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Abstract: - For Wireless Sensor Networks (WSNs) to operate as efficiently as possible in Indoor Internet of Things (IoT) environments, 

energy-efficient localization approaches are essential. We investigate several localization approaches, such as trilateration based on Received 

Signal Strength Indicator (RSSI), Proximity Based Technique, Inertial Navigation, Ultrasound-based, and Magnetic Field-based approaches, in 

the context of energy efficiency. RSSI-based trilateration, which provides good accuracy with little energy consumption, uses measurements 

of signal intensity to infer device positions. In cases where there are limitations on line of sight, technologies based on ultrasound measure 

signal travel durations. Although calibration and sensitivity to interference are taken into account, magnetic field-based approaches use 

magnetic field anomalies to determine positions. Accuracy, energy usage, scalability, robustness, and calibration effort are some of the factors 

that these techniques are evaluated against in order to fulfil the demands of indoor IoT environments. A thoughtful choice of localization 

methods can increase energy efficiency, increase the lifespan of sensor networks, and enable precise location-aware IoT applications. In order 

to meet the increasing demand for energy-efficient localisation in Indoor IoT environments, more research in this field is still being conducted. 

General Terms: Energy, Calibration, Location Awareness, Environment. 

Keywords: Wireless Sensor Network, Localization techniques, Energy efficient, Internet of Things. 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) are the foundation for gathering and sharing data in outdoor and indoor 

settings in the Internet of Things (IoT), where countless devices communicate and share data invisibly. WSNs in 

Indoor IoT Environments have garnered attention due to their many applications in smart buildings, healthcare, 

asset tracking, and environmental monitoring [1]. However, precise and energy-efficient localization is a major 

barrier to WSN deployment in these settings. Localizing sensor nodes in a WSN is necessary for many IoT 

applications. It improves IoT system performance, resource management, and app context-awareness. In indoor 

IoT environments, where GPS signals are often poor or unavailable, accurate localization is crucial [2]. Energy 

efficiency is crucial to localization techniques because it extends WSN lifespan and lowers maintenance costs. 

Most wireless sensor nodes have limited battery power. Energy-efficient localization techniques are essential for 

sensor nodes to function properly while conserving energy and extending network lifespan [3]. 
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Figure 1: Localization method framework for Wireless Sensor Networks in Indoor IoT Environments 

Indoor localization is difficult due to their dynamic nature, small Line of Sight (LOS), [4] and many barriers. One 

problem is multipath propagation, where signals bounce off walls, floors, and objects, causing signal interference 

and making distance measurements difficult. Walls, floors, and furniture attenuate wireless signals, changing 

signal intensity and reducing RSSI-based accuracy. Indoors, LOS between sensor nodes is often blocked, resulting 

in inaccurate localization. Indoor IoT installations may require many sensor nodes, which may strain energy 

supplies and localization algorithms. Localization algorithms must consider energy consumption since battery-

powered sensor nodes are common [5]. To prolong network life, use energy-efficient methods. 

It is impossible to overestimate the importance of energy-efficient localization methods in indoor IoT 

environments. These methods take into account the following crucial factors: 

• Reducing Maintenance Costs: WSNs can function for longer periods of time without the need for frequent 

battery replacement or recharge by minimising energy usage during localization processes. 

• Applications in Real Time: Many IoT applications in indoor settings call for real-time or nearly real-time 

localisation data.  

• Better Accuracy: Energy-efficient localization techniques frequently put an emphasis on maximising accuracy 

in difficult indoor conditions.  

• Reduced Interference: Some energy-efficient approaches, such Time of Flight (ToF) measurements or Inertial 

Navigation, may be more resistant to interference from obstacles and multipath propagation, enhancing overall 

localization accuracy. 

Energy-efficient localization makes indoor IoT device deployments cheaper. Regular hardware replacements and 

energy-intensive tasks are reduced. Energy-efficient localization techniques for indoor IoT environments use 

many strategies, each tailored to specific needs and challenges [6].  

Major insights and contributions from the paper are: 

• The study emphasizes the energy efficiency of localization techniques. Energy saving extends battery-powered 

sensor nodes' operating lifetimes, which is essential for long-term, low-cost IoT deployments. 

• The study highlights the significance of precise localization for indoor IoT applications like smart buildings, 

healthcare, and asset tracking. It explains how energy-efficient localization methods reduce errors that can 

compromise application effectiveness. 

• The paper examines energy-efficient localization methods and their practical applications. These methods can 

enable cheaper installations, lower maintenance costs, and better indoor IoT service quality. 

Indoor internet of things wireless sensor networks need energy-efficient localization. These methods enable 

precise and fast location information while reducing sensor node energy consumption. As IoT applications move 

indoors, energy-efficient localization research and development remain vital. This energy-efficient localization 

study will examine each technique's functions, benefits, and drawbacks, revealing their suitability for indoor IoT 

applications. 
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The flow of the paper consist of Introduction in the first section, followed by literature review in the second 

section. Third section consist of Methodology followed by Result and discussion in section four. At the end the 

conclusion and future work is discussed in section five, followed by references.  

II. REVIEW OF LITERATURE 

It is crucial to take into account the insights and contributions of relevant work in this field when searching for 

energy-efficient localization methods for Wireless Sensor Networks (WSNs) in Indoor Internet of Things (IoT) 

scenarios. A [7] overview of the body of research on localisation in indoor environments demonstrates that it has 

made substantial strides in both theoretical understanding and practical application. Early research in this area was 

primarily concerned with converting GPS and other outdoor localization methods for use in inside settings. 

However, it was obvious that different approaches were required for indoor settings due to the shortcomings of 

GPS, such as its reliance on line-of-sight with satellites. Based on Received Signal Strength Indicator (RSSI) 

measurements from wireless signals like Wi-Fi and Bluetooth Low Energy (BLE), one of the innovative methods 

for indoor localization [8]. By examining the signal strength, RSSI-based methods gauge the separations between 

sensor nodes, enabling trilateration or multi-literation methods to pinpoint the nodes' locations. Although RSSI-

based techniques are simple and widely applicable, their accuracy is impacted by signal interference and 

fluctuations brought on by walls and obstructions [9]. 

Researchers have looked into fingerprinting methods to address these accuracy issues. Creating a database of 

signal strength patterns in an indoor space is necessary for fingerprinting. With the use of this method, nodes can 

more accurately locate each other by comparing their most recent signal readings to historical fingerprints [10]. 

Indoor localization research frequently uses Wi-Fi and BLE fingerprinting because they balance efficiency and 

accuracy. Another important area of research is Time of Flight (ToF) measurements. The time it takes for signals, 

such as radio waves or ultrasound, to travel between nodes is measured by ToF techniques. The estimated 

distances are then determined using the calculated time difference, offering a precise method of localization. ToF 

techniques are less energy-efficient since they frequently need specialised hardware and can be sensitive to non-

line-of-sight situations [11]. 

The real-time localization [12] skills of inertial navigation, which relies on on-board sensors like accelerometers 

and gyroscopes, have drawn attention. It monitors the motion of sensor nodes and computes position changes over 

time. Although this method provides accurate localization, it uses more energy than previous approaches and may 

require sophisticated sensor fusion techniques to reduce drift. Line-of-sight-restricted situations can benefit from 

ultrasound-based localization, which calculates the amount of time it takes for ultrasound signals to travel through 

obstructions and return to their source. Ultrasound techniques enable reliable indoor localization because they are 

less impacted by multipath propagation and signal interference. However, they necessitate more hardware 

infrastructure and exact calibration [13]. 

III. METHODOLOGY 

A key component of Wireless Sensor Networks (WSNs) in Indoor Internet of Things (IoT) scenarios is energy-

efficient localisation. Context-aware apps, effective resource management, and improved performance are all 

made possible by precise location data. In this discussion, we examine five different energy-efficient localization 

methods, with a focus on their applicability and methodology in the challenging indoor IoT context.  

3.1 Capon Minimum Variance Method 

The robust localization method known as the Capon Minimum Variance Method uses spatial signal processing. 

To determine the location of a target node, it makes use of measurements of the received signal strength from 

various sensor nodes. It generates a spatial spectrum estimate using methods from array signal processing, 

maximising the localization accuracy. 

Application: In indoor IoT situations with multipath propagation and signal interference, this technique can be 

used successfully. It is appropriate for applications where exact localization is crucial and offers excellent 

precision. 
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3.2 ESPRIT's Algorithm 

Methodology: Another effective strategy is the ESPRIT (Estimation of Signal Parameters via Rotational 

Invariance Techniques) Algorithm. To estimate the Direction of Arrival (DoA) of the target node, it takes 

advantage of the phase differences of signals that are received by a variety of sensors. The target's location can be 

ascertained by triangulating DoA estimations from various sensor nodes. 

Application: The ESPRIT Algorithm is particularly helpful in interior settings where reflection and diffraction-

induced phase shifts of radio signals can cause sizable phase changes. It is accurate and capable of reducing 

multipath effects. 

3.3 Weighted Subspace Fitting 

Weighted Subspace as a Methodology Principal Component Analysis (PCA) is the foundation of fitting 

techniques. They do this by transforming the incoming signal strength vectors into a separable subspace. To take 

into consideration various signal levels, weighting is used. The estimated position is obtained by intersecting the 

subspaces from several sensors. 

Application: This method works well when the signal sources are correlated and non-Gaussian. Indoor IoT 

applications with moderate accuracy demands can be handled by it. 

3.4 Proximity-Based Position 

 

Figure 2: Representation of Proximity Based localization 

Approach: Proximity-Based The location of the target is determined via positioning based on the closeness of the 

sensor nodes. It establishes position instead of requiring measures of distance by locating the closest neighbour or 

access point. This strategy is straightforward and uses little energy. 

Application: Proximity-based techniques are appropriate for Internet of Things (IoT) applications that only require 

rough location estimations, including zone- or room-level localization. Although energy-efficient, they might not 

be very accurate. 

3.5 RSSI-based trilateration 

Using many nearby sensor nodes to measure the Received Signal Strength Indicator (RSSI), RSSI-based 

trilateration calculates a target's location. Based on the RSSI values, the distances between the target and these 

nodes are computed and used for triangulation. 

Application: Because of its ease of use and relatively low energy requirements, this approach is frequently utilised 

in indoor IoT environments. In complex indoor situations with signal interference and multipath propagation, it 

could, however, experience accuracy problems. 
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Figure 3: Representation of Trilateration localization based on RSSI 

The localization technique selected in an indoor IoT context depends on the particular application needs, the 

surrounding environment, and the trade-offs between accuracy and energy economy. High precision can be 

achieved using techniques like the ESPRIT Algorithm and the Capon Minimum Variance, but they may require 

more time and processing power. Applications requiring precision, such asset tracking or healthcare monitoring, 

are well suited for them.  

For situations with intermediate precision needs and where energy efficiency is a top priority, weighted subspace 

fitting and proximity-based positioning are appropriate. Proximity-Based Positioning is simple and appropriate for 

coarse localization, but Weighted Subspace Fitting is effective in dealing with non-Gaussian signal sources. While 

RSSI-based trilateration is less accurate than some other approaches, it is favoured for its ease of use and low 

energy requirements. It is a sensible option for a variety of indoor IoT applications, particularly those involving 

large-scale deployments where energy efficiency is crucial. A variety of choices are available to satisfy various 

application requirements using energy-efficient localization approaches in indoor IoT contexts. In order to ensure 

that the IoT network runs efficiently while preserving priceless energy resources, the method selection should be 

in line with the deployment's unique accuracy needs and energy limits. Further investigation and optimisation of 

these methods will help indoor IoT applications expand and succeed as IoT technology continues to advance. 

 

 

Figure 4: Representation of Hyperbolic localization based on RSSI in Indoor Environment 

IV. RESULT AND DISCUSSION 

 The performance evaluation of five different methods Capon Minimum Variance, ESPRIT Algorithm, Weighted 

Subspace Fitting, Proximity-Based Positioning, and RSSI-based Trilateration reveals their strengths and 

weaknesses across crucial parameters in the search for the best localization methods within Wireless Sensor 

Networks (WSNs) operating in Indoor Internet of Things (IoT) environments. Accuracy, energy efficiency, 

scalability, tolerance to multipath interference, and environmental sensitivity are some of these factors. 

The performance parameter for machine learning algorithm has been calculated and it given as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
                 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                  (2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                                   (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (4) 

Table 1: Performance evaluation of Methods 

Localiza

tion 

Techniq

ue 

Accura

cy (%) 

Ener

gy 

Effic

iency 

(%) 

Scalab

ility 

(%) 

Robust

ness to 

Multip

ath 

(%) 

Environm

ental 

Sensitivit

y (%) 

Capon 

Minimu

m 

Variance 

92.12 95.23 90.37 95.24 79.51 

ESPRIT 

Algorith

m 

94.55  85.66 97.51 90.51 81.74 

Weighte

d 

Subspac

e Fitting 

90.23  87.12  89.53 86.29 78.53 

Proximit

y-Based 

Positioni

ng 

85.41 96.52 94.52 80.36 85.41 

RSSI-

based 

Trilatera

tion 

89.56 91.20 91.24 97.63 90.74 

With an accuracy of 92.12%, the Capon Minimum Variance approach produces outstanding results. Its remarkable 

multipath interference robustness, which achieved a score of 95.24 percent, guarantees accurate localization even 

in difficult interior environments. Additionally, it shows promise for effectively managing modestly large 

networks with a scalability rating of 90.37%. However, its environmental sensitivity score of 79.51%, which 

indicates vulnerability to environmental influences that may affect localization success, raises a major issue. The 

impressive 95.23% energy efficiency rate reflects careful energy management in an indoor IoT environment. 

 

Figure 5: Representation of Performance evaluation parameter 

With 94.55% accuracy, the ESPRIT Algorithm is a strong competitor. Its multipath interference tolerance 

(90.51%) and scalability (97.51%) make it ideal for accurate and scalable indoor IoT deployments. At 85.66%, 

energy efficiency is reasonable but could be improved to maximize energy use. Environmental variables may 

affect it due to its 81.74% environmental sensitivity score. Weighted Subspace Fitting's 90.23% localization 

accuracy proves its reliability. Its balanced energy efficiency (87.12%), scalability (89.53%), and multipath 
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interference tolerance (86.29%) make it a versatile indoor IoT option. However, its environmental sensitivity 

score of 78.53% suggests it may struggle in harsh environments.  

Proximity-based positioning serves moderate accuracy needs with 85.41% accuracy. Localisation saves energy 

(96.52%), extending network lifespan in energy-constrained settings. Effective network expansion is assured by 

its 94.52% scalability. The method resists multipath interference 80.36 percent. Due to its environmental 

sensitivity score of 85.41%, deployment planning is necessary. Finally, RSSI-based Trilateration is ideal for 

indoor IoT applications due to its 89.56% accuracy. Its 91.20% energy efficiency indicates careful energy 

management, extending sensor node lifespan. Scalability (91.24%) shows it can handle growing networks. 

Additionally, it is highly resilient to multipath interference (97.63%), which reduces the impact of signal 

reflections. Its environmental sensitivity score of 90.74% does, however, suggest a moderate sensitivity to 

environmental factors. The performance assessment of several localization strategies in indoor IoT contexts 

highlights the many trade-offs and factors that must be taken into account when deciding which approach is best 

for a given application. 

In comparison to Capon Minimum Variance, the ESPRIT Algorithm stands out for its remarkable accuracy and 

scalability. Proximity-Based Positioning excels in energy economy while Weighted Subspace Fitting provides a 

balanced performance. Trilateration with RSSI offers a wide range of capabilities.  

 

Figure 6: Comparison of Performance Evaluation 

The decision between these techniques ultimately depends on the particular needs and limitations of an indoor IoT 

deployment, including the need for precise accuracy, efficient energy use, or robustness in difficult multipath 

environments. These techniques provide flexible solutions for a variety of indoor IoT scenarios. 

 

Figure 7: Confusion Matrix for proposed method in IoT Indoor Environment 

The performance assessment of localization algorithms in Wireless Sensor Networks (WSNs) in Indoor Internet of 

Things (IoT) scenarios presents many strengths and trade-offs. The algorithms Capon Minimum Variance, 

ESPRIT Algorithm, Weighted Subspace Fitting, Proximity-Based Positioning, and RSSI-based Trilateration are 

evaluated across critical parameters to determine their suitability for indoor IoT applications. For indoor 

applications requiring accuracy, Capon Minimum Variance's 92% localization accuracy is appealing. In a 

Wireless Mesh network, this method broadcasts 30 meters. Despite lacking anisotropic network adaptability, it 

locates 94% of target nodes. With an average residual energy of 18%, its energy efficiency warrants optimization.. 
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Table 2: Different performance evaluation for Localization algorithms 

Localizati

on 

Techniqu

e 

Locali

zation 

Accur

acy 

(%) 

Average 

Residual 

Energy 

(%) 

Trans

missio

n 

Range 

Network 

Type 

An-

isotro

pic 

Netwo

rk 

Packet 

Broadcasting 

Sample Result 

Capon 

Minimum 

Variance 

92% 18% 
30 

meters 

Wireless 

Mesh 
No 

Successful 

localization of 

94% of target 

nodes. 

ESPRIT 

Algorithm 
95% 20% 

25 

meters 
Ad Hoc Yes 

Achieved 95% 

accuracy with 

low energy 

consumption 

Weighted 

Subspace 

Fitting 

88% 15% 
40 

meters 

Infrastru

cture 
No 

Accuracy 

decreased in 

non-Gaussian 

environment 

Proximity

-Based 

Positionin

g 

75% 8% N/A Star No 

Rapid 

localization 

with minimal 

energy usage. 

RSSI-

based 

Trilaterati

on 

80% 10% 
35 

meters 
Mesh No 

Achieved 80% 

accuracy in a 

complex 

indoor setup. 

ESPRIT Algorithm excels with 95% accuracy and 20% energy-saving residual energy. With a 25-meter 

transmission range in an Ad Hoc network, it achieves high localization precision with low energy consumption. 

Its anisotropic network suitability makes it flexible. However, its low scalability may limit its use. Weighted 

subspace fitting localizes indoor IoT devices with 88% accuracy. Energy efficiency is low with 15% residual 

energy.  

Proximity-Based Positioning excels in energy efficiency, with an average residual energy of 8%, although 

providing a modest accuracy of 75%. It prioritises quick localization while consuming the least amount of energy 

while operating in a Star network with variable transmission range. However, due to its inability to adapt to 

anisotropic networks, this method must only be used in situations when imprecise location estimates are sufficient.  

 

 

Figure 8: Representation of Different performance evaluation for Localization algorithms 
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With an average residual energy of 10%, RSSI-based trilateration maintains an energy-efficient profile while 

achieving an accuracy of 80%. It has strong performance in challenging interior environments, attaining 80% 

accuracy, in a Mesh network with a 35-meter transmission range. It is useful for applications where a balance 

between precision and energy efficiency is required, but it cannot be applied to anisotropic networks. The decision 

between these approaches in the complicated terrain of localization algorithms for indoor IoT environments 

depends on the particular needs and deployment restrictions. 

 

Figure 9: Accuracy comparison for Localization Techniques 

The ESPRIT Algorithm strikes a balance between accuracy and energy efficiency while Capon Minimum 

Variance delivers precision but necessitates energy optimisation. While providing reliable localization, weighted 

subspace fitting is susceptible to non-Gaussian situations. Rapid localization and energy efficiency are prioritised 

by proximity-based positioning, while accuracy and energy efficiency are balanced in complicated environments 

by RSSI-based trilateration. Each algorithm is tuned to specific use cases, providing customised solutions for a 

variety of indoor IoT scenarios. In these situations, trade-offs are inevitable, and performance evaluation 

determines which localization technique is most suitable. 

V. CONCLUSION 

In the context of Wireless Sensor Networks (WSNs) operating in Indoor Internet of Things (IoT) environments, 

the search for energy-efficient localization approaches has uncovered a landscape rich in innovation and potential. 

The Capon Minimum Variance, ESPRIT Algorithm, Weighted Subspace Fitting, Proximity-Based Positioning, 

and RSSI-based Trilateration were just a few of the approaches that were studied in this study. Each has its own 

advantages and disadvantages. The results highlight how vital energy-efficient localisation is to maximising the 

functionality of IoT applications indoors. The Capon Minimum Variance method's sensitivity to environmental 

conditions, on the other hand, serves as a helpful reminder of the value of taking into account the real-world 

context of IoT deployments. It is essential to adapt the method to the particular constraints and requirements of the 

application. These methodologies offer adaptable solutions for many indoor IoT applications, whether it is for pin-

point accuracy, effective energy usage, or robustness in difficult indoor environments. This study clarifies the 

variety of solutions available to IoT practitioners in the dynamic IoT environment, where energy conservation and 

precise localisation are crucial. The importance of striking a precise balance between accuracy, energy efficiency, 

scalability, and robustness to environmental conditions is emphasised. In order to fulfil the changing demands of 

this quickly expanding field, the future of energy-efficient localisation in indoor IoT contexts offers constant 

innovation and adaptation. 
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