengths of both 

architectures. In summary, our work aims to contribute in the following ways: 

1) Improving the input quality is achieved through preprocessing the data. We maintain the reliability of our 

model by meticulously preparing the time series data, employing techniques like normalization, scaling, and 

feature engineering to optimize the data for model training. 

2) The core of our methodology lies in the hybrid architecture of BiLSTM and TCN. BiLSTM captures long-

term dependencies in traffic flow patterns. By processing sequences bi-directionally, BiLSTM effectively 

captures historical traffic patterns, enabling the model to understand trends and variations in traffic data. 

3) Additionally, we integrate TCN to capture short-term dependencies in traffic dynamics. TCN's efficient 

modeling of temporal patterns through dilated convolutions makes it suitable for capturing short-term 

fluctuations in traffic flow. Leveraging TCN's capabilities, our method accurately predicts short-term traffic 

variations. 

DESIGN METHODOLOGY 

A. Sequence problem 

 Given a time series B = {b1,.., bt,..,bT}, denoting T samples, and B- = {b-
1,.., b-

t ,..,b-
T}, representing a 

sequence of T samples that have undergone feature extraction using TCN. Additionally, considering yt as 

the ground truth value and 𝑦𝑡
^as the predicted value, the method appears to be conductive to the BiLSTM-

TCN framework. The predicted value at time step T + 1 is obtained by applying a sequence modification 

function SeqModto BTCN as follows: 

     𝑦𝑡
^ = SeqMod (𝐵𝑇𝐶𝑁)    

 (1)Error! Reference source not found.Error! Reference source not found.Error! Reference 

source not found.Error! Reference source not found. 

B. Bidirectional Long Short Term Memory 

 The BiLSTM architecture builds upon the LSTM concept by incorporating bidirectional processing of 

the input sequence. It comprises two LSTM layers: one operates from the start to the end of the input 

sequence, while the other processes it in reverse, from the end to the beginning. This dual-directional 

approach enables the model to gather insights from both preceding and succeeding contexts, offering 

advantages for predictive tasks [18]. 

    ℎ𝑡
𝑓

= 𝐿𝑆𝑇𝑀𝑓(𝑥𝑡 , ℎ𝑡−1
𝑓

, 𝑐𝑡−1
𝑓

)     (2) 

Eq (2) indicates the forward LSTM, where ℎ𝑡
𝑓
represents the hidden state at time step t. 𝐿𝑆𝑇𝑀𝑓 represents 

the function for the forward LSTM operation. 𝑥𝑡 represents input at t. ℎ𝑡−1
𝑓

 represents the hidden state at 

step (t-1) and 𝑐𝑡−1
𝑓

 represents the cell state of the forward LSTM at step (t-1). 

    ℎ𝑡
𝑏 = 𝐿𝑆𝑇𝑀𝑏(𝑥𝑡 , ℎ𝑡+1

𝑏 , 𝑐𝑡+1
𝑏 )     (3) 

Eq (3) indicates the backward LSTM, where ℎ𝑡
𝑏represents the hidden state of the backward LSTM at 

t.𝐿𝑆𝑇𝑀𝑏  represents the function for the backward LSTM operation. 𝑥𝑡 represents input at time step t. ℎ𝑡+1
𝑏  

represents the hidden state at t+1 and 𝑐𝑡+1
𝑏  represents the cell state at t+1. 

     ℎ𝑡  = [ℎ𝑡
𝑓

  , ℎ𝑡
𝑏 ]      (4) 
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Eq (4) indicates the concatenation of forward and backward outputs.Whereℎ𝑡represents the concatenation 

hidden state combining the outputs from the forward and backward LSTM at t. ℎ𝑡
𝑓

  , ℎ𝑡
𝑏represents the 

concatenation operation. 

    𝑦𝑡
^ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊0ℎ𝑡 + 𝑏0)      (5) 

Eq (5) indicates the output layer. Where 𝑦𝑡
^predicts the output and commonly used as a softmax function. 

Softmax represents the activation function that outputs a probability distribution over multiple classes. 𝑊0 

represents the weight matrix for the output layer and 𝑏0 represents the bias vector for the output layer. 

 

C. Temporal Convolutional Networks 

 TCN is a type of convolutional neural network designed specifically for processing sequential data. It 

applies 1D convolutions over the input sequential data. It applies 1D convolutions over the input sequence 

to capture temporal patterns. It typically consists of multiple layers of dilated casual convolutions followed 

by nonlinear activation functions, such as Rectified Linear Unit (ReLU). Dilated convolutions increase the 

receptive field of the network without increasing the number of parameters, enabling the model to capture 

long range dependencies efficiently [19]. 

 The expression for a 1D casual convolutional layer given a 1D input data 𝑙 𝜖 𝑅𝑇  and a filter f and the 

expression can be represented as: 

 

    ℎ𝑖𝑡 = (𝑙 ∗ 𝑓)(𝑡) = ∑𝑇=0
𝑛−1𝑓𝑇𝑙𝑡−𝑇    (6) 

Where,ℎ𝑖𝑡represents the output of the convolutional layer at t. ∗ denotes the convolution operation. The size 

of the filter (kernel) is represented by k. Input data is represented by lt-T and fT is the filter applied to the 

input data. lt-T represents the input data at time step t-T. 

Eq (6) represents the computation of the output at t by convolving the input sequence l with the filter f in a 

casual manner. 

    𝑠𝑒𝑞𝑓 = (𝐹(𝑙1), 𝐹(𝑙2), … , 𝐹(𝑙𝑇), )    (7) 

Eq (7) represents the generation of a sequence of output values by applying the casual convolution 

operation.Where, 𝑠𝑒𝑞𝑓 represents the sequence of output values generated by applying the casual 

convolution operation at t. 𝐹(𝑙𝑡) is the output of the casual convolution operation to each time step of the 

input sequence t. l1, l2,…, lT are the elements of the input sequence l. T is the length of the input sequence. 

 The dilated convolution operation extends the range of influence of the filter by inserting gaps between 

its elements. The dilated convolution operation is represented as: 

    𝐹(𝑙𝑡) = (𝑙 ∗ 𝐷 𝑓)(𝑡) = ∑𝑇=0
𝑛−1𝑓𝑇𝑙𝑡−𝐷′𝑇    (8) 

Where, 𝐹(𝑙𝑡) represents the output of the dilated convolution operation at t. ∗ 𝐷 denotes the dilated 

convolution operation with dilation factor𝐷′. 𝐷′denotes the dilation factor. 

 

D. BiLSTM - TCN 

 Traffic flow prediction is a critical task in transportation management and urban planning, aiming to 

forecast traffic conditions to optimize traffic flow and alleviate congestion. The combination of BiLSTM 

and TCN, presents a powerful framework. The integration of BiLSTM-TCN architecture synergies the 

strengths of both models for effective traffic flow prediction. In this framework, the input traffic flow fata 

undergoes sequential processing through the BiLSTM layer, where long term dependencies and high level 

temporal features are extracted. The output sequence from the BiLSTM layer, where long term 

dependencies and high level temporal features are extracted. The output sequence from the BiLSTM layer 

serves as input to the TCN module, which specializes in capturing short term patterns and local temporal 

features with its 1D dilated convolutions. 
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Figure 1 Proposed BiLSTM-TCN model 

 By combining the outputs of both BiLSTM and TCN, the model leverages the comprehensive 

representation of temporal dynamics, ranging from short term fluctuations to long term trends. This integration 

enhances the model’s ability to capture the complex spatiotemporal relationships inherent in traffic flow data, 

enabling more accurate predictions of future traffic conditions. The BiLSTM-TCN structural model is shown in 

Fig 1. 

The dataset used for training and testing the BiLSTM-TCN model comes from Kaggle's traffic 

prediction dataset. It includes historical traffic flow data collected from various road sensors, showing details 

like traffic volume, junctions, dates, times, and vehicle IDs. The BiLSTM layer has two layers stacked on top of 

each other, each having 128 units. We added a dropout layer after to help prevent over fitting, with a dropout 

probability of 0.2. The TCN part of the model has three convolution layers with different dilation rates to 

capture different time scales, and there's a residual block at the end. We trained the model for 100 epochs, using 

batches of 64 samples each time. We trained it using the Adam optimizer with a learning rate of 0.001. The 

TCN has several convolution layers and residual blocks to capture temporal patterns effectively. Each residual 

block consists of two convolution layers with connections to skip some layers, helping the model learn better. 

We used different filter sizes in these layers to capture both short-term and long-term patterns in the traffic data. 

This combination of components helps the model understand complex traffic flow patterns. 

EXPERIMENTAL EVALUATION 

 This section evaluates and compares the proposed BiLSTM-TCN model with existing models. The 

model runs in 8GB RAM, Intel UHD Graphics, and an Intel (R) Core(TM) CPU.The dataset comprises traffic 

data collected over a period of one year and seven months from Kaggle's website, spanning from November 1, 

2015, to June 30, 2017. Each data point represents the number of visits per hour. Ninety percent of the data is 

allocated for training purposes, while the remaining ten percent is reserved for testing. 

 In this work, we compared BiLSTM-TCN with baseline approaches TCN-BiLSTM-SA [17], BiLSTM 

[18], and TCN-BiLSTM [19]. Our evaluation was based on three key criteria: in Root Mean Squared Error 

(RMSE), MAPE (Mean Absolute Percentage Error), and MAE (Mean Absolute Error), error comparisons. 

Additionally, we examined the training loss and validation loss to assess the predictive performance of each 

model. They are given as; 
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    RMSE = √
∑ (𝑦𝑡−𝑦𝑡

^)2𝑛
𝑡=1

𝑛
     (9) 

     MAE = 
∑ |𝑦𝑡−𝑦𝑡

^|𝑛
𝑡=1

𝑛
     (10) 

   MAPE = 
1

𝑛
∑ |

𝑦𝑡−𝑦𝑡
^

𝑦𝑡
|𝑛

𝑡=1  x 100%    (11) 

    Training Loss = 
1

𝑁
∑ 𝐿(𝑦𝑡 , 𝑦𝑡

^)𝑁
𝑡=1     (12) 

    Validation Loss = 
1

𝑀
∑ 𝐿(𝑦𝑠 , 𝑦𝑠

^)𝑀
𝑠=1     (13) 

Where, n represents the total number of samples, 𝑦𝑡  represents the actual value, and 𝑦𝑡
^ indicates the predicted 

value. N indicates the total number of samples in the training set, M indicates the total number of samples in the 

validation set, and 𝐿(𝑦, 𝑦^) represents the loss function, which measures the discrepancy between the actual 

target value y and the predicted value y^.  

Table 1 Comparative analysis of performance metrics  

Models RMSE MAE MAPE 

Proposed BiLSTM-TCN 0.212 0.200 18.631% 

TCN-BiLSTM 0.612 0.500 32.738% 

BiLSTM 0.250 0.125 25.000% 

BiLSTM-TCN-SA 0.230 0.120 23.327% 

 

Table 1 represents the comparison of the proposed BiLSTM-TCN model with the baseline models TCN-

BiLSTM, BiLSTM, and BiLSTM-TCN-SA reveals notable differences in performance. The proposed BiLSTM-

TCN model exhibits the best performance across all evaluated metrics, boasting the lowest RMSE (0.212), 

MAE (0.200), and MAPE (18.631%). In contrast, the TCN-BiLSTM model shows the poorest performance with 

the highest RMSE (0.612), MAE (0.500), and MAPE (32.738%) values, indicating larger discrepancies between 

predicted and actual values. The BiLSTM model falls between the extremes, demonstrating moderate 

performance with RMSE (0.250), MAE (0.125), and MAPE (25.000%) values. Meanwhile, the BiLSTM-TCN-

SA model offers a slight improvement over both TCN-BiLSTM and BiLSTM, showcasing lower RMSE 

(0.230), MAE (0.120), and MAPE (23.327%) values. In summary, the proposed BiLSTM-TCN model emerges 

as the superior choice, delivering the most accurate predictions with the least error across the evaluated models. 

Fig 2, Fig 3, and Fig 4 represents the graph of RMSE, MAE, and MAPE error comparison. 

Table 2 provides a comparative analysis of the training and validation loss among different models. The 

proposed BiLSTM-TCN model demonstrates the lowest training loss, with a value of 5.99e^-06, indicating its 

ability to minimize errors during the training phase. Similarly, it achieves the lowest validation loss among all 

models, with a value of 1.082e^-0.7, reflecting its superior performance in generalization to unseen data. In 

contrast, the TCN-BiLSTM model exhibits comparatively higher training and validation losses of 0.0054 and 

0.0057, respectively, suggesting a lesser ability to learn from the training data and generalize to new data. The 

BiLSTM model, while having a low training loss of 5.046e^-05, shows a slightly higher validation loss of 

1.911e^-07, indicating potential over fitting to the training data. Finally, the BiLSTM-TCN-SA model achieves 

moderate training and validation losses of 2.542e^-05 and 2.141e^-05, respectively, suggesting its performance 

lies between the proposed BiLSTM-TCN and TCN-BiLSTM models.  
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Figure 2 RMSE error comparison with various epochs 

 

Figure 3 MAE error comparison with various epochs 

 

Figure 4 Comparison of MAPE error with various epochs 
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Figure 5 Comparison of training loss with various epochs 

These results highlight the effectiveness of the proposed BiLSTM-TCN model in minimizing both training and 

validation losses, indicating its potential for accurate prediction and generalization in time series tasks. 

Table 2 Comparative analysis of Training and Validation Loss 

Models Training Loss Validation Loss 

Proposed BiLSTM-TCN 5.99 e^-06 1.082 e^-0.7 

TCN-BiLSTM 0.0054 0.0057 

BiLSTM 5.046 e^-05 1.911 e^-07 

BiLSTM-TCN-SA 2.542 e^-05 2.141 e^-05 

 

 

Figure 6 Comparison of validation loss with various epochs 

CONCLUSION 

Our proposed BiLSTM-TCN hybrid model marks a significant leap forward in traffic flow prediction. Through 

the integration of BiLSTM and TCN architectures, our model has achieved remarkable results, boasting the 

lowest training loss of 5.99e^-06 and validation loss of 1.082e^-0.7 when compared to existing methods. 

Moreover, it showcases substantial reductions in both mean training loss (19.05%) and mean validation loss 

(16.00%). Furthermore, the BiLSTM-TCN model demonstrates noteworthy enhancements in RMSE, MAE, and 
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MAPE metrics, underscoring its superior predictive capabilities for transportation management and urban 

planning initiatives. These improvements suggest that our model can provide more accurate forecasts, enabling 

better-informed decision-making processes in traffic control and infrastructure development. 

 Looking ahead, future enhancements to the BiLSTM-TCN hybrid model could involve exploring 

additional data sources, such as real-time traffic data, weather conditions, and events, to further enhance 

prediction accuracy. Additionally, incorporating advanced optimization techniques and ensemble learning 

approaches could help to refine the model's performance and robustness, ultimately contributing to more 

effective traffic management strategies and sustainable urban development.  
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