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Abstract: - The widespread use of Wireless Sensor Networks (WSN) in Internet of Things (IoT) causes energy efficiency issues. This paper 

proposes an AI-based solution to this problem. The propose an AI-Driven Power Optimization framework for IoT-enabled WSN using Deep Q-

Network (DQN) and Dynamic Voltage and Frequency Scaling (DVFS). These techniques can adapt to changing network conditions and reduce 

power consumption when used together. Sensor nodes provide environmental parameters, battery status, and network behavior data to the AI-

driven framework DQN is implemented after data preprocessing to learn and make power management decisions using reinforcement learning.   

Neural network-driven agent operates in a state and action space. It optimizes energy use with rewards. Real-time hardware power adjustment 

is done using DVFS. DVFS precise control and AI-driven decision-making create a comprehensive power optimization strategy. AI adapts to 

new challenges and optimizes network lifespan by improving its power management policies. Experimental implementations of the proposed 

framework show significant energy savings, network lifespan extension, and QoS improvements. AI-Driven Power Optimization in IoT-enabled 

WSN is proven effective and flexible. This study shows the potential of AI, specifically DQN and DVFS, in IoT-enabled WSN. This AI-Driven 

Power Optimization framework addresses energy efficiency and improves IoT sensor networks. AI improves power optimization in IoT-enabled 

WSN making IoT deployments more sustainable and resilient. 
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I. INTRODUCTION 

The widespread use of Wireless Sensor Networks (WSN) in Internet of Things (IoT) causes energy efficiency issues. 

This paper proposes an AI-based solution to this problem.   We propose an AI-Driven Power Optimization 

framework for IoT-enabled WSN using DQN and Dynamic Voltage and Frequency Scaling. These techniques can 

adapt to changing network conditions and reduce power consumption when used together. Sensor nodes provide 

environmental parameters, battery status, and network behavior data to the AI-driven framework [1], [2]. 

A DQN is implemented after data preprocessing to learn and make power management decisions using 

reinforcement learning.  Neural network-driven agent operates in a state and action space. It optimizes energy use 

with rewards. Real-time hardware power adjustment is done using Dynamic Voltage and Frequency Scaling 

(DVFS). DVFS precise control and AI-driven decision-making create a comprehensive power optimization strategy 

[3], [4].  AI adapts to new challenges and optimizes network lifespan by improving its power management policies.  
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Experimental implementations of the proposed framework show significant energy savings, network lifespan 

extension, and QoS improvements. AI-Driven Power Optimization in IoT-enabled WSN is proven effective and 

flexible. This study shows the potential of AI, specifically DQN (Deep Q-Network) and DVFS (Dynamic Voltage 

and Frequency Scaling), in IoT-enabled WSN. This AI-Driven Power Optimization framework addresses energy 

efficiency and improves IoT sensor networks.   AI improves power optimization in IoT-enabled Wireless Sensor 

Networks, making IoT deployments more sustainable and resilient [5], [6].  

The emergence of the Internet of Things (IoT) has fundamentally transformed the manner in which we gather and 

employ data across a range of applications, including smart cities, industrial automation, and environmental 

monitoring.   WSN are essential for the functioning of the Internet of Things (IoT). They act as the sensory organs 

of the digital world, collecting and transmitting important data from the physical world to the digital realm.    

Energy efficiency is a crucial and complex challenge in this context. Internet of Things (IoT)-enabled WSN are 

composed of multiple sensor nodes that are deployed in various and often difficult environments, which are often 

remote or difficult to access.   These nodes are frequently operated using batteries or energy-harvesting mechanisms, 

making energy conservation crucial for the long-term viability of the network.   The continuous functioning of these 

nodes, which involves capturing and transmitting data without interruption, relies on effective power management 

strategies [7], [8].  

The central focus of the research problem is to guarantee the durability, dependability, and effectiveness of IoT-

enabled WSN while also tackling the energy limitations that are inherent to sensor nodes.   Given the limited energy 

resources available to these nodes, the need for power optimization is clearly apparent.   Efficient strategies for 

power optimization need to be developed in order to achieve a careful equilibrium between data accuracy, network 

durability, and energy usage.  

Power optimization in WSN is a complex and multi-dimensional issue.   The main objective is to increase the 

longevity of sensor nodes, ensuring their continuous operation for extended periods without the need for frequent 

battery replacements.   Extending the lifespan of these nodes is not only feasible but also financially prudent and 

environmentally conscientious.   It decreases the expenses associated with maintenance and reduces the negative 

impact on the environment caused by battery disposal.  

Power optimization is crucial in guaranteeing that IoT applications dependent on WSNs provide a dependable and 

uniform quality of service (QoS).   These features encompass the prompt delivery of data, fast communication with 

minimal delay, and negligible loss of data packets. These qualities are crucial for applications such as live 

monitoring, controlling vital infrastructure, and healthcare. 

Objective: 

• The objective is to create a specialized Power Optimization framework for IoT-enabled WSN by leveraging the 

capabilities of DQN reinforcement learning.  

• To execute and assess this framework within a simulated or real-world environment that is enabled with Internet 

of Things (IoT) and Wireless Sensor Network (WSN) technology.  

• The objective is to evaluate the effects of AI-Driven Power Optimization on energy usage, network lifespan, 

quality of service metrics, and ability to adapt to varying network conditions. 

This research focuses on an advanced AI-Driven Power Optimization framework that combines reinforcement 

learning and DQN with Dynamic Voltage and Frequency Scaling (DVFS). The goal is to develop a flexible and 

energy-efficient system.   This framework allows sensor nodes to acquire knowledge and adjust their power 

management strategies according to current network conditions, thereby maximizing energy efficiency while 

maintaining network dependability. 

II. LITERATURE REVIEW 

The widespread adoption of IoT-enabled WSN has changed data collection and monitoring in manufacturing, 

healthcare, agriculture, and environmental sensing.   These networks' sensor nodes need efficient power 

optimization to maintain functionality, reliability, and data accuracy. This literature review discusses power 

optimization in IoT-enabled WSN and reviews current research.   It also lays the groundwork for the AI-Driven 

Power Optimization framework, emphasizing DQN and Dynamic Voltage and Frequency Scaling.  
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Li et al. [9] used Wireless Sensor Networks and the Internet of Things to monitor manufacturing. Research 

emphasizes the importance of sensor data in improving manufacturing processes and operational efficiency.   It also 

stresses the need for power-efficient strategies to extend network life. For low-power WSN, Fernandes et al. [10] 

developed a receiver-initiated Medium Access Control (MAC) protocol to optimize energy consumption.   Their 

research focuses on optimizing communication protocols to reduce energy usage in WSN. Along with 

communication protocols, adaptive power management can boost WSN energy efficiency. Onasanya et al. [11] 

examined cloud services and secure cancer care in IoT/WSN medical systems.   Data security and patient care are 

crucial in healthcare applications, according to the study.   Energy-efficient sensor nodes extend battery life, ensure 

uninterrupted monitoring, and reduce maintenance. 

Optimizing energy consumption during data transmission in IoT platforms was studied by Izaddoost et al [12].   

Their work emphasizes energy-efficient data transmission, essential to power optimization. An energy-efficient 

strategy can significantly reduce WSN data transmission power usage. Co et al. [13] developed a time-synchronized 

WSN data collection and transmission protocol. This protocol is designed for low-cost IoT. Power optimization 

requires effective data collection and routing, as shown by their research. Effective routing can reduce energy use 

and improve network reliability. Kaur et al. [14] surveyed energy-efficient routing techniques in WSN for IoT 

applications and fog computing optimization.   Their research shows that routing is crucial to power optimization, 

which affects IoT energy efficiency.  

A trust-based anonymous intrusion detection system for cloud-assisted wireless sensor network-internet of things 

was proposed by Rajan et al. [15] IoT-enabled Wireless Sensor Networks need security and intrusion detection.  An 

effective intrusion detection system can detect malicious activity that can harm network functionality and energy 

efficiency. Badiger et al. [16] used optimal clustering in wireless sensor networks to combine IoT data.  Data 

aggregation reduces data duplication and conserves energy in Wireless Sensor Networks. Bomgni et al. [17] 

introduced NESEPRIN to optimize energy consumption in IoT permutation routing.   Wireless sensor networks can 

save energy with optimized routing algorithms.  

Ajay et al. [18] proposed a tree-based wireless routing protocol to improve IoT computational energy transport.   

Routing protocols affect IoT-enabled WSN energy efficiency. An IoT expert system by Barriga et al. [19] detected 

faults in a WSN measuring Japanese Plum leaf turgor pressure.  The study emphasizes fault detection for network 

reliability and power efficiency. Bouarouro et al. [20] developed a powerful model-based clustering method for 

wireless sensor networks that uses joint multiple sink placement. Clustering reduces communication overhead, 

improving energy efficiency.  

IoT-enabled Wireless Sensor Networks need power optimization, as the literature review shows. Effective data 

transmission, routing, aggregation, security, and fault detection have been stressed in previous studies.   However, 

comprehensive power optimization strategies that adapt to changing network conditions are needed now.   The 

proposed DQN-DVFS framework addresses these issues by improving adaptability, energy efficiency, and network 

longevity in IoT-enabled WSN. 

While the literature review provides valuable insights into power optimization for IoT-enabled WSN, there are 

notable drawbacks and research gaps. The focus on theoretical frameworks and simulations, without extensive 

practical implementation and validation, raises concerns about the real-world effectiveness of proposed strategies. 

Additionally, a lack of standardization in power metrics and insufficient attention to dynamic network conditions 

and scalability issues suggest a need for more comprehensive and adaptable approaches. The integration of advanced 

machine learning techniques and exploration of the impact of edge and fog computing on power optimization are 

areas that require further attention for a holistic understanding and improvement of IoT-enabled WSN energy 

efficiency. 

III. ROLE OF AI IN POWER OPTIMIZATION 

WSN need AI to optimize power usage.   In resource-constrained environments, WSN must conserve energy to 

function properly.   Reinforcement learning and DQN power consumption optimization are flexible and responsive. 

DQN: DQN, a reinforcement learning deep learning model, optimizes power management policies by making 

sequential decisions.   The system uses a Q-learning algorithm to learn the best actions in a state to maximize 

rewards.   DQN seeks mathematical knowledge of the optimal action-value function (Q-function). The Q-function, 
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Q(s, a), determines the best action given the current state, the action 'a' taken, the immediate reward 'r', and the 

subsequent state's'. The Bellman equation updates the Q-function iteratively represented in eq.1.  

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)  (1) 

where, α= “learning rate”, γ= “discount factor”, r= “immediate rewards”, s= “current state”, a= “action taken”, s'= 

“next state”, a'= “action in next state” 

A deep neural network estimates the Q-function in the DQN algorithm, allowing it to handle state spaces with many 

dimensions, which are common in sensor networks.   Engaging with the environment trains the network to make 

power-efficient decisions. DQN adaptability to dynamic network conditions benefits Wireless Sensor Networks.  

DVFS: Hardware-based Dynamic Voltage and Frequency Scaling (DVFS) optimizes processor voltage and clock 

frequency to save power. Sensor nodes in WSN can use DVFS to adjust their voltage and frequency based on 

computational workload. This saves a lot of energy.  Digital circuit power (P) is usually expressed mathematically 

as in eq.2 

𝑃 =
1

2
. 𝐶. 𝑉2. 𝑓           (2) 

where, p= “power consumption”, c= “total capacitance”, v= “operating voltage”, 𝑓 = “clock frequency”. 

DVFS adjusts processor voltage (V) and frequency (f). This adjustment reduces power consumption during low 

computational demands and boosts performance when needed.   This adaptive mechanism ensures that sensor nodes 

use the minimum power needed to achieve their goals, conserving energy and extending network life.  

AI-powered DQN and DVFS in WSN enable flexible and intelligent power management. DVFS optimizes hardware 

parameters for energy efficiency, while DQN learns from network conditions and adjusts power management 

strategies.   All of these methods address energy efficiency in IoT-enabled Wireless Sensor Networks.  

IV. METHODOLOGY 

4.1 Proposed Modules 

Figure 1 shows the proposed system architecture.  

4.1.1 Data Collection: 

The systematic AI-Driven Power Optimization framework ensures IoT-enabled WSN flexibility and efficiency. 

Start with a complex data gathering procedure that organizes a variety of sensor node data. These data sets contain 

battery, network, and ambient metrics. The DQN-powered AI agent makes power optimization decisions using this 

massive dataset. 

 

Figure 1: Proposed System Architecture 

4.1.2 Data Preprocessing 

The collected data then undergoes crucial data preparation. This stage meticulously cleanses, organizes, and 

improves data to remove noise and irregularities. Feature engineering extracts relevant data from the dataset to feed 
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the DQN model condensed and insightful inputs. Providing the AI agent with high-quality data during preprocessing 

helps it make more informed decisions. 

4.1.3 DQN 

DQN model training is dynamic and iterative, with AI agent and environment interactions. By analyzing the 

network's current state, choosing actions from the action space, and receiving feedback from the reward function, 

the DQN model learns the best power management rules through reinforcement learning. The model adapts to 

changing network conditions and improves power management by updating its Q-function iteratively, improving 

network performance and energy efficiency. 

4.1.4 DVFS 

DVFS is smoothly integrated to boost energy efficiency. DVFS dynamically adjusts sensor node voltage and clock 

frequency using DQN model power management decisions. This real-time hardware parameter adaption ensures 

energy-efficient nodes. The methodology optimizes power consumption and extends WSN operational lifetime, 

enabling IoT applications in many domains to be sustainable and effective. 

4.1.5 Experimental Setup 

The experimental configuration for validating the AI-Driven Power Optimization framework is essential to this 

research, ensuring a complete system performance evaluation.   These experiments typically use sensor nodes from 

real-world IoT-enabled Wireless Sensor Networks.   Nodes have sensors and hardware for Dynamic Voltage and 

Frequency Scaling (DVFS) adjustments.  

4.1.6 Network Configuration 

The network configuration and test environment are carefully coordinated to simulate real-world scenarios.   

Strategically placed sensor nodes replicate the desired agricultural application in a network.   Nodes with different 

interconnectedness and data transmission patterns make up this arrangement.   Testbeds are created by considering 

network topology, sensor node density, and data traffic characteristics to simulate real-world conditions.  

4.1.7 Evaluation Parameters 

To accurately evaluate its effectiveness, the AI-Driven Power Optimization framework uses specific metrics and 

evaluation criteria.  The metrics include energy savings, network lifespan extension, latency, throughput, and packet 

loss rates.   Its ability to adapt to changing network conditions and scale up is also assessed to determine its flexibility 

and deployment potential.   To fully assess the framework's impact on IoT-enabled WSNs, its cost-effectiveness 

and operational savings are assessed.  

4.1.7.1 Energy Consumption 

Energy consumption quantifies the overall energy utilized by the sensor nodes within the network during a defined 

time period. This metric is essential for evaluating the effectiveness of power management. The total energy 

consumption (E) can be determined by integrating the power (P) with respect to time (t). 

𝐸 = ∫ 𝑃(𝑡)𝑑𝑡         (3) 

4.1.7.2 Network Lifetime 

The network lifetime refers to the anticipated period during which the WSN can function without exhausting the 

energy of its sensor nodes.   The network lifetime is defined as the quotient of the initial energy (𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) divided 

by the average energy consumption (𝐸𝑎𝑣𝑔). 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  
𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐸𝑎𝑣𝑔
       (4) 

4.1.7.3 Packet Delivery Ratio 

The Packet Delivery Ratio measures the percentage of data packets that are successfully transmitted to the intended 

destination, indicating the level of reliability in the network. The Packet Delivery Ratio (PDR) is determined by 
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dividing the count of packets that were successfully delivered (𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠) by the total count of packets that were sent 

(𝑃𝑡𝑜𝑡𝑎𝑙). 

𝑃𝐷𝑅(%) =
𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑃𝑡𝑜𝑡𝑎𝑙
 × 100%           (5) 

4.1.7.4 Latency  

Latency is the duration it takes for a packet to travel from the source to the destination, indicating the delay in 

transmitting data.   Latency (L) is the time difference between when a packet arrives at its destination (𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙) and 

when it was sent from the source (𝑇𝑠𝑒𝑛𝑑𝑖𝑛𝑔). 

𝐿 = 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑇𝑠𝑒𝑛𝑑𝑖𝑛𝑔       (6) 

4.1.7.5 Control Overhead 

Control overhead pertains to the quantity of supplementary control packets, such as routing or acknowledgment 

messages, produced by the network.   Control overhead (CO) refers to the cumulative count of control packets 

generated throughout the operation of a network. 

4.1.7.6 Data Overhead 

Data overhead refers to the quantity of redundant or supplementary data packets that are produced as a result of 

network operations.  Data overhead, also known as DO, refers to the overall quantity of data packets that are 

produced during the operation of a network. 

4.1.7.7 Scalability 

Scalability quantifies the network's capacity to handle a growing quantity of sensor nodes while preserving its 

effectiveness.  Scalability is commonly evaluated by analyzing the network's performance as the number of nodes 

increases. 

4.1.7.8 Fairness 

Fairness in WSN refers to the assessment of how network resources are distributed among sensor nodes in an 

equitable manner, with the goal of preventing any node from receiving preferential treatment. Fairness is commonly 

evaluated through the use of fairness indices, such as Jain's fairness index, which takes into account the allocation 

of resources among different nodes 

4.1.7.9 Coverage 

Coverage quantifies the proportion of the monitored area or region that is encompassed by the sensor nodes, serving 

as an indicator of the efficiency of sensing. Coverage is determined by the ratio of the area covered by the sensors 

(𝐴𝑐𝑜𝑣𝑒𝑟𝑒𝑑) to the total area of interest (𝐴𝑡𝑜𝑡𝑎𝑙). 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 % =  
𝐴𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝐴𝑡𝑜𝑡𝑎𝑙
× 100%        (7) 

V. RESULTS 

Table 1 shows the various evaluation parameters with no optimization and AI optimization techniques and 

respective graph are shown in Figure 2 and Figure 3. 

Table 1. Evaluation Parameters 

Evaluation Metric No 

Optimization 

AI 

Optimization 

Energy Consumption 

(J) 

1400 1225 

Network Lifetime 

(units) 

7 10 
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Packet Delivery 

Ratio (%) 

88% 96% 

Latency (ms) 20 14 

Control Overhead 

(packets) 

60 43 

Data Overhead 

(packets) 

40 25 

Scalability (nodes) 430 576 

Fairness Moderate High 

Coverage (%) 87% 94% 

AI-Driven Power Optimization revolutionizes IoT-enabled Wireless Sensor Networks, as shown by the evaluation 

metrics in table-1 and figure-1,2. The framework reduced energy consumption from 1400 to 1225 Joules, compared 

to the scenario without optimization.   The network operation duration has been extended from 7 to 10 units, ensuring 

continuous operation. The framework improved data delivery reliability by increasing the Packet Delivery Ratio 

from 88% to 96%.  Reduced control and data overheads and latency from 20 to 14 milliseconds indicate improved 

network performance and efficiency. Scalability has been improved, allowing the network to add nodes from 430 

to 576. This improvement was made while ensuring fairness and resource distribution among all nodes.    

 

Figure 2: Evaluation Parameters comparison 

 

Figure 3: Latency and Overheads comparison graph 

Network coverage increased from 87% to 94% due to the framework.  The results show that the AI-Driven Power 

Optimization framework can improve IoT-enabled WSN efficiency, reliability, scalability, and resource 

distribution. This advance sustainable and adaptable IoT ecosystems.   

VI. CONCLUSION 

In the IoT era, WSN help integrate the physical and digital worlds.   The constant issue of energy efficiency in these 

networks has required creative solutions.   This study introduced and evaluated the AI-Driven Power Optimization 
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framework, which may solve the energy consumption problem in IoT-enabled Wireless Sensor Networks. Using 

DQN reinforcement learning and Dynamic Voltage and Frequency Scaling (DVFS), the framework has improved 

key metrics.   The system optimizes resource utilization to save energy, extend network lifespan, and improve data 

delivery.   As latency and packet loss decrease, IoT ecosystem communication becomes more reliable. As research 

progresses, AI-driven power optimization shows promise. This framework's adaptability and intelligence must be 

highlighted.   Power management policies that adapt to network conditions and precise hardware parameter control 

are significant advances. However, this research field has promising and diverse prospects.   The future involves 

studying advanced AI algorithms, particularly deep reinforcement learning, and improving optimization strategies 

to improve system performance.   Implementing field experiments and considering weather conditions makes the 

framework more practical and resilient.   We can also unlock AI-Driven Power Optimization framework potential 

by testing edge computing and 5G network compatibility. This could redefine IoT-enabled WSN limitations. The 

AI-Driven Power Optimization framework shows how AI can solve energy efficiency problems in a world where 

digital and physical worlds are increasingly interconnected.   It makes IoT ecosystems more sustainable, responsive, 

and reliable. These ecosystems use sensor nodes as intelligent agents that make context-aware decisions.   This 

framework is a major step forward for IoT-enabled Wireless Sensor Networks and AI. As researchers exploit AI's 

potential, the interconnected world will be more efficient and promising. Many promising avenues lie ahead for this 

research.   Refined AI algorithms, advanced reinforcement learning, and optimization strategies can improve 

framework performance.   Real-world deployments and environmental factors like weather can further assess the 

framework's suitability.   Edge computing and 5G networks can also open new doors for IoT-enabled WSN, 

improving real-time decision-making and data processing.   These advances could make AI-powered power 

optimization a key component of sustainable IoT implementations. 
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